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Abstract: Change detection (CD) in remote sensing imagery has found broad applications in ecosys-
tem service assessment, disaster evaluation, urban planning, land utilization, etc. In this paper,
we propose a novel graph model-based method for synthetic aperture radar (SAR) image CD. To
mitigate the influence of speckle noise on SAR image CD, we opt for comparing the structures of
multi-temporal images instead of the conventional approach of directly comparing pixel values,
which is more robust to the speckle noise. Specifically, we first segment the multi-temporal images
into square patches at multiple scales and construct multi-scale K-nearest neighbor (KNN) graphs
for each image, and then develop an effective graph fusion strategy, facilitating the exploitation
of multi-scale information within SAR images, which offers an enhanced representation of the
complex relationships among features in the images. Second, we accomplish the interaction of
spatio-temporal-radiometric information between graph models through graph mapping, which
can efficiently uncover the connections between multi-temporal images, leading to a more precise
extraction of changes between the images. Finally, we use the Markov random field (MRF) based
segmentation method to obtain the binary change map. Through extensive experimentation on real
datasets, we demonstrate the remarkable superiority of our methodologies by comparing with some
current state-of-the-art methods.

Keywords: change detection; SAR image; graph model; multi scale; spatio-temporal-radiometric
interaction

1. Introduction
1.1. Background

Change detection (CD) refers to the analysis of remote sensing images acquired at
different times of the same scene, to identify changes occurring on the Earth’s surface [1].
It finds extensive applications in both civilian and military domains, such as disaster
relief, agricultural surveys, urban planning, and military monitoring [2–4]. Among these,
synthetic aperture radar (SAR) is an active imaging system known for its all-weather and all-
day imaging capabilities, as well as its insensitivity to atmospheric and lighting conditions.
Therefore, SAR image CD technology has been receiving increased attention [5–7].

In general, CD methods can be categorized, based on the requirement for labeled data,
into supervised, semi-supervised, and unsupervised methods [8–10]. While supervised and
semi-supervised methods often yield more accurate detection outcomes, these approaches
necessitate the utilization of labeled samples for training, which incurs substantial labor
costs and demands significant domain expertise. Consequently, such methods are relatively
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constrained in practical applications. Traditional unsupervised SAR CD methods can be
divided into three steps: pre-processing, computation of difference images (DI), and extrac-
tion of change results [11]. During the pre-processing phase, operations such as radiometric
correction and image registration are typically employed to enhance radiometric and spatial
comparability among multi-temporal SAR images. The second step involves generating
DI to initially distinguish changed and unchanged regions. Ultimately, in the third step,
the DI is subject to analysis and segmentation into categories of changed and unchanged.

1.2. Related Work

The mechanism of SAR coherent imaging leads to the intrinsic property of speckle
noise in SAR images. This speckle noise manifests as random pixel intensity variations
within homogeneous regions on SAR images, visually appearing as grainy speckles. Due
to the impact of speckle noise, generating a high-quality DI in the SAR CD becomes a
challenging task [12–14].

Ratio operators [15], logarithmic-ratio operators [16], mean-ratio operators [17], and
neighborhood-ratio operators [18] have the ability to transform multiplicative speckle noise
into additive noise, while also enhancing low-intensity pixels to some extent. They exhibit
a certain robustness to speckle noise, making them commonly used in constructing DI.
Furthermore, some researchers have proposed methods for fusing DI, such as using wavelet
fusion techniques to fuse logarithmic and mean ratio images [19], Gaussian logarithmic ratio
images, and logarithmic ratio images [20], using Shearlet fusion techniques to fuse saliency
images and Gaussian logarithmic ratio images [21] and saliency-guided logarithmic ratio
images [22], and so on. Although methods based on image ratios can alleviate the impact
of noise to some extent, they cannot fully exploit the information from multi-temporal
images, leading to the presence of residual noise that can still interfere with the final
detection results. In [23], the authors have tested various despeckling methods for their
impact on change detection performance. Although despeckling SAR images prior to
comparison can alleviate, to some extent, the impact of speckle noise on DI, this approach
also carries a certain risk; namely, the details lost during the despeckling process cannot
be recovered in subsequent processes. To address this challenge, a model that combines
the statistical properties of logarithmically transformed SAR images and non-local low-
rank modeling has been proposed [5]. This model does not require the application of
despeckling methods separately to multi-temporal SAR images, nor does it directly apply
ratio/logarithmic-ratio/mean-ratio operators to SAR images. Therefore, this approach
avoids the loss of information during the despeckling and image contrast enhancement
processes, thus obtaining improved DI.

It is important to note that completely eliminating speckle noise from SAR images is
unattainable without compromising the structural details of the images. Moreover, speckle
noise in high-resolution SAR images exacerbates intensity variations, which can impact
the accuracy of change detection. Consequently, generating difference images typically
encounters the challenge of striking a balance between the robustness against speckle noise
and the preservation of image details without compromising the effectiveness of coherent
speckle noise reduction.

Recently, to address this contradiction, some graph-based CD methods have been
proposed. In [24], a pointwise graph model is first constructed for one image to capture the
intensity and geometry information, and then the changes are evaluated by directly compar-
ing the two images within this pointwise graph. Wu et al. have constructed an object-based
graph for each image [25], which first segments the images into superpixels as the vertices
of the graph and uses the log-ratio distance to compute the edge weights of the graph,
subsequently transforming the issue of change measurement into the comparison of edge
weights between two graphs. Wang et al. have not only established a spatio-temporal graph
model [26] for extracting the spatio-temporal neighborhood information of images but also
extended the concept of hypergraphs into CD [27]. They have employed hyperedges by
forming sets of pixels with similar characteristics within local neighborhoods, effectively
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transforming the problem of SAR CD into one of hypergraph matching. Sun et al. have
introduced a series of CD methods based on graph signal processing [28]. The central con-
cept of these methods involves utilizing K-nearest neighbor (KNN) graphs that represent
the intrinsic similarity relationships within images to characterize their topological struc-
tures. Subsequently, they employ graph mapping [12,29,30] or image regression [31–33]
techniques to compare structural differences between images and detected changes. Ex-
panding on this, Chen et al. have proposed CD methods that combine local and non-local
graph structures [34,35], Zheng et al. have proposed global and local graph-based DI
enhancement methods [13] and a change smoothness method [36] for CD. Furthermore,
numerous methods based on graph neural networks (GNN) have also been introduced
for SAR CD tasks, such as the dynamic graph-level neural network [37], the multi-scale
graph convolutional network [38], the variational graph auto-encoder network [39] and the
graph-based knowledge supplement network [40].

From these methods, it can be observed that graph-based CD methods offer several
advantages. Firstly, graphs can depict the intricate relationships between objects within
images, representing the image’s structure, which are relatively stable and less affected
by speckle noise. Secondly, the construction of graph models is versatile, that is, selecting
different vertices (such as pointwise, patch, superpixels) and various types of connections
(like fully connected, K-nearest neighbors, spatial neighbors, etc.) can yield different graph
models (such as local, non-local, global-graph), capturing distinct information (such as
spatio-temporal, geometric, topological, and intensity information). Thirdly, there is a
diverse range of change measurement methods, enabling CD through different graph
comparison techniques, such as direct comparison, graph mapping, graph regression,
and more.

1.3. Motivation and Contribution

The above graph-based methods still have some limitations in utilizing graph informa-
tion, primarily in two respects: firstly, they overlook the inherent multi-scale information
in remote sensing images. It is well known that remote sensing images depict complex
scenes with significant variations in object sizes. For instance, within the same scene, there
can be smaller objects like vehicles and buildings alongside larger ones such as farmlands,
forests, rivers, and lakes. Consequently, single-scale graph models struggle to capture the
intricate structures present in remote sensing images. Secondly, these methods neglect the
temporal-spatial-radiometric information interaction in constructing graph models across
different time frames of images. While previous approaches have aimed to capture the
spatiotemporal relationships using graph models, they often employ a single graph model
to represent the temporal dimension’s correlations and do not consider integrating multiple
graph models to capture the multifold relationships across other dimensions.

To overcome the aforementioned limitations and leverage the advantages of graph
models in CD tasks, this paper proposes a multi-scale graph based on spatio-temporal-
radiometric information interaction (STRMG) for SAR images. Initially, it partitions multi-
temporal images into image patches and constructs multi-scale K-nearest neighbor graphs
for each image using the image patches as vertices. These graphs then capture spatial
information, radiometric information, and multi-scale details within the images. Then,
a graph fusion strategy is devised to fuse graphs constructed at different scales, enhancing
the accuracy and richness of the image’s structural information. Subsequently, STRMG
maps a graph constructed on one temporal image to another, enabling spatio-temporal-
radiometric interaction between graph models. Finally, by comparing the original graph
and the mapped graph models, a change metric is constructed, and a Markov random field
model (MRF) model is employed to segment the DI and extract the final change map (CM).

The main contributions of this paper are summarized as follows:

• This paper introduces a multi-scale graph model and devises a well-designed graph
fusion strategy, enabling the comprehensive utilization of multi-scale information



Remote Sens. 2024, 16, 560 4 of 21

present in remote sensing images. This approach better represents the intricate rela-
tionships among features within the images.

• This study achieves spatio-temporal-radiometric information interaction between
graph models by employing graph mapping, which can effectively explore the as-
sociations between multi-temporal images and result in more accurate extraction of
changes between images.

• Experimental comparisons with several state-of-the-art methods on three datasets
demonstrate the competitive performance of the proposed STRMG method, under-
scoring its strong capabilities in change detection.

2. Methodology

The SAR images from pre-event (t1) and post-event (t2), denoted as X̃, Ỹ ∈ RM×N ,
respectively, are registered. Their corresponding pixel values are represented as x̃m,n, ỹm,n .
The objective of change detection is to determine a binary change map B ∈ RM×N , which
indicates whether each pixel has undergone a change. The proposed method in this paper
consists of three main steps: (1) pre-processing: dividing the images into image patches;
(2) generating the DI: constructing KNN graphs for SAR images, implementing spatio-
temporal-radiometric interaction through graph mapping, and quantifying the change
level; (3) solving for the CM: formulating an MRF model to segment the DI and extract the
changed region. The algorithmic framework is depicted in Figure 1.

Figure 1. Framework of the proposed multi-scale graph-based method with spatio-temporal-
radiometric information interaction for CD.

2.1. Pre-processing

First, the multi-temporal SAR images are partitioned into non-overlapping square
image patches at S different scales s = 1, 2, · · · , S. Taking the SAR image X̃ at time t1 as an
example, it is divided into image blocks of size sp × sp, where p ≥ 2 is a positive integer.
These image patches are vectorized and stacked to form the image patch group matrix
(PGM) at different scales, denoted as X(s) ∈ Rs2 p2×Ns , where Ns = ⌈M/sp⌉ × ⌈N/sp⌉,
and ⌈·⌉ denotes the ceiling operation. Similarly, for the SAR image Ỹ at time t2, the same
partitioning procedure is applied to obtain the PGM Y(s) ∈ Rs2 p2×Ns . As a result, for the
same image patches X(s)

i and Y(s)
i , i = 1, 2, · · · , Ns in X and Y, respectively, they still

represent the same geographic region.
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2.2. Multi-Scale Graph Construction

Based on the self-similarity property of the images, for every small image patch, there
are always other image patches within the image that are very similar to it. We refer to this
similarity relationship among the image patches within the image as the image structure.
After obtaining the PGMs at different scales, we construct S multi-scale KNN graphs to
represent the image structure. Taking the time t1 image X̃ as an example, at each scale
s, we treat the image patches X(s)

i as vertices in the graph, and connect each vertex to its

k =
⌈√

Ns

⌉
most similar neighbors. This results in the construction of S different-scale

graph models, denoted as G(s)
t1 =

{
V(s)

t1 , E(s)
t1 , W(s)

t1

}
with

V(s)
t1 =

{
X(s)

i |i = 1, · · · , Ns

}
E(s)

t1 =
{(

X(s)
i , X(s)

j

)
|j ∈ N x(s)

i ; i = 1, · · · , Ns

}
W(s)

t1 (i, j) =

{
exp

(
−λdx(s)

i,j

)
; if

(
X(s)

i , X(s)
j

)
∈ E(s)

t1

0; otherwise,

(1)

where λ > 0 denotes the parameter that controls the exponential kernel bandwidth, which
is set to be λ = 0.5 in the proposed method, dx(s)

i,j = dist
(

X(s)
i , X(s)

j

)
denotes the distance

between different patches of X(s)
i and X(s)

j , and N x(s)
i denotes the KNN index set of X(s)

i in

the vertex set V(s)
t1 , and W(s)

t1 denotes the weighting matrix.

Regarding the distance metric dist
(

X(s)
i , X(s)

j

)
, due to the influence of multiplicative

speckle noise following a gamma distribution in SAR images, we employ the following
function derived by using the generalized likelihood ratio in [41]:

dx(s)
i,j = dist

(
X(s)

i , X(s)
j

)
=

1

(sp)2

(sp)2

∑
q=1

log

 x(s)i,q + x(s)j,q

2
√

x(s)i,q x(s)j,q

, (2)

where x(s)i,q and x(s)j,q are the q-th pixels in the patches of X(s)
i and X(s)

j , respectively. For the

construction of the KNN index set N x(s)
i , it can be obtained by sorting the distance vector{

dx(s)
i,j |j = 1, 2, · · · , Ns

}
and extracting the indices of the smallest k values among them.

For the post-event image Ỹ obtained at time t2, we construct S different-scale graph
models G(s)

t2 =
{

V(s)
t2 , E(s)

t2 , W(s)
t2

}
in a similar manner as follows:

V(s)
t2 =

{
Y(s)

i |i = 1, · · · , Ns

}
E(s)

t2 =
{(

Y(s)
i , Y(s)

j

)
|j ∈ N y(s)

i ; i = 1, · · · , Ns

}
W(s)

t2 (i, j) =

{
exp

(
−λdy(s)

i,j

)
; if

(
Y(s)

i , Y(s)
j

)
∈ E(s)

t2

0; otherwise,

(3)

where dy(s)
i,j = dist

(
Y(s)

i , Y(s)
j

)
denotes the distance between different patches of Y(s)

i and

Y(s)
j , and N y(s)

i denotes the KNN index set of Y(s)
i in the vertex set V(s)

t2 that are computed

by sorting the distance vector of
{

dy(s)
i,j |j = 1, 2, · · · , Ns

}
.

2.3. Fusing the Multi-Scale Graphs

Once the multi-scale graphs of G(s)
t1 and G(s)

t2 are constructed, we employ a fusion
strategy to fuse the multi-scale graphs, aiming to comprehensively represent multi-scale
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information within the images. This enables the graph model to more accurately capture
the relationships among objects of various sizes in the SAR image.

Taking the pre-event image X̃ as an example, for each patch X(s)
i , i = 1, 2, · · · , Ns, s ≥ 2,

at the coarsest scale parameter, it can be derived by merging several patches X(1)
j at the

finest scale parameter. This implies the presence of a parent–child aggregation relationship
among these patches under different scales. Since patches at the finest scale parameter
retain more detailed information and exhibit higher internal homogeneity, we propose
to design a fusion matrix to integrate G(s)

t1 , s ≥ 2 and G(1)
t1 . We intend to utilize the area

ratio and intensity similarity between child-patches and parent-patches to define S fusion
matrices, denoted as F(s)

t1 ∈ RN1×Ns , with elements defined as follows:

F(s)
t1 (i, j) =


#
(

X(1)
i

)
#
(

X(s)
j

) exp
(
−λ · dist

(
X(1)

i , X(s)
j

))
; if X(1)

i ⊆ X(s)
j

0 otherwise,
(4)

where #
(

X(s)
j

)
represents the number of pixels contained in the patch X(s)

j , then we

have
#
(

X(1)
i

)
#
(

X(s)
j

) = 1/s2. And dist
(

X(1)
i , X(s)

j

)
represents the mean radiometric intensity dis-

tance between two patches, defined as dist
(

X(1)
i , X(s)

j

)
= log

mean
(

X(1)
i

)
+mean

(
X(s)

j

)
2
√

mean
(

X(1)
i

)
mean

(
X(s)

j

) , with

mean
(

X(s)
j

)
= 1

s2 p2

s2 p2

∑
q=1

x(s)j,q denoting the average intensity value. If the intensity values of

the parent-patch and child-patch are close, and their area ratio is substantial, the corre-
sponding element value in the fusion matrix F(s) would be higher. This is because in such
cases, the parent-patch and child-patch would contain the same or closely similar types
of objects. Consequently, we can obtain the fused graph G f

t1 =
{

V f
t1, E f

t1, W f
t1

}
after fusing

multi-scale information with

V f
t1 =

{
X(1)

i |i = 1, · · · , N1

}
E f

t1 =
{(

X(1)
i , X(1)

j

)
| W f

t1(i, j) ̸= 0
}

W f
t1 =

S

∑
s=1

F(s)
t1 W(s)

t1

(
F(s)

t1

)T
.

(5)

In this way, the multi-scale graphs with different number of vertices are fused.
For the post-event image Ỹ, obtained at time t2, we fuse the S different-scale graphs

G(s)
t2 in a similar manner to construct the graph G f

t2 =
{

V f
t2, E f

t2, W f
t2

}
as follows:

V f
t2 =

{
Y(1)

i |i = 1, · · · , N1

}
E f

t2 =
{(

Y(1)
i , Y(1)

j

)
| W f

t2(i, j) ̸= 0
}

W f
t2 =

S

∑
s=1

F(s)
t2 W(s)

t2

(
F(s)

t2

)T
,

(6)

where F(s)
t2 ∈ RN1×Ns denotes the s-th fusion matrix, similar to the construction of F(s)

t1 in (4).
The fusion strategy mentioned above is based on the following considerations:

The finest scale graph can retain more detailed information and better avoid the issue
of inaccurate feature representation caused by a patch containing multiple land cover
types. However, relying solely on a patch at the finest scale is insufficient to accurately
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represent objects with various shapes and sizes. Reasonably fusing information from
coarser scales helps extract multi-scale features from the image, resulting in richer image
structural information.

2.4. Spatio-Temporal-Radiometric Interaction

After obtaining the fused multi-scale graphs of G f
t1 and G f

t2, they respectively depict
the structures of the preceding and succeeding temporal images, encompassing the spatial
and radiometric information of each image. Subsequently, we employ a graph mapping
approach to construct new graphs of Gm

t1 and Gm
t2 to facilitate the temporal interaction

between these two graph models. First, we map the graph G f
t1 (5) constructed on pre-event

image X̃ into the post-event image Ỹ to obtain the mapped graph Gm
t1 =

{
Vm

t1 , Em
t1, Wm

t1
}

as

Vm
t1 =

{
Y(1)

i |i = 1, · · · , N1

}
Em

t1 =
{(

Y(1)
i , Y(1)

j

)
| Wm

t1(i, j) ̸= 0
}

Wm
t1 =

S

∑
s=1

F(s)
t2 Q(s)

t2

(
F(s)

t2

)T
,

(7)

with the matrix Q(s)
t2 defined as:

Q(s)
t2 (i, j) =

{
exp

(
−λdy(s)

i,j

)
; if W(s)

t1 (i, j) ̸= 0
0; otherwise.

(8)

By comparing G f
t1 (5) and Gm

t1 (7), we have that because the positions of the nonzero

elements in matrices W(s)
t1 and Q(s)

t2 are the same, and the positions of the nonzero elements

in F(s)
t1 and F(s)

t2 are also the same, then the positions of the nonzero elements in matrices

W f
t1 and Wm

t1 are the same; that is, the edge connectivity in graphs G f
t1 and Gm

t1 are the

same. However, the computation of their edge weights differs, namely W f
t1 and Wm

t1 are

computed based on images X̃ and Ỹ, respectively. Contrasting G f
t2 (6) and Gm

t1 (7) reveals
that, while their edge weights are both based on image Ỹ, their edge connectivity is distinct.
Hence, it can be observed that Gm

t1 encompasses both structural information from image X̃
(as seen in the edge connectivity of Em

t1) and radiometric intensity information from image
Ỹ (as seen in the computation of edge weights Wm

t1).

Second, we map the graph G f
t2 (6) constructed on post-event image Ỹ into the pre-event

image X̃ to obtain the mapped graph Gm
t2 =

{
Vm

t2 , Em
t2, Wm

t2
}

as:

Vm
t2 =

{
X(1)

i |i = 1, · · · , N1

}
Em

t2 =
{(

X(1)
i , X(1)

j

)
| Wm

t2(i, j) ̸= 0
}

Wm
t2 =

S

∑
s=1

F(s)
t1 Q(s)

t1

(
F(s)

t1

)T
,

(9)

with the matrix Q(s)
t1 defined as:

Q(s)
t1 (i, j) =

{
exp

(
−λdx(s)

i,j

)
; if W(s)

t2 (i, j) ̸= 0
0; otherwise.

(10)

Similarly, we have that Gm
t2 encompasses both structural information from image Ỹ (as seen

in the edge connectivity of Em
t2) and radiometric intensity information from image X̃ (as

seen in the computation of edge weights Wm
t2).
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2.5. DI Calculation

Based on the structure consistency between multi-temporal images [12,28], for un-
changed images, despite differences in imaging conditions between the preceding and
subsequent moments (such as sensor variations, humidity, etc.)—which may result in
inconsistent radiometric intensity values and consequently pixel value discrepancies for the
same objects—the structural characteristics of the two images remain consistent. In other
words, if image patches X(1)

i and X(1)
j represent identical types of objects (i.e., X(1)

i and

X(1)
j are highly similar), then, for unchanged patches Y(1)

i and Y(1)
j in the other image, they

will likewise represent identical types of objects (in this case, Y(1)
i and Y(1)

j are also highly
similar). Conversely, when the area represented by image patches undergoes changes, this
similarity relationship—which signifies structural consistency—will also change, rendering
it suitable for detecting regions of change.

To quantify the change level in image patches, a careful comparison of the structural
information represented by different graph models reveals that they depict the structural
differences between the multi-temporal images. Specifically, to measure the change level
αi of the i-th patch X(1)

i , we compare the similarity relationships between X(1)
i and the

unchanged X(1)
j in the graph G f

t1 and the similarity relationships between X(1)
i and the

unchanged X(1)
j in the graph Gm

t2, that is,

αi =

∣∣∣∣∣∣ ∑N1
j=1 W f

t1(i, j)
(
1 − pj

)
∑N1

j=1 δ
(

W f
t1(i, j) ̸= 0

)(
1 − pj

)
+ ϵ

−
∑N1

j=1 Wm
t2(i, j)

(
1 − pj

)
∑N1

j=1 δ
(
Wm

t2(i, j) ̸= 0
)(

1 − pj
)
+ ϵ

∣∣∣∣∣∣, (11)

where ϵ = 10−8 is used to make the equation well-defined, δ(·) equals 1 if the specified
condition inside holds, and 0 otherwise, and pj represents the change probability of the
j-th patch, which is used to reduce the influence of the changed patches in the change mea-
surement.

Similarly, we can compute the structural differences of the post-event image on graphs
G f

t2 and Gm
t1 to calculate the change level βi of the i-th patch Y(1)

i as:

βi =

∣∣∣∣∣∣ ∑N1
j=1 W f

t2(i, j)
(
1 − pj

)
∑N1

j=1 δ
(

W f
t2(i, j) ̸= 0

)(
1 − pj

)
+ ϵ

−
∑N1

j=1 Wm
t1(i, j)

(
1 − pj

)
∑N1

j=1 δ
(
Wm

t1(i, j) ̸= 0
)(

1 − pj
)
+ ϵ

∣∣∣∣∣∣. (12)

In (11) and (12), pj is used to represent the change probability. However, since we cannot
pre-determine the change probability for each image patch, an iterative process is employed
to compute the change probability vector p with four steps.

Step 1. Compute the initial change probability po by using the Log-ratio operator,
and compute the initial αo and βo with po by using (11) and (12), respectively.

Step 2. Compute the fused change level ηo = αo+βo

2 , and update the change probability

p = ηo−min {ηo}
max {ηo}−min {ηo} .
Step 3. Substitute p into (11) and (12) to update the α and β, respectively.
Step 4. Compute the fused change level η = α+β

2 and the final change probability of

p∗ as p∗ = η−min {η}
max {η}−min {η} .

The purpose of this iterative process to obtain more accurate structural differences
between images and change probability vector p∗, which in turn results in better DI
computed by using p∗. As can be seen from Step 1 to Step 4, we used (11) and (12) twice
to iteratively correct the change probability vector p. Therefore, the main computational
cost of this iterative process is the two calculations of (11) and (12), which is a very low
computational complexity of O(N1 × N1).
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Then, we obtain the change probability for each node (patch) and compute the DI by
measuring the structural differences between different graph models.

2.6. CM Computation by MRF Segmentation

After obtaining the DI, the change detection problem can be regarded as an im-
age binary classification task, which can be addressed using the following approaches:
(1) threshold segmentation methods, such as Otsu’s method [42]; (2) clustering methods,
like k-means clustering [43] and fuzzy c-means clustering [44]; (3) random field methods,
such as Markov random field (MRF) [45]. Thresholding and clustering methods often
neglect the neighborhood information of pixels in the DI, leading to the emergence of
considerable “salt-and-pepper noise” in the segmented CM. MRF can incorporate both
spatial and change information from the DI, thereby improving the outcomes of change
detection. In this paper, we directly adopted the MRF segmentation method proposed
in [45], but with a modification where we replaced the R-adjacency spatial neighbors of
superpixels in [45] with the 8-connected neighbors of image patches. Once the MRF model
is solved by using the min-cut/max-flow algorithm [46], we can obtain the change label of
each patch, and subsequently generate the CM. The framework of the proposed multi-scale
graph based method with spatio-temporal-radiometric information interaction for CD is
summarized in Algorithm 1.

Algorithm 1: STRMG based CD.

Input: Images of X̃ and Ỹ.
Parameters of p and S.

Pre-processing:
Segment X̃ and Ỹ into patches with different scales.
Stack the patches to obtain the multi-scale PGM of X(s) and Y(s).

Computing the DI:
Construct the multi-scale graphs of G(s)

t1 and G(s)
t2 .

Compute the fusion matrices of F(s)
t1 and F(s)

t2 .

Fuse the multi-scale graphs to obtain graphs of G f
t1 and G f

t2.
Construct the mapped graphs of Gm

t1 and Gm
t2.

Compute the change probability vector of p∗.
Computing the CM:

Compute final CM by using MRF segmentation method.

3. Experiment Results and Discussion

In this section, we validate the performance of the proposed algorithm through com-
parative experiments with various SAR change detection methods on three real datasets.

3.1. Experimental Settings

We conducted tests on three pairs of SAR images. As illustrated in Figure 2, Dataset
A and Dataset B were acquired using the Radarsat-2 SAR sensor over the Yellow River
Estuary in China. The pre-event images were obtained in June 2008, while the post-event
images were captured in June 2009. The spatial resolution of the images was 8 meters per
pixel. Dataset A shows the changes in the coastline, where only a small portion of the pixels
of the image have changed in this dataset. Dataset B shows a section of inland water, which
was chosen because the area of change is concentrated on the boundary line of the river,
which is relatively difficult to detect. Dataset C was collected using the COSMO-SkyMed
SAR sensor in Guizhou, China. The pre-event images were captured in June 2016, and the
post-event images were acquired in April 2017; they encompass various features such
as mountains, rivers, and trees. The spatial resolution of the images was 1 m per pixel.
The ground change maps are labeled by experts based on these SAR images, optical images
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from the same time period, and in combination with practical examinations. The details of
these datasets are presented in Table 1.

Table 1. Description of the datasets.

Dataset Date Sensor Location Image Size Resolution Polarizations Waveband

Dataset A June 2008–June 2009 Radarsat-2 Yellow River Estuary, China 280 × 450 8 m HH C-band

Dataset B June 2008–June 2009 Radarsat-2 Yellow River Estuary, China 444 × 291 8 m HH C-band

Dataset C June 2016–April 2017 COSMO-SkyMed Guizhou, China 400 × 400 1 m HH X-band

Figure 2. Datasets. From top to bottom are Dataset A, Dataset B, and Dataset C, respectively. From left
to right are: (a) pre-event image; (b) post-event image; (c) ground truth. The ground truth is labeled
by experts based on these SAR images, optical images from the same time period, and in combination
with practical examinations.

We selected the following ten SAR change detection methods for comparison: the
classical operators of difference (Diff), log-ratio (LogR) [16], mean-ratio (MeanR) [17],
neighborhood-ratio operator (NbhdR) [18], the sparsity-driven method for CD (SDCD) [14],
and the recently proposed graph-based methods of improved nonlocal patch-based graph
model (INLPG) [12], iterative robust graph with MRF co-segmentation method (IRG-
McS) [29], the graph signal processing-based CD method (GSPCD) [28], as well as the
deep learning-based methods of convolutional-wavelet neural network- (CWNN) [8] and
deep convolutional generative adversarial network-based robust unsupervised CD method
(DcGANCD) [10]. For these comparative methods (excluding the classical operators), we
directly utilized their open-source code with default parameters. For the proposed STRMG,
we set the patch size as p = 2 and the scale parameter as S = 3.
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To assess the performance of different methods, we employed two categories of
evaluation metrics. Firstly, we directly assessed the DI’s quality using: (1) the empirical
receiver operating characteristics (ROC) curve along with the areas beneath the ROC curve
(AUR); (2) the precision–recall (PR) curve and the corresponding areas under the PR curve
(AUP). Secondly, we evaluated the CM’s quality using the false alarm rate (FA) calculated by
FA = FP/(FP + TN), the miss rate (MR) calculated by MR = FN/(TP + FN), the overall
accuracy (OA) calculated by OA = (TP + TN)/(TN + FN + TP + FP), and the Kappa
coefficient (KC) calculated by KC = (OA − PRE)/(1 − PRE) with

PRE =
(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TN + FN + TP + FP)2 , (13)

and the F1-score was calculated by F1 = 2TP/(FN + FP + 2TP).

3.2. Experimental Results
3.2.1. Results on the Dataset A

In Figure 3, we show the DIs generated by the proposed STRMG on Dataset A against
other currently popular methods. Compared to other traditional methods, the proposed
STRMG is able to achieve better DI, which is more robust to the noise. For example, the DIs
generated by the traditional algebraic operators of Diff, LogR, MeanR and NbhdR are
heavily influenced by the speckle noise, as they are all based on direct comparison of
pixels or image patches, making them difficult to effectively distinguish between changed
and unchanged areas. In contrast, the image structure-based methods perform better
due to the relative stability of image structure, such as the GSPCD. Further comparison
between the proposed STRMG and other structure-based methods (i.e., INLPG, IRG-McS
and GSPCD) shows that STRMG, which incorporates multi-scale information and spatio-
temporal-radiometric information, can effectively improve DI performance, which is also
confirmed by the ROC and PR curves plotted in Figure 4.

For a more intuitive understanding of the differences between our proposed method
and other approaches, we also show the CMs on Dataset A in Figure 5, where we distinguish
FN and FP by using distinct colors, cyan and red, to facilitate visual examination and
comparison. From Figure 5, we can see that there is a significant number of false alarms
in CMs generated by LogR, MeanR, NbhdR, and CWNN due to the speckle noise in
SAR images. In contrast, INLPG, DcGANCD, and STRMG generate fewer false alarms.
Further comparison of these three in Figure 5 also shows that STRMG has the least missed
detections. In Table 2, we present the quantitative comparison results of the DIs and
CMs generated by these methods on Dataset A. It can be seen that the proposed STRMG
achieves the best scores across all evaluation criteria. Compared to the advanced deep
learning-based CWNN and DcGANCD, our method has at least a 10.0% improvement in
F1-scores. When compared to the recently proposed graph model-based INLPG, IRG-McS,
and GSPCD, our method shows an improvement of 7.2–44.9% in F1-scores.

Figure 3. DIs of Dataset A generated by different methods. From left to right: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth.
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Figure 4. ROC and PR curves of Dataset A generated by different methods.

Figure 5. CMs of Dataset A generated by different methods. From left to right: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth. In the CM, White: true positives (TP); Red: false positives (FP);
Black: true negatives (TN); Cyan: false negatives (FN).

Table 2. Quantitative measures of DIs and CMs on Dataset A.

Methods AUR ↑ AUP ↑ FA ↓ MR ↓ OA ↑ KC ↑ F1 ↑
Diff 0.845 0.086 0.083 0.461 0.912 0.099 0.116
LogR 0.851 0.086 0.241 0.208 0.759 0.046 0.066
MeanR 0.973 0.813 0.352 0.029 0.652 0.036 0.056
NbhdR 0.983 0.758 0.386 0.008 0.619 0.033 0.053
SDCD 0.943 0.342 0.044 0.216 0.955 0.257 0.270
INLPG 0.992 0.879 0.001 0.246 0.996 0.813 0.815
DcGANCD 0.975 0.808 0.001 0.281 0.996 0.784 0.787
CWNN 0.971 0.668 0.106 0.038 0.895 0.147 0.163
IRG-McS 0.954 0.229 0.020 0.197 0.978 0.429 0.438
GSPCD 0.931 0.711 0.005 0.271 0.993 0.674 0.678

STRMG 0.992 0.912 0.001 0.095 0.998 0.886 0.887

3.2.2. Results on the Dataset B

Figure 6 shows the DIs generated by all the comparison methods on the Dataset B,
from which it can be seen that most of the methods are able to highlight the changed
areas to some extent. A careful comparison shows that the Diff, LogR, and SDCD are
weak at distinguishing between changed and unchanged areas, which is mainly affected
by inherent speckle noise. The DI results from Dataset A and Dataset B also confirm the
poor detection performance achieved by traditional algebraic operators for SAR image
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CD where the speckle noise is more severe, whereas graph model-based methods such as
INLPG, IRG-McS, GSPCD, and STRMG are able to take full advantage of the structural
relationships within the image that are relatively robust to noise, thus achieving better
detection results. Figure 7 displays the corresponding ROC and PR curves, and we can find
that the proposed STRMG can obtain the highest AUR and AUP, as reported in Table 3.

In Figure 8, we show the CMs generated by different methods on Dataset B, from which
we can find that DcGANCD, CWNN, GSPCD, and STRMG perform better than other
comparison methods, especially with fewer false alarms in their CMs. In addition, further
comparison also reveals that the missed detections in STRMG are also relatively rare with
a small MR of 0.085, as listed in Table 3; thus, STRMG is able to obtain better detection
results than the other compared methods, for example, its KC and F1 are higher than the
second-ranked DcGANCD by 5.0% and 4.9%, respectively.

Figure 6. DIs of Dataset B generated by different methods. From left to right: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth.

Figure 7. ROC and PR curves of Dataset B generated by different methods.
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Figure 8. CMs of Dataset B generated by different methods. From left to right: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth.

Table 3. Quantitative measures of DIs and CMs on Dataset B.

Methods AUR ↑ AUP ↑ FA ↓ MR ↓ OA ↑ KC ↑ F1 ↑
Diff 0.788 0.210 0.257 0.323 0.741 0.094 0.147
LogR 0.916 0.520 0.185 0.130 0.817 0.192 0.238
MeanR 0.974 0.802 0.314 0.023 0.696 0.122 0.175
NbhdR 0.979 0.805 0.181 0.029 0.824 0.222 0.266
SDCD 0.907 0.439 0.183 0.140 0.818 0.192 0.238
INLPG 0.992 0.825 0.007 0.290 0.984 0.732 0.741
DcGANCD 0.983 0.822 0.005 0.218 0.988 0.810 0.816
CWNN 0.978 0.823 0.012 0.114 0.985 0.783 0.791
IRG-McS 0.977 0.515 0.013 0.160 0.983 0.751 0.760
GSPCD 0.970 0.790 0.007 0.211 0.986 0.787 0.794

STRMG 0.995 0.920 0.007 0.085 0.991 0.860 0.865

3.2.3. Results on the Dataset C

Figure 9 presents the DIs of various methods on Dataset C. It can be observed that
some methods do not perform as well on this dataset as they did on the first two datasets,
such as the INLPG, CWNN, and IRG-McS. This is due to two reasons: one is that the
noise on the SAR images in Dataset C is much more severe, which leads to difficulties
in accurately portraying the structures of images, and tends to produce a lot of bright
patches in the difference maps, which can be mistakenly detected as changed regions; on
the other hand, there are very few changed regions in this dataset, i.e., the changed and
unchanged categories are extremely unbalanced, which can easily lead to the changed
regions being submerged in the unchanged regions, resulting in missed detection. In com-
parison, the STRMG proposed in this paper is able to achieve better DI, which can also
demonstrated by the ROC and PR curves shown in Figure 10.
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We present the CMs of each method on Dataset C in Figure 11. From Figure 11a–f, it
can be seen that some methods create a large number of false alarms in the change detection
results, leading to very high FA values of 10.4–55.1% as listed in Table 4. By comparing
Figure 11g,i–k, we can observe that, although DcGANCD, IRG-McS, and GSPCD yield
relatively clean detection results with fewer false alarms, they also have difficulty in
detecting smaller changed regions. In contrast, the proposed STRMG produces fewer
detection errors and more accurate edge compared to other methods. In particular, the F1-
score of STRMG is higher than the second-ranked DcGANCD by 14.4%. This demonstrates
the effectiveness of the multi-scale graph model and the spatio-temporal-radiometric
information interaction in the method.

Figure 9. DIs of Dataset C generated by different methods. From left to right are: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth.

Figure 10. ROC and PR curves of Dataset C generated by different methods.

3.3. Ablation Study and Discussion
3.3.1. Ablation Study

To validate the effectiveness and rationality of the components in STRMG, we con-
ducted ablation experiments on all the evaluated datasets. We construct a baseline by
directly comparing the single-scale graphs of G(1)

t1 and G(1)
t2 to detect the changes without

utilizing the multi-scale information and spatio-temporal-radiometric interaction between
the graph models. We use the aforementioned metrics to evaluate the impact of the multi-
scale graph (MsG) and spatio-temporal-radiometric interaction (STR) on change detection
performance. Table 5 reports the average quantitative measures of the baseline model (de-
noted as “Base”), and the baseline model with multi-scale graph (denoted as “Base+MsG”),
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the baseline model with spatio-temporal-radiometric interaction (denoted as “Base+STR”),
and the proposed STRMG.

Figure 11. CMs of Dataset C generated by different methods. From left to right are: (a) Diff; (b) LogR;
(c) MeanR; (d) NbhdR; (e) SDCD; (f) INLPG; (g) DcGANCD; (h) CWNN; (i) IRG-McS; (j) GSPCD;
(k) STRMG; and (l) ground truth.

Table 4. Quantitative measures of DIs and CMs on Dataset C.

Methods AUR ↑ AUP ↑ FA ↓ MR ↓ OA ↑ KC ↑ F1 ↑
Diff 0.915 0.303 0.353 0.080 0.648 0.020 0.032
LogR 0.785 0.088 0.104 0.789 0.891 0.012 0.024
MeanR 0.970 0.292 0.314 0.015 0.688 0.027 0.039
NbhdR 0.902 0.050 0.348 0.056 0.654 0.021 0.034
SDCD 0.982 0.493 0.118 0.026 0.883 0.085 0.096
INLPG 0.960 0.614 0.551 0.009 0.452 0.010 0.023
DcGANCD 0.991 0.806 0.002 0.286 0.996 0.714 0.716
CWNN 0.912 0.048 0.107 0.386 0.891 0.056 0.067
IRG-McS 0.930 0.247 0.005 0.439 0.993 0.488 0.492
GSPCD 0.965 0.247 0.003 0.307 0.995 0.635 0.638

STRMG 0.994 0.900 0.001 0.125 0.998 0.859 0.860

By comparing the “Base” and “STRMG”, we can find that, when multi-scale graphs
are not used to mine the multi-scale information in SAR images and the spatio-temporal-
radiometric interaction is not used in the graph mapping, the change detection performance
will greatly decrease. As listed in Table 5, when the multi-scale graphs are employed in
the structure representation, the average AUP is increased by 11.5% by comparing the
“Base” and “Base+MsG”. When the spatio-temporal-radiometric interaction is utilized in
the structure comparison, more accurate detection results are obtained, leading to a 7.6%
increase of KC by comparing the “Base” and “Base+STR” and a 5.9% increase of KC by
comparing the “Base+MsG” and “STRMG”.

3.3.2. Parameter Analysis

Next, we discuss the impact of the scale parameter S and patch size p on the proposed
STRMG. In Figure 12, we show the KC of CMs obtained by STRMG on all the evaluated
datasets with different scale parameters, i.e., S = 2, 3, 4. As shown in Figure 12, higher-
order multi-scale graphs give better detection results than multi-scale graphs using only
two layers (S = 2), especially on Dataset A. The KC values obtained at S = 3 are 3.5%,
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1.2%, and 2.3% higher than those obtained at S = 2 on the three Datasets, A, B, and C,
respectively. In addition, the performance tends to slightly decrease when S = 4. This
could be attributed to the larger scale, where individual image patches encompass various
types of land features, resulting in less accurate representation of image structures by the
larger-scale graph models. Thus, in this paper, we set the scale parameter as S = 3.

Table 5. Ablation study of STRMG measured by the average scores.

Methods AUR ↑ AUP ↑ FA ↓ MR ↓ OA ↑ KC ↑ F1 ↑
Base 0.982 0.736 0.006 0.151 0.992 0.775 0.778

Base+MsG 0.987 0.851 0.004 0.198 0.994 0.809 0.812
Base+STR 0.990 0.878 0.003 0.118 0.995 0.851 0.854

STRMG 0.994 0.911 0.003 0.102 0.995 0.868 0.871

Figure 12. Sensitivity analysis of parameter S in STRMG.

In Figure 13, we vary the patch size p from 2 to 6 with step one. It can be found that
the patch size has an important impact on the STRMG. When the patch size p is too large,
such as p = 6, it will cause a dramatic degradation of STRMG performance. This is mainly
due to the fact that too-large image patches result in over-smoothing and the fact that the
interior of a single image patch may contain different types of objects (internal homogeneity
is destroyed), making it difficult for the constructed graph model to accurately portray the
image structure. Obviously, setting p = 2 is a good choice as shown in the Figure 13.

3.3.3. Test of Different Noise Levels

To evaluate the performance of the proposed STRMG under different noise conditions,
we use a simulated SAR dataset as shown in the top row of Figure 14, where Figure 14a,b
show two simulated multi-temporal images, and Figure 14c shows the ground truth image.
By adding different levels of multiplicative gamma-distributed speckle noise (L = 10, 5, 2)
to the multi-temporal images, we can obtain different DIs of STRMG at different noise
levels, as shown in Figure 14c. From these results, we can find that the proposed STRMG
is very robust to the speckle noise. This is due to the fact that STRMG utilizes the image
structure represented by the similarity between image patches, thus mitigating the effect of
noise. Moreover, since the proposed method is insensitive to speckle noise, we believe it
can be valuable in other similar application scenarios; for example, in the change detection
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of synthetic aperture sonar (SAS) images [47–50], as the basic theory of SAS and SAR is
identical to some degree.

Figure 13. The AUP of DIs generated by STRMG with different patch sizes p.

(a) (b) (c)

Figure 14. DI generated by STRMG on the simulated dataset contaminated by different levels of
speckle noise with L = 10, 5, 2. The first row, from (a–c) corresponds to the simulated pre-event
image, simulated post-event image, and the ground truth, respectively. From the second row to the
fourth row, they correspond to the datasets contaminated by different levels of speckle noise with
L = 10, 5, 2, and the DIs generated by STRMG.
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4. Conclusions

In this study, we have proposed a novel multi-scale graph-based method with spatio-
temporal-radiometric information interaction, named STRMG, for SAR image change
detection. To mitigate the impact of inherent speckle noise in SAR images on change detec-
tion, we have chosen to compare the structural relationships between two images, which is
more robust to noise. This transforms the change detection problem into an assessment of
image structural differences. To more accurately depict the intricate structural relationships
within the images, we have constructed multi-scale graph models and designed an effective
graph fusion strategy, which can fully exploit the spatial information, radiometric infor-
mation, and multi-scale details within the images. In order to adequately compare graph
models to accurately detect changes, we have employed the graph mapping approach to
realize the spatio-temporal-radiometric information interaction between graph models,
which can effectively explore the associations and differences between multi-temporal im-
ages, leading to more accurate change detection results. Experiments on different datasets
have demonstrated the effectiveness of the proposed method. In addition, compared with
the traditional KNN graph, graph neural networks (GNN) have stronger structural charac-
terization ability, which can more efficiently capture the complex relationships between
land features within the SAR image, especially for the change detection of high-resolution
SAR images. Therefore, future work might consider applying the idea of multi-scale graphs
and spatio-temporal-radiometric interaction to GNN-based SAR image change detection,
expecting a better detection performance.
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