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Abstract: With the development and popularization of LiDAR technology, point clouds are becoming
widely used in multiple fields. Point cloud classification plays an important role in segmentation,
geometric analysis, and vegetation description. However, existing point cloud classification algo-
rithms have problems such as high computational complexity, a lack of feature optimization, and low
classification accuracy. This paper proposes an efficient point cloud classification algorithm based on
dynamic spatial–spectral feature optimization. It can eliminate redundant features, optimize features,
reduce computational costs, and improve classification accuracy. It achieves feature optimization
through three key steps. First, the proposed method extracts spatial, geometric, spectral, and other
features from point cloud data. Then, the Gini index and Fisher score are used to calculate the
importance and relevance of features, and redundant features are filtered. Finally, feature importance
factors are used to dynamically enhance the discriminative power of highly distinguishable features
to strengthen their contribution to point cloud classification. Four real-scene datasets from STPLS3D
are utilized for experimentation. Compared to the other five algorithms, the proposed algorithm
achieves at least a 37.97% improvement in mean intersection over union (mIoU). Meanwhile, the
results indicate that the proposed algorithm can achieve high-precision point cloud classification
with low computational complexity.

Keywords: LiDAR; point cloud classification; feature fusion; random forest (RF)

1. Introduction

LiDAR has been widely used in many fields, such as urban planning [1], autonomous
driving [2], agricultural development [3], and land use change [4]. Unlike 2D detec-
tion based on image data from optical sensors, LiDAR’s spatial sensing capabilities are
advantageous for object recognition in 3D spaces [5]. LiDAR is a radar system that de-
tects a target’s position, velocity, and other characteristic parameters by emitting a laser
beam [6]. Compared to traditional two-dimensional remote sensing data, the point cloud
contains geometric information and potentially encompasses information about color or
intensity [7]. Due to these advantages, more researchers have begun exploring the area
of 3D space. Three-dimensional point cloud semantic segmentation and recognition algo-
rithms hold significance in computer vision as a long-standing research topic [8]. However,
the disorder and irregularity of point clouds in 3D space pose challenges for the automatic
and accurate classification of point clouds [9,10].
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In early research on the topic, some scholars employed the technique of rasterizing
3D point clouds. The underlying principle involves projecting the 3D point cloud onto a
2D plane and subsequently leveraging existing 2D image processing methods to extract
features for further processing [11]. RangeNet++, proposed by Milioto et al., is one of
these representative methods [12], which is inspired by the TangentConv network [13]
and SqueezeSeg V2 network [14] methods. RangeNet++ preserves the projection of point
cloud data onto a sphere, resulting in a 2D image representation akin to a distant image.
Classification is performed on the 2D image, and the results are subsequently mapped
back to the 3D space. However, this projection process inevitably leads to losing geometric
relationships and structural information in the 3D point cloud space [7].

Drawing inspiration from the processing of 2D images, Maturana et al. were the first
to propose voxelized point clouds by dividing them into evenly spaced voxel grids and
feeding them into a convolutional neural network [15]. Since then, OctNet [16], MV3D [17],
and other networks and algorithms have been proposed. While voxel-based point cloud
classification techniques, to some extent, preserve the 3D geometric relationships and
structures of point clouds, the choice of voxel size during the voxelization process can
influence the classification results. Using overly large voxels can lead to the loss of geometric
details, while using overly small voxels can increase computational costs [7].

Methods that transform point cloud data into regular and structured 3D voxel grids
or collections of images can result in unnecessarily large data. Therefore, researchers
have proposed deep learning-based approaches that handle point cloud data directly. Qi
Charles first proposed PiontNet, which is pioneering in the direct classification of original
point clouds [18]. Based on PointNet and PointNet++ [19], RandLA-Net [9] introduces
an efficient local feature aggregation module that progressively increases the receptive
field of each point, allowing for better learning and the preservation of complex geometric
structures within large-scale point clouds. The experiments demonstrate that RandLA-Net
achieves high efficiency in terms of memory and computation while achieving significant
overall performance. Although those deep learning-based methods mentioned above have
achieved good performances in extracting local features, some of these methods have a high
computational complexity. This prevents the design of deeper network structures, leading
to insufficient semantic information extraction and compromised accuracy, especially in
large-scale point cloud scenes [20].

Some researchers have attempted to combine traditional features with machine learn-
ing (ML) and deep learning (DL) for point cloud classification. Zhao et al. combined existing
DL network models with four shallow features: normalized height, surface roughness,
intensity, and the normalized vegetation index, to classify the ISPRS dataset. The clas-
sification accuracy reached 87.1% [21]. Poliyapram et al. proposed the PMNet network,
which utilizes the combination of intensity and RGB features to classify ALS point clouds
of Osaka City. The experiments demonstrated that the overall accuracy was improved
from 65% to 79% [22]. Li et al. employed geometric matrix enhancement to describe the
geometric features of point clouds [23]. Additionally, they utilized spectral information
from multispectral point cloud data to further enhance classification accuracy. Xiu et al.
associated point cloud data with color features from orthoimages in a point cloud classifi-
cation. By incorporating color features, the overall accuracy improved by 2% [24]. These
methods are prone to overfitting, and due to their large model sizes, they require significant
computational resources. Harith Aljumaily et al. [25] utilized five point descriptors (density,
standard deviation, clustered points, fitted plane, and plane’s angle) and two voxel location
attributes (elevation and neighbors) to describe the distribution of points within voxels and
the geographical location of voxels. Finally, they employed a random forest (RF) classifier
for data analysis. The experimental results indicate excellent average precision perfor-
mance. RF is a computationally efficient ML method that can achieve a higher accuracy
than other methods without requiring extensive training time [25]. Furthermore, due to
its strong robustness and resistance to overfitting [26], since its first application in point
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cloud data classification, it has been consistently used in this field and still holds great
potential [27].

In summary, existing methods that combine traditional feature extraction with ma-
chine learning are known for their real-time performance and their ability to achieve a high
classification accuracy. However, these methods often lack feature optimization and selec-
tion and face the risk of dimension explosion and performance degradation as the number
of features to be processed increases. At the same time, these methods require substantial
computational resources and time investments. Therefore, this paper designs multiple
spectral-spatial feature extraction algorithms and uses the RF algorithm, with its strong
anti-overfitting and excellent deep-shallow feature extraction ability, as the classifier to
propose a large-scale point cloud classification method based on dynamic spatial–spectral
feature optimization. Through experiments, it has been proven that this method can achieve
robustness and a high classification accuracy. The main contributions of this paper are
as follows:

(1) This paper adopts a multi-domain feature extraction method based on statistical
analysis and machine learning to obtain spatial, geometric, spectral, and other deep features
from point cloud data. It also proposes using the Gini Index and Fisher Score to calculate
feature importance and correlation. Finally, comprehensively assessing importance and
relevance promotes effectively filtering shallow and deep features, thereby eliminating
feature redundancy.

(2) This paper proposes a point cloud classification method based on spatial–spectral
feature-weighted fusion and RF. After feature filtering, it dynamically enhances the dis-
criminative power of features with a high separability using feature importance factors,
effectively combines multiple shallow and deep features, and improves their contribution
to point cloud classification, thereby ensuring high-precision point cloud classification.

2. Materials and Methods
2.1. Datasets

Semantic Terrain Points Labeling–Synthetic 3D dataset (STPLS3D) [28] has four real-
world sites, including the University of Southern California Park Campus (USC), Wrigley
Marine Science Center (WMSC) located on Catalina Island, Orange County Convention
Center (OCCC), and a residential area (RA). These four regions are shown in Figure 1. This
dataset was collected using a crosshatch-type flight pattern with flight altitudes ranging
from 25–70 m in 2021.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. Visualization display of experimental data in Cloud Compare. (a) Residential Area
(RA). (b) Wrigley Marine Science Center (WMSC). (c) Orange County Convention Center (OCCC).
(d) University of Southern California Park Campus (USC).

All four regions have distinct features, with significant differences in land cover
categories and quantities. Each data sample category and quantity are displayed in the
Table 1 and Figure 2.

RA: The RA region is a typical residential area. The buildings are neatly arranged,
and their height does not exceed three floors.

WMSC: The WMSC region is an area which is different to the urban environment.
There are fewer buildings, and a larger portion is covered by bare land and grassland.

OCCC: The OCCC region includes a large convention center and its surrounding
environment. Fewer tall buildings, mostly scattered vegetation, and concentrated parking
lots exist.

USC: The USC area is mainly covered by tall buildings, accounting for approximately
42% of land cover. The grassland coverage rate is about 6.5%. The proportions of categories
such as vehicles, light poles, fences, and dirt are all less than 1%.

Table 1. The proportion information in each category in the STPL3D dataset.

RA WMSC OCCC USC

Building 2,388,323 (34.99%) 996,180 (9.98%) 14,742,339 (37.88%) 40,094,389 (42.34%)
Low vegetation 1,460,336 (21.10%) 2,086,770 (20.91%) 6,685,428 (17.18%) 27,996,830 (29.57%)

Vehicle 133,085 (1.95%) 42,033 (0.42%) 964,766 (2.48%) 478,130 (0.50%)
Light Pole 18,870 (0.28%) 6,232 (0.06%) 74,233 (0.19%) 179,555 (0.19%)

Clutter 32,383 (0.47%) 134,859 (1.35%) 145,289 (0.37%) 2,112,812 (2.23%)
Fence 333,862 (4.89%) 76,296 (0.76%) 56,405 (0.14%) 819,305 (0.87%)
Road 2,054,448 (30.10%) 754,171 (7.56%) 8,636,482 (22.19%) 16,051,158 (16.95%)
Dirt 32,315 (0.47%) 4,700,616 (47.11%) 1,393,234 (3.58%) 828,581 (0.88%)

Grass 371,443 (5.44%) 1,180,607 (11.83%) 6,216,458 (15.97%) 6,134,089 (6.48%)

Total 6,825,065 (100%) 9,977,764 (100%) 38,914,634 (100%) 94,694,849 (100%)

From Figure 2, it can be seen that there is a significant difference in the label counts
between different categories within the same dataset. The “Light Pole” category is con-
sistently the least represented across different datasets. Comparing the data in Table 1,
it can be observed that there are significant differences in the proportions of the same
category across different datasets. The phenomenon of the same category also has similar
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proportions across different datasets. These phenomena indicate that the experimental data
have the capability of cross-validation. The experimental data can be used as training and
testing samples for each other.
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Figure 2. The distribution of categories for each type of data. The x-axis represents the category,
and the y-axis represents the number of point clouds. Red represents the RA dataset, blue represents
the WMSC dataset, yellow represents the OCC dataset, and green represents the USC dataset.

2.2. The Proposed Method

The proposed point cloud classification method comprises five main steps: ¬ Voxel
downsampling is applied to the experimental data.  Feature extraction is performed on
the data. ® Feature importance and correlation are calculated for the extracted features,
and low-importance features are removed. ¯ Feature fusion is conducted based on step
three’s results, considering feature importance. ° The feature set obtained after weighted
fusion is fed into an RF classifier to generate classification results. To clearly illustrate the
algorithm flow, the overall description of the proposed method is shown in Algorithm 1.
The details of the main steps will be described in the following sections.

2.2.1. Voxel Preprocessing

The principle of voxel grid filtering involves partitioning the point cloud data into a
grid of cubic voxels, computing representative points for each grid, and replacing all the
points within a voxel with its representative point. This process achieves downsampling.
Due to the different choice of representative points, two voxel downsampling methods,
voxel grid (Equation (1)) and approximate voxel grid (Equation (2)), have been generated.
The former employs the center point of each voxel as the representative point, while the
latter uses the centroid of each voxel as the representative point. This paper illustrates the
difference between the two downsampling methods through specific examples. The voxel
size for both methods was set to 0.5 × 0.5 × 0.5. The experimental results are shown
in Figure 3. The original point cloud consisted of 7501 points, and after downsampling,
the point counts were reduced to 674 and 1156, respectively. With the same voxel block
size, the two methods will filter out different numbers of points, resulting in different
results. The three images in Figure 3 show that, although the Voxel Grid method results
in roughly complete object contours, some fine-grained local shape details in the original
point cloud are lost. The results of approximate voxel grid method still retain the detailed
information from the original point cloud, which will be beneficial for improving the
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subsequent classification accuracy. Therefore, this paper chooses the approximate voxel
grid method. 

x = ∑m
i xi
m

y = ∑m
i yi
m

z = ∑m
i zi
m

(1)

where (x, y, z) represent the centroid within a voxel containing m points. (xi, yi, zi) represent
points within the voxel. 

xcenter = xmin + (ci − 0.5) ∗ 0.5
ycenter = ymin + (ri − 0.5) ∗ 0.5
zcenter = zmin + (li − 0.5) ∗ 0.5

(2)

where (xcenter, ycenter, zcenter) are the center of the voxel being solved. (ci, ri, li) represent the
number of rows and columns in which (xi, yi, zi) are located. (xmin, ymin, zmin) represent
the minimum coordinate value in the voxel.

Algorithm 1 Large-scale point cloud classification using random forest based on weighted
feature spatial transformation

Input: D = {xn, yn, zn}N
n=1: Point cloud dataset

1: Preprocess D using voxel filter to obtain D1 = {xi, yi, zi}M
i=1

1.

2: Extract features from D1 to obtain the feature set F =
[

F1g, F2g, F3g, · · · , Fkg

]T
2.

The features include the following:
1© Comparative features of spectral information: F1g = I

(
Pg, cg

)
− I
(

Pg+1, cg+1
)
;

2© Spatial information distribution feature: F2g;
3© Global feature: F3g;
4© Localized spatial enhancement features: F4g;
5© Elevation feature: F5g;

6© Plane roughness: F6g = |Axo + Byo + Czo + D|
/√

A2 + B2 + C2.
3: Calculate feature importance using the Gini Index (Equation (11)) to obtain feature

importance factors W = {wk}6
k=1.

Calculate feature correlation using the Fisher Score (Equation (12)).
4: Select the optimal feature set.

Comprehensively evaluate the importance and relevance of features and conduct
feature selection to obtain feature set Fs =

[
F1g, F2g, · · · , Fsg

]T .
5: Fuse feature set Fs to obtain Ff .

Combine the optimal feature set Fs with feature importance factors using
Equation (13) to obtain Ff .

6: Input Ff into the RF classifier.
Output: The classification results.

1 M represents the number of point clouds in data.
2 Fk g represents the feature of a point.
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(a) (b) (c)

Figure 3. The original image and the results of two voxel downsampling methods. (a) Original image.
(b) The result of the voxel grid. (c) The result of the approximate voxel grid.

2.2.2. Feature Extraction Based on Statistical Analysis and Spatial–Spectral Information

Point cloud data attributes typically include three coordinates (x,y, z) and intensity
data or color information [25]. Point cloud data contain more comprehensive and detailed
information about the target objects. This paper extracts the comparative features of spectral
information, spatial information distribution features, global features, localized spatial
enhancement features, elevation features, and plane roughness to better describe the target
objects within the point cloud dataset.

• Comparative features of spectral information

Comparative features of spectral information are a type of feature used to calculate the
similarity or dissimilarity between different points [29,30]. It typically involves comparing
the attributes of two points, such as color, depth, etc., to determine the similarity or
dissimilarity between the two points. We randomly select two adjacent points for each
point and calculate the difference between them using Equation (3).

F1g = I
(

p +
δ1

D(p)
, c1

)
− I
(

p +
δ2

D(p)
, c2

)
(3)

where p is the m-th pixel, δ represents the window offset, D(p) represents the depth pixel,
and I(p, c) denotes the RGB pixel lookup in channel c.

Since this feature is represented by comparing the RGB and depth information from
adjacent points, it contains detailed contextual information, making it easy to capture the
details of the target in complex scenes [31].

• Spatial information distribution features

The spatial information distribution features mainly describe the distribution of points.
This paper employs the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [32] clustering algorithm. The DBSCAN algorithm is a density-based clustering
method used to identify dense regions in data and group them into clusters. The basic
diagram of the definition of DBSCAN is shown in Figure 4. It is based on a set of “neigh-
borhood” parameters (∈, MinPts) to characterize the tightness of the sample distribution.
Unlike traditional distance-based clustering algorithms like K-means, DBSCAN determines
the shape and size of clusters based on the density relationships between data points. This
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paper generates features represented as F2g by counting the number of points in each cluster.
And then associates each point in the point cloud data with each cluster.

F2g =
{

b1, b2, bg, · · · bM
}

(4)

where bm represents the number of points associated with the m-th point in the cluster.
The advantage of DBSCAN lies in its ability to discover clusters of arbitrary shapes

and its robustness against noisy data [33]. It can automatically determine the number of
clusters and is not constrained by the shape or size of clusters [34].

x2

x1

x3

x4

Figure 4. The basic concepts defined by DBSCAN (MinPts = 3): The dashed line represents
the ∈ neighborhood, x1 is the core object, x2 is directly density reachable from x1, x3 is density
reachable from x1, and x3 and x4 are density connected.

• Global features

Global features are used to describe the characteristics of the entire dataset or object.
It focuses on describing not only individual data points or object attributes but also the
data’s overall distribution, relationships, or attributes. For point cloud data D1 composed
of M points, first use Equation (5) to determine its symmetric positive definite covariance
matrix. Calculate the eigenvalues and eigenvectors of matrix T. The eigenvalues are
represented by~e1,~e2 and~e3, respectively, and the eigenvectors are represented by λ1, λ2 and
λ3, with λ1 ≥ λ2 ≥ λ3. Then, λ1, (λ1 − λ2)~e1, and (λ2 − λ3)~e3 define the three-dimensional
local structure points, curvature, and surface degree. Finally, the three-dimensional local
structural features of each point and its neighborhood are counted by using histograms.
And data calculations can be carried out on the results to convert the 3D local features into
global features (F3g).

T =
1
M

M

∑
i=1

(Xi − X̄)(Xi − X̄)
T (5)

where {Xj} =
{(

xj, yj, zj
)T
}

and X̄ = (1/M)∑M
j=1 Xi.

F3g =
{

f3g, f3g, · · · , f3g, · · · , f3G
}

(6)

• Localized spatial enhancement features

Localized spatial enhancement features enhance feature representations by incorpo-
rating contextual information within a local spatial region. First, the k-Nearest Neighbor
algorithm (KNN) [35] is used to collect the neighboring points of the g-th point. Then,
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Equation (7) encodes point g and its neighboring points based on Euclidean distance. Af-
terward, through Equation (8), vg is associated with its corresponding point feature fg to
obtain enhanced feature Fk

4g.

ug = MLP
(

vg ⊕ vk
g ⊕

(
vg − vk

g

)
⊕
∥∥∥vg − vk

g

∥∥∥) (7)

where ⊕ is series operation. vg and vk
g represent the x–y–z coordinates of point g and its

K-nearest neighbor points. ‖·‖ is used to calculate the Euclidean distance between the
adjacent point and the center point [9,18].

F4g =
{

u1 : f1, u2 : f2, · · · , ug : fg, · · · , uM : fM
}

(8)

where fg represents the geometric feature corresponding to point g.: represents the associa-
tion operator.

• Elevation features and plane roughness

This paper uses the standard deviation (Equation (9)) to describe the elevation features
in the point cloud. It is commonly used to characterize the variability or dispersion among
points in point cloud data.

F5g =

√√√√ M

∑
g=1

(
zg − z̄

)2
/
√

M (9)

where zg represents the elevation of the g-th point, and z̄ represents the mean elevation.
Plane roughness refers to a feature that describes the irregularity of a planar surface

within a point cloud. Typically, it is quantified by calculating the distance from a selected
point to the plane that best fits that point, as expressed in Equation (10).

F6g = |Axo + Byo + Czo + D|
/√

A2 + B2 + C2 (10)

where Axo + Byo + Czo + D = 0 represents the fitted plane obtained based on the least
squares principle.

2.2.3. Feature Selection and Feature Fusion

This section provides a detailed explanation of feature selection based on feature
importance and correlation. Firstly, feature importance and correlation are calculated using
the Gini Index and Fisher Score. Subsequently, comprehensively assessing importance and
relevance promotes effective filtering of shallow and deep features, thereby eliminating
feature redundancy. After completing feature selection, feature fusion is implemented. This
dynamically enhances the discriminative power of features with high separability using
feature importance factors.

• Feature selection based on feature importance and correlation

Learning methods often tend to overfit in situations with many irrelevant and/or
redundant features, leading to reduced interpretability [36–38]. Therefore, this paper
proposes a feature selection based on importance and correlation to improve the efficiency
and performance of the algorithm.

Feature importance is a measure used to assess each feature’s relative importance in
or contribution to predicting the target variable. In this paper, the Gini Index is chosen to
calculate the importance of features. Supposing that n features are extracted, the importance
of feature Fk

m is calculated by Equation (11).

GIK
m = 1−

K

∑
k=1

(
f k
m

)
(11)
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where K represents the number of features, and Fk
m represents the proportion of the k-th

feature in node m.
As shown in Figure 5, for the experimental data, the first four features are relatively

important: comparative features of spectral information, spatial information distribution
features, global features, and localized spatial enhancement features.

Feature Importance
F

ea
tu

re
 I

m
p

o
rt

an
ce

Figure 5. The calculation results for feature importance. They are comparative features of spectral
information, spatial information distribution features, global features, localized spatial enhancement
features, elevation features and plane roughness, respectively.

Feature correlation refers to the degree of association between different features within
a dataset. It is used to measure whether there is a relationship between features and to
assess the strength and direction of this relationship. Fisher score is one of the most widely
used supervised feature selection methods [36]. In this paper, the fisher scores [39] are
selected to calculate the relevance of features. The equation is as follows:

Sk =

C
∑

j=1

nj
n

(
F̄k

jm − F̄k
)2

1
n

C
∑

j=1
∑

x∈wj

(
xk − F̄k

jm

)2
(12)

where C is the total number of categories, nj is the number of j-th category points, n is the
total number of samples, F̄k

jm is the mean value of the m-th point on the k-th feature, F̄k is

the mean value of all category points on the k-th feature, xk is the value of point m on the
k-th feature, and wj is the j-th category.

• Multi-features weighted fusion

Feature fusion refers to the process of combining data from different information
sources or feature extraction methods to enhance the performance and expressive capabili-
ties of a model [40]. Feature fusion is commonly employed to combine features of different
types, origins, or representations to help the model better understand data for prediction or
classification [41]. So far, numerous feature fusion methods have been proposed. Among
them, using operations like summation or concatenation to achieve feature fusion is a
simple method [42]. For different network scenarios, this might not always be the optimal
choice [43].

To ensure that more informative features contribute significantly to the fused result,
this paper employs a weighted fusion approach based on feature importance and correla-
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tion. After feature selection, feature fusion is performed by combining the features with
feature importance factors using the following formula:

Ff =
K

∑
k=1

wkFkm (13)

where wk is the feature importance factor of the k-th feature, which is numerically equal
to Ik

Fq.

2.2.4. Classification with RF

First, the features extracted in this paper are subjected to feature selection and feature
fusion. Then, the obtained effective feature tensors Ff are input into the RF classifier for
point cloud classification. RF is an ensemble learning method based on decision trees [44,45].
It enhances prediction accuracy and stability by constructing multiple decision trees. Each
decision tree consists of split points and leaf nodes. Nodes represent features, and leaf
nodes represent a class or a value. That is, each decision tree is constructed from random
samples and random features. Therefore, RF can avoid over-fitting phenomena (Figure 6
shows a schematic diagram of the working principle of the RF classifier). Compared to
the Support Vector Machine (SVM) and K-means algorithm, RF has features such as high
accuracy and strong robustness [46]. Among them, the ability to handle a large number of
input features randomly is the main reason for choosing this classifier.

Pixel

p

A B C D A B C D A B C D A B C D

Class B Class C Class B Class D

…

Vote

Classification Result

(Class X)

Input

Classify

Figure 6. Working principle of RF classifier.

2.2.5. Evaluation Index

In this paper, mean intersection over union (mIoU), overall accuracy (OA), average
accuracy (AA), F-Measure, minRecall, G-mean, and confusion matrix are utilized for
quantitative evaluation of the classification results. Here is a brief introduction to IoU,
OA, and the confusion matrix. IoU, which evaluates the performance of the approach,
calculates the intersection between predicted value and ground truth divided by the union
of both. mIoU averages all IoU values by each class, which is defined in Equation (14).
OA, which evaluates the classification accuracy of a classification method, is the ratio
between the number of samples classified in a specific class and the total number of
samples (Equation (15)). The confusion matrix summarizes the records in the dataset in
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the form of a matrix according to two criteria: the real category and the category judgment
predicted by the classification model.

mIoU =
1
L

L

∑
i=1

P ∩ G
P ∪ G

(14)

where P is the prediction number of the i-th class. G is the ground truth number of the
i-th class.

OA =
L

∑
i=1

con fii

∑L
j con fij

(15)

where con fij represents the value of the i row and j column in the confusion matrix.

3. Results
3.1. Classification Accuracy

Figure 7 shows the classification accuracy of each category in the four datasets after
applying the proposed algorithm. Figure 8 shows the mIoU of each category in the four
datasets after applying the proposed algorithm. The blue line in the figure represents the
classification accuracy and mIoU of each category in the RA data. Referring to Table 1, it can
be observed that the clutter and dirt categories have a proportion of around 0.47%. However,
the accuracy of clutter is only about 40%, while the accuracy of sirt is approximately 90%.
Even for the light pole category, which accounts for only 0.28% of the data, the accuracy
exceeds 65%, significantly surpassing that of the clutter category.

The figure’s red line represents each category’s classification accuracy and mIoU in
WMSC data. The proportion of the light pole category is approximately 0.06% (Table 1),
the lowest among all categories. However, its classification accuracy reached 83%. This
indicates that the extracted features can vividly describe the category of light poles.

By observing the yellow and green lines in the graph, it can be observed that the
same situation occurs in both the OCCC and USC data. Compared to the RA and WMSC
data, OCCC and USC have a considerable amount of data, and the proportion of each
category varies greatly. However, for categories with a data volume ratio of less than 1%,
some accuracies are still above 60%, and some even exceed 80%. This indicates that the
proposed algorithm is beneficial to some extent in improving the problem of imbalanced
data categories. Among these two datasets, the classification accuracy of the light pole
category is the lowest.

Figure 9 shows the evaluation results of OA, AA, mIoU, Fmeasure, and other indicators
for the classification results for the four datasets. Comparing the results of the RA, WMSC,
and OCCC datasets, the OCCC dataset consistently has a higher accuracy regarding OA
and AA. The mIoU indicator for the USC data results is below 80%. The mIoU indicators
for the other three datasets are all above 80%, and the mIoU of the WMSC data is even
close to 90%. The F-measure indicators for the four datasets all performed well; all were
higher than 80%. Among them, the F-measure value for the OCCC data exceeded 90%. The
G-mean index values of the four datasets vary significantly. The G-mean value for OCCC
data exceeds 85%, while the G-mean value for the RA dataset is less than 50%.

Figure 10 shows a confusion matrix for the four data classification results. The road
category’s prediction accuracy in the RA data’s confusion matrix is the highest, reaching
97.69%. The accuracy of the building category is 97.44%, with suboptimal performance.
The accuracy of the clutter category is the lowest, below 50%. Observing the confusion
matrix for the RA data in Figure 10a, it can be observed that there are different numbers of
clutter categories mistakenly classified into other categories. Among them, there is a high
possibility of being incorrectly identified as a fence, light pole, or low vegetation. We think
that the reason for this occurrence can be attributed to the attributes of the clutter category.
The clutter category contains many small-proportion objects, which are challenging to
describe vividly, thus hindering accurate classification.
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Figure 7. Each category’s accuracy results are obtained using the proposed algorithm on the four
datasets. The x-axis represents categories, and the y-axis represents percentages. The blue polyline
represents the RA dataset, the red polyline represents the WMSC dataset, the green polyline represents
the OCCC dataset, and the yellow polyline represents the USC dataset.
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Figure 8. Each category’s IoU results are obtained using the proposed algorithm on the four datasets.
The x-axis represents categories, and the y-axis represents percentages. The blue polyline represents
the RA dataset, the red polyline represents the WMSC dataset, the green polyline represents the
OCCC dataset, and the yellow polyline represents the USC dataset.
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Figure 9. Histogram of experimental results of multi-metric evaluation of the proposed algorithm on
four datasets. The x-axis represents the indicator name, and the y-axis represents the percentage. Blue
represents RA data, red represents WMSC data, green represents OCC data, and yellow represents
USC data.

3.2. Classification Results

In the confusion matrix for the WMSC data, the building category performs the best
with an accuracy of 98.32%. The road category performs suboptimally, with an accuracy
of 94.96%. The fence category has the lowest accuracy. However, compared to the clutter
category in the RA data, the fence category’s accuracy reaches 70.91%. In the confusion
matrix for the OCCC data, the accuracy of the building category is the highest, reaching
99.75%. The dirt category has the lowest accuracy at 74.95%. In the confusion matrix for
the USC data, the building category still has the highest accuracy. The light pole category
has the lowest accuracy at 53.07%. Across the four datasets, the proportion of the build-
ing category varies significantly (Refer to Table 1), yet the accuracy remains consistently
high with slight variation. This is due to the highly consistent density features of the
building class.

Figure 11 shows a visualization of the classification results of the proposed method
and the ground truth in Cloud Compare. A comparative analysis of the ground truth and
classification results for the four datasets shows that the majority of land cover types can
be accurately classified. All categories can be accurately classified without apparent errors.

Comparing the ground truth (Figure 11c) and classification results (Figure 11d) for
the RA data, it can be found that the light pole category in the red box can be accurately
classified. The tree category and vehicle categories in the figure are also clearly classified.
Comparing the ground truth (Figure 11g) and classification results (Figure 11h) for the
USC data, the light pole, grass, and low vegetation categories in the white box can be
accurately classified. Comparing the ground truth (Figure 11f) and classification results
(Figure 11e) for the OCCC data, it can be seen that the low vegetation in the white box can
be accurately classified. Moreover, the category details obtained from the classification
results are consistent with those in the ground truth. However, the light pole category
portion in the black box was mistakenly identified as another category.
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Figure 10. Confusion matrices obtained using the proposed algorithm on the four datasets. The num-
ber in each grid represents its percentage in the category. (a) RA dataset. (b) WMSC dataset. (c) OCCC
dataset. (d) USC dataset.
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Figure 11. The classification results of this study are compared with the ground truth. (a) The ground
truth of WMSC data. (b) The classification results from WMSC data. (c) The ground truth of RA data.
(d) The classification results from RA data. (e) The ground truth of OCCC data. (f) The classification
results from OCCC data. (g) The ground truth of USC data. (h) The classification results from
USC data.

Figure 12 shows a visualization of the ground truth and classification results for the
RA data light pole, low vegetation, and building categories in Cloud Compare. Figure 12b
shows the light pole categories in the classification results separately. It can be seen
that all light poles in the RA data have been clearly marked. Compared to Figure 12c,
although there are scattered points in Figure 12d, the detailed description of the low
vegetation in Figure 12d is complete. Figure 12e shows the building category’s ground
truth and classification results separately. It can be seen that there are other categories
marked as building categories. However, the building categories have all been classified.
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(d)

(e)

Figure 12. The ground truth of a single category in the RA data is compared with the classification
results from this study. (a) The ground truth of the light pole category. (b) The classification results
for light pole category. (c) The ground truth of the low vegetation category. (d) The classification
results for the low vegetation category. (e) The ground truth (left) and classification results (right) for
the building category.

3.3. Comparison with Other Methods

Five representative approaches were selected as comparison algorithms, including
PointTransformer [47], RandLA-Net [9], SCF-Net [48], MinkowskiNet [49], and
KPConv [50].

To be consistent with the official data categories, we have classified nine features into
six categories. The ground category includes grass, roads, and dirt. The tree category is
low vegetation. The car category is vehicles. The building category remains unchanged.

Using the same experimental data, the comparison results from the other algorithms
are shown in Table 2. Compared with different algorithms, the proposed method performs
excellently in mIoU, OA, and perIoU. From Table 2, it can be observed that the proposed
method achieves an accuracy of over 95% in the ground and building categories. However,
the accuracy in the fence category is only 64.92%. For the fence category, where IoU is
generally low across all algorithms, the proposed method achieves an accuracy of 64.92%,
showing an improvement of at least 43.58%. The accuracy in the ground, building, tree, car,
and light pole categories have increased by at least 15.85–59.12%, respectively. Compared to
other algorithms, the proposed method demonstrates a minimum improvement of 37.97%
in mIoU and at least a 21.08% increase in average classification accuracy. The results
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indicate that the proposed algorithm performs better with the same experimental data.
At the same time, the significant improvement in the accuracy of the fence category with
a small amount of data indicates that the proposed algorithm is beneficial for improving
category-imbalance issues.

Table 2. Comparison of the classification accuracy, mIoU, and per-class IoU of different algorithms
on WMSC data. The best-performing results are shown in bold black.

Method mIoU (%) oAcc (%)
Per Class IoU (%)

Ground Building Tree Car Light Pole Fence

PointTransformer [47] 36.27 54.31 39.95 20.88 62.57 36.13 49.32 8.76
RandLA-Net [9] 42.33 60.19 46.13 24.23 72.46 53.37 44.82 12.95

SCF-Net [48] 45.93 75.75 68.77 37.27 65.49 51.5 31.22 21.34
MinkowskiNet [49] 46.52 70.44 64.22 29.95 61.33 45.96 65.25 12.43

KPConv [50] 45.22 70.67 60.87 32.13 69.05 53.8 52.08 3.4
The proposed method 84.49 96.83 95.65 96.39 88.31 83.38 78.25 64.92

4. Discussion

Through an analysis of the results of the experiments and comparative experiments, it
was found that the classification accuracy in the fence category has dramatically improved.
The Fence category accounts for 0.76% of the WMSC dataset (Table 1). It can be seen that
the classification accuracy of other algorithms in the fence category in Table 2 is lower than
25%. The classification accuracy of the proposed algorithm for the fence category exceeds
60%. Referring to Figure 10b, it can be observed that the fence category is not classified
as being in the light pole and car categories. This indicates that the features of the fence
category differ significantly from those of the light pole and car categories. The building
category accounts for about 10%, but the classification accuracy reaches 96%. Compared
with other algorithms in Table 2, the classification accuracy has improved by at least 59.12%.
To some extent, the above analysis indicates that the proposed algorithm has significant
advantages in feature expansion and selection.

The experimental stage also tested the support vector machine (SVM) algorithm for
feature expansion and selection. However, due to the huge time cost, it is challenging
to obtain effective experimental results. RF has significant advantages when using many
features and samples for classification. Meanwhile, for imbalanced datasets, RF can provide
an effective method to balance dataset errors. The comparative experimental results in
Table 2 also verify the above content.

By analyzing Figures 9 and 10b it can be found that the F-measure, G-mean, and Recall
evaluation indicators are also applicable here. The closer the F-measure value is to 1,
the better the classification model is. The classification accuracy of OCCC data exceeds
95%, and the mIoU value is close to 90%. From the confusion matrix for the OCCC data,
the misclassification proportion into other categories is also relatively low. The F-measure
value is higher than 0.9. Meanwhile, the G-mean value for the OCCC data exceeded 85%.
This also demonstrates the effectiveness of the proposed method. This experiment jointly
evaluates the performance of the proposed algorithm by using multiple indicators, taking
into account the recall rate, true negative rate, F-measure, and accuracy of the classifier,
which can comprehensively evaluate the performance of the proposed algorithm.

Compared with other algorithms, the algorithm proposed in this paper performs
better. In subsequent related research, experiments with end-to-end RF classification
models should be carried out. After feature expansion, the model adaptively performs
feature selection and fusion by inputting the selected features into the RF classifier to
complete the classification.
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5. Conclusions

This paper proposes a point cloud classification algorithm based on dynamic spatial–
spectral feature optimization to address the challenges faced by point cloud data classi-
fication, such as high computational complexity, lack of feature optimization, and class
imbalance. By performing feature expansion and feature selection on the data, feature
importance factors are used to optimize features dynamically, enhance the separability
of categories, and improve the robustness of the model. Compared with the existing
PointTransformer, RandLA-Net, SCF-Net, MinkowskiNet, and KPConv algorithms, the pro-
posed algorithm has an improved classification accuracy by at least 21.08% and mIoU by
at least 37.97%. This method has somewhat alleviated the impact of category imbalance
by analyzing the results. It can achieve high classification accuracy with minimal compu-
tational costs. After further research, this method can achieve end-to-end and adaptive
feature expansion and selection, thereby unleashing its potential in large-scale point cloud
classification applications.
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