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Abstract: Space infrared dim target recognition is an important applications of space situational
awareness (SSA). Due to the weak observability and lack of geometric texture of the target, it may be
unreliable to rely only on grayscale features for recognition. In this paper, an intelligent information
decision-level fusion method for target recognition which takes full advantage of the ensemble
classifier and Dempster–Shafer (DS) theory is proposed. To deal with the problem that DS produces
counterintuitive results when evidence conflicts, a contraction–expansion function is introduced
to modify the body of evidence to mitigate conflicts between pieces of evidence. In this method,
preprocessing and feature extraction are first performed on the multi-frame dual-band infrared images
to obtain the features of the target, which include long-wave radiant intensity, medium–long-wave
radiant intensity, temperature, emissivity–area product, micromotion period, and velocity. Then, the
radiation intensities are fed to the random convolutional kernel transform (ROCKET) architecture for
recognition. For the micromotion period feature, a support vector machine (SVM) classifier is used,
and the remaining categories of the features are input into the long short-term memory network
(LSTM) for recognition, respectively. The posterior probabilities corresponding to each category,
which are the result outputs of each classifier, are constructed using the basic probability assignment
(BPA) function of the DS. Finally, the discrimination of the space target category is implemented
according to improved DS fusion rules and decision rules. Continuous multi-frame infrared images
of six flight scenes are used to evaluate the effectiveness of the proposed method. The experimental
results indicate that the recognition accuracy of the proposed method in this paper can reach 93%
under the strong noise level (signal-to-noise ratio is 5). Its performance outperforms single-feature
recognition and other benchmark algorithms based on DS theory, which demonstrates that the
proposed method can effectively enhance the recognition accuracy of space infrared dim targets.

Keywords: space target recognition; multi-dimension feature; ensemble classifier; Dempster–Shafer
theory; information fusion

1. Introduction

Space dim target recognition using infrared sensors is a challenging task for SSA
systems [1]. The detection and recognition of a space target directly affects the security of
the space environment, and pre-recognition of targets encourages the decision center to take
proper initiatives quickly and efficiently to secure space station satellites [2,3]. In the target
detection stage, researchers have conducted large amounts of research [4–7], but there is a
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lack of research on the recognition stage. Due to the long distance between the infrared
sensors on the satellite platform and the target—and because the size of the space target is
smaller than the instantaneous field of view of the detector—the space target images as a
small dot on the infrared image plane, which lacks shape and target attitude information,
resulting in fewer features to exploit [8]. Additionally, due to the weak target imaging
signal, the feature information of the target is more seriously affected by interference such
as noise, resulting in poor recognition of targets relying only on a single feature.

In recent years, space infrared dim target recognition has been initially studied, and
effective results have been presented. For example, Silberman et al. [9] extracted the
mean and variance statistical features of the radiation sequence of the target, constructed a
classifier model based on the parameterization method, and then realized the classification
and recognition of space targets. Gu et al. [10] constructed features such as length–width
ratio, the brightness of the centroid, the pixel area, and the invariant moment based on
the imaging area of the target and combined these with DS fusion theory to realize the
discrimination of the targets. Dai et al. selected radiation intensity as the initial recognition
feature and then used the Adaboost classifier to achieve the initial recognition of the
target, after which the temperature feature was used to discriminate the unrecognized
target again [11]. Zhang et al. simulated the irradiance signal of the target based on the
Bhattacharyya optical decoy evaluation (BODE) model and extracted the temperature and
effective radiation area of the target, which were input into the gaussian particle swarm
optimization probabilistic neural network (GPSO-PNN) to achieve the recognition of the
four types of targets [12]. Ma only extracted the radiation intensity of each target as the
feature and combined the random projection recurrent neural network (R-RNN) network
architecture to achieve the target recognition [13]. However, since the gray value of the
target and the radiation can be considered linear within the normal operation of the infrared
detector, it is still essentially using the infrared radiation of the target for recognition. These
papers [14,15] also only used infrared radiation as input data for target recognition; the
difference lies in the recognition algorithms.

From the above, most of the features extracted for spatial target recognition are
mainly divided into two categories: (1) Image feature parameters of the target, such as
length–width ratio, energy concentration, etc. These features can be extracted very quickly
and require fewer computational resources, but they cannot reflect the intrinsic physical
information of the target. Once the parameters of the imaging system of the infrared
radiation detector change, the feature parameters of the target will also change, failing the
training data set for the classifier established earlier. (2) Physical features of the target, such
as temperature, radiation intensity, etc., which can reflect the changes in the properties and
are the core data of the target. However, some features need to be obtained after model
calculation, and the extraction speed of feature information is slower compared to that
of image feature parameters. Moreover, most of the existing scholars focus on using a
single feature or two features of the target to recognize the target, and the comprehensive
use of various features is rare. Only a single feature is used to describe the state of the
whole target, so the robustness of discrimination is low, and if the features show instability
during the motion, the recognition performance is often not satisfactory. Therefore, it is
extremely valuable to extract complete comprehensive feature information with a strong
distinguishing ability from images produced by infrared detectors and comprehensively
utilize these features to improve the recognition performance of the space target.

If multidimensional effective features are to be obtained, a preliminary analysis of the
radiation and motion state of the space target must be performed during flight. In fact,
due to the position of the target changing relative to the Sun, Earth, and other radiation
sources, the solar radiation and Earth radiation absorbed by the target are also dynamic.
Additionally, there are differences in the material, infrared emissivity, shape, and size of
each target, and these factors will lead to differences in the trend of temperature change of
the target, which provides a potential characteristic parameter for target recognition. In
addition to temperature, the target will experience micromotion during the flight due to
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external disturbance factors [16]. The target will either precess or tumble until entering
the atmosphere depending on whether the target is regular in shape and has attitude
controllers or not. The micromotion makes the difference in the emissivity–area product in
the line of sight of the infrared detector in addition to the variability of the micromotion
period, which gives the two features potential for recognition. According to Planck’s law,
the temperature, the emissivity area product, and the micromotion period determine the
variation of the radiation intensity of the target, which makes it the most critical reference
feature. In addition, during the process of space target splitting, the newly generated
target has a lighter mass and the velocity between targets will also be different according
to the law of momentum conservation. Therefore, the velocity may also provide a certain
reference feature for target recognition [17]. It is exciting that the irradiance of the target can
be inverted from the grayscale value of the image through the calibration relation equation
of the detector, and combined with the distance information between the detector and the
target, we can obtain the radiation intensity of the target so that the multi-frame images of
the space target are converted into the infrared radiation intensity series signal of the target.
Additionally, the relationship between the coordinates of target imaging points and space
locations can be obtained via matrix variation, which provides the underlying theory for
velocity extraction based on the pixel coordinates of the target. Therefore, in combination
with the relevant physical laws, the multi-dimensional feature of the target can be extracted
based on the infrared images.

Data fusion is the integrated processing of heterogeneous information from multiple
sources to make a complete and accurate assessment of the state of the observed object,
which helps us to make full use of the multidimensional feature information of the space
target [18]. It has been widely developed in several fields, such as machine fault diag-
nosis [19], health discrimination [20], emotion understanding [21], and target intention
judgment [22]. However, in practical scenarios, the acquisition of feature data is easily
disturbed by noise and other factors, resulting in feature data of targets being uncertain,
and this uncertainty should be dealt with is still an open problem. To solve it, various
theories have been proposed, such as fuzzy set theory [23,24], rough set theory [25], Z
numbers theory [26], D-number theory [27], Bayesian theory [28,29], and Dempster–Shafer
theory [30,31].

Fuzzy sets can describe the fuzziness hiding in uncertain real word scenarios [23].
Rough set theory plays an important role in simplifying information processing, studying
expression learning, and discovering imprecise information [25]. However, quantifying
uncertainty is still a huge challenge for fuzzy set and rough set theories. Bayesian theory is
a mathematical model based on the probabilistic inference that can effectively deal with
uncertainty and incompleteness. However, it presupposes that prior knowledge of events is
required [28]. While Dempster–Shafer theory, an efficient method for data fusion, satisfies
weaker conditions than Bayesian theory, it can operate without any prior information
regarding event probability. It also describes evidence fusion rules that facilitate quantifying
and dealing with the uncertainty of events. However, when the fused evidence is highly
contradictory, the DS theory may produce counterintuitive results, leading to erroneous
inference and conclusions about events. To address the above problem, a large number
of research results have emerged, and these can be divided into two categories. One is
to modify Dempster’s combination rule; for example, Yager [32] believed that conflicting
evidence cannot provide favorable support for the final decision and proposed a new fusion
rule to reassign conflicting evidence. Dubois and Prade proposed a disjunctive combination
rule to reassign the conflicting part of each evidence to the concatenated set [33]. However,
the modification of the fusion rule often leads to the destruction of the combination and
exchangeability of the DS combination rule. The other is to modify the evidence body. This
method does not change the fusion rule, and the original good properties are retained,
including Murphy’s method [34], Deng et al.’s method [35], Sun et al.’s method [36], and
others. Murphy proposed modifying and averaging the initial body of evidence before
performing fusion. Deng et al. used an improved averaging method based on the distance



Remote Sens. 2024, 16, 510 4 of 27

of evidence to combine quality functions. Sun used a weighting and averaging method
to reassign conflicting values, introduced an evidence credibility metric, and successfully
solved the problem of conflict between pieces of evidence.

Classifier fusion is an effective strategy for improving the classification performance
of complex pattern recognition problems. In practice, multiple classifiers to be combined
may have different reliabilities, and an appropriate ensemble classifier plays a crucial role
in achieving optimal classification performance during the fusion process [37]. Ensemble
classifiers are widely applied in practical scenarios. For instance, Mai et al. used different
classifiers learned from three features and combined them using convolutional layers to
achieve fruit detection [38]. Kaur et al. proposed a classifier fusion strategy to aggregate
predictions from three classifiers: SVM, logistic regression, and K-nearest neighbor through
majority voting [39]. Bhowal et al. introduced an alternative low-complexity method for
computing fuzzy measures and applied it to Choquet integrals to fuse deep learning classi-
fiers from different application domains [40]. Furthermore, the aforementioned [32–36] are
also considered classifier fusion, which modifies the DS evidence theory by formulating
different fusion rules to fuse the evidence obtained by different classifiers.

To comprehensively utilize the multidimensional feature and solve the recognition
problem of space infrared dim target, this paper combines multiple classifiers with DS
theory and proposes an ensemble classifier with an improved DS fusion rule recognition
model. Specifically, the ensemble classifier can perform preliminary classification and
recognition based on the extracted multidimensional feature to obtain the BPA of each
feature evidence, and the improved DS fusion rule can modify the current evidence body
to improve the conflict situation among the feature evidence.

The main contributions of this paper are as follows:

(1) The infrared radiation intensity model and imaging model of space target are devel-
oped. Firstly, the characteristics of external radiation, micromotion, temperature, and
projected area change are analyzed to derive the radiation model of the space target.
The imaging model is established according to the relationship between the target
position and the imaging point of the infrared detector. Thus, multi-frame infrared
images of space targets can be easily acquired.

(2) An ensemble classifier based on ROCKET, LSTM, and SVM is constructed, and the
corresponding conversion methods are designed to convert the probability outputs
and the classification accuracies of the three classifiers into the corresponding BPAs
and weight values, respectively.

(3) A contraction–expansion function for the BPA is proposed, which can scale up or down
the value of the current BPA according to whether the value satisfies the threshold to
achieve the modification of the evidence.

(4) Through testing and evaluation of space target data in multiple scenes, it is verified
that the recognition accuracy of the proposed method has a certain degree of im-
provement compared with that of relying on a single dimension, and in addition, it
can significantly improve the recognition performance compared to other DST-based
benchmark algorithms in strong noise scenes.

The rest of this paper is organized as follows. Section 2 briefly describes the infrared
radiation intensity model and the imaging model of the space target. In Section 3, the
ROCKET, LSTM, SVM, and DST are briefly introduced. Then, the main framework of our
proposed algorithm is presented in Section 4. Section 5 presents the experimental results
and performance comparison. Section 6 concludes the paper and provides an outlook for
the future work.

2. Infrared Radiation Intensity and Target Imaging Modeling

Since the flight region of the targets is outside the atmosphere and there is no prior
information about the attributes, the real infrared radiation information of the objects is
difficult to collect. Therefore, in this paper, factors affecting infrared radiation—such as
temperature, material emissivity, shape, micromotion, and so on—are considered compre-
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hensively to establish the simulation infrared radiation model. Additionally, considering
that the positions of the targets and the infrared detector are changing, the image plane
coordinates of the targets in the infrared detector vary dynamically, which affects the speed
extraction of the targets. Therefore, in this section, the infrared radiation intensity model
and the imaging model of the targets are established.

2.1. Micromotion Model

Some of the targets will split during the flight, producing multiple shapes that pose
threats to satellites and space stations. Most of these shapes are ball-base cone, flat-base
cone, cone–cylinder, cylinder, sphere, and arc debris. Since the axisymmetric shape is
representative and the change law of the sphere is simple, this paper focuses on the four
axisymmetric shapes of targets. In addition, during the splitting process, the targets will
be subject to the interference moment in addition to the gravitational force, which will
produce micromotion [41]. In general, the conventional forms of micromotion are spinning,
coning, and tumbling. If the targets have a regular shape and are equipped with an attitude
control device, the precession will occur and is decomposed into a spinning component
and a coning component.

In contrast, the target lacking a control device will tumble around the tumble axis at a
certain angular velocity. The micromotion not only changes the projected area of the targets
in the line-of-sight (LOS) of the infrared detector in a short period but also changes the
temperature of the target surface elements. Additionally, the micromotion state of different
shaped targets is different. Therefore, it is significant to model the micromotion law of
space targets and analyze its influence on infrared radiation, to grasp the multi-dimensional
characteristic information of the targets.

Assuming the cone–cylinder is coning and spinning during the flight, the local coordi-
nate system is (x, y, z), the reference coordinate system is (X, Y, Z), and the point o(O) is
the origin of the two systems, as shown in Figure 1, which depicts the motion process of
the target from t0 to t0 + t. The azimuth and elevation angles of the precession axis are α1
and β1 at the initial time t0, LOS is the sight vector from the detector to the target centroid
in the reference coordinate system, and ws and wc are the angular velocities of the spinning
and the coning, respectively.
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The first step is to obtain the Euler rotation matrix for vector conversion in different
coordinate systems. We assume that the matrix rotation order is ZXZ, and the Euler angle is
(ψ, θ, ζ). The Euler rotation matrix Reuler from the local coordinate system to the reference
coordinate system is:

Reuler =

cos ψ −sin ψ 0
sin ψ cos ψ 0

0 0 1

·
1 0 0

0 cos θ −sin θ
0 sin θ cos θ

·
cos ζ −sin ζ 0

sin ζ cos ζ 0
0 0 1

 (1)

Then, the micromotion rotation matrices are calculated. For the precession target, the
spinning axis of the target is considered to coincide with the z-axis in the local coordinate
system. The spinning angular velocity vector in (x, y, z) is

→
w = [0; 0; ws]. According to the

Rodrigues equation, the rotation matrices of spinning and coning can be calculated as:

Rspinning(t) = I + E0sin wst + E2
0(1 − cos wst) (2)

Rconing(t) = I + E1sin wct + E2
1(1 − cos wct) (3)

where E0 and E1 are skew-symmetric matrices. By multiplying the three matrices, the
global rotation matrix can be mathematically expressed as below:

R(t) = Rcone(t)·Rspinning(t)·Reuler (4)

Similar to the above, assuming α2, β2 are the azimuth and elevation angles of the
tumbling axis, respectively. The tumbling rotation matrix is:

Rtumbling(t) = I + E2sin wtt + E2
2(1 − cos wtt) (5)

where E2 is the skew-symmetric matrix. Based on the above contents, the normal vector
→
n p

of any target surface facets in (x, y, z) can be translated to the normal vector
→
n′

p in (X, Y, Z) by

→
n′

p = R(t)·→n p =

{
Rconing(t)·Rspinning(t)·Reuler·

→
n p precession

Rtumbling(t)·Reuler ·
→
n p tumbling

(6)

The above equation is the rotation matrix of the micromotion model, which shows the
relationship of the vectors of target facets in different coordinate systems. It can calculate
the normal vectors of the surface facets in the reference coordinate system (X, Y, Z) at any
moment, which provides a mathematical model to calculate the projected area of the target
in the LOS of the infrared detector.

2.2. Infrared Radiation Intensity Model

Based on Planck’s Law, the infrared radiation intensity of a target is mainly determined
by temperature, material emissivity, projected area, and so on. Therefore, it is imperative
to analyze the temperature state of the target. The temperature change of a space target
is mainly influenced by external radiation, heat conduction, and internal heat source, as
shown in Figure 2.
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To analyze the temperature distribution of the target more finely, the surface of the
target is faceted, and the effect of micromotion on the temperature of the facets is considered,
the following equations present the external radiation absorbed by the facets:

qi1(t) = αiS0 Ai·max
(

cos
(

R(t)·→n i,−
→
n sun

)
, 0
)

(7)

qi2(t) = αiE0 AiFi
2

(
cos
(

R(t)·→n i,
→
oei
)

, t
)

(8)

qi3(t) = αiρS0 AiFi
3

(
max

(
cos
(

R(t)·→n i,−
→
n sun

)
, 0
)

, cos
(→

oei,
→
n sun

)
, t
)

(9)

where q·1, q·2, q·3 are the solar radiation, the Earth radiation, the solar radiation reflected
from Earth absorbed by the facet, respectively; α is the absorption coefficient; S0 is the solar
constant; A is the area of facet; R is the micromotion matrix;

→
n is the normal vector facet;

and
→
n sun is the solar radiation vector. Fi

2(·), Fi
3(·) are the angle coefficients of radiation,

and ρ is the average albedo of the Earth. According to the heat equivalence equation, the
temperature of all facets satisfies the following:

mici
∂Ti(t)

∂t
+ AiϵiσT4

i (t) =
N

∑
j=1

Ki,j
(
Tj(t)− Ti(t)

)
+ qi1(t) + qi2(t) + qi3(t) + αp pi (10)

where N is the number of facets. The relation is linearized and the temperature T of the
target can be calculated using the Gauss–Seidel method. At any time, the area observed by
the infrared detector is always smaller than the superficial area of the target. Therefore, it is
necessary to calculate the projected area of the target in the LOS utilizing the micromotion
model, as shown in the following:

Aproject = ∑
i

Ai·
−R(t)·→n i·

→
LOS∣∣∣R(t)·→n i

∣∣∣·∣∣∣∣ →
LOS

∣∣∣∣
(

i
∣∣∣∣R(t)·→n i·

→
LOS < 0, 1 ≤ i ≤ N, i ∈ Z

)
(11)

According to the above, the models of temperature and projected area have been
shown. However, one important factor has to be considered: the reflected radiation
of the target, which will affect the magnitude of the radiation intensity in the detector
pupil. This part will affect the accuracy of extracting the temperature and emissivity–area
product, especially for the low emissivity of the target. In this paper, only three types of
reflected radiation are considered: surface-reflected solar radiation Lrs, surface-reflected
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Earth radiation Lre, and surface-reflected solar radiation reflected from Earth Lres. The
corresponding radiation irradiances are:

Li
rs(t) = frS0max

(
cos
(

R(t)·→n i,−
→
n sun

)
, 0
)

(12)

Li
re(t) = frE0Fi

2(t) (13)

Li
res(t) = frρS0Fi

3(t) (14)

where fr is the bidirectional reflectance distribution coefficient. The self-radiance can be
calculated for the facet as follows:

Li
sel f (Ti, t) =

c1ϵi

λ5
(

exp
(

c2
λTi

)
− 1
) (15)

where c1,c2 are the radiation constants respectively, assuming that B is the set of facets
within the detector’s field of view. Based on the above, the infrared radiation intensity in
the pupil of the detector, whose spectrum is (λ1, λ2), is modeled as:

I(t) = ∑
i∈B

Ai·
−R(t)·→n i·

→
LOS∣∣∣R(t)·→n i

∣∣∣·∣∣∣∣ →
LOS

∣∣∣∣ ·
∫ λ2

λ1

Li
sel f (Ti, t) + Li

rs(t) + Li
re(t) + Li

res(t)dλ (16)

2.3. Simulating Imaging Model of the Target

The angle of the space target to the detector is usually less than the instantaneous
field of view of the system so that the target is considered a point source [42]. The image
point of the target is determined by the projection position and irradiance. The mapping
from the space coordinate of the target to the image plane coordinate requires conversion
from Earth-centered inertial (ECI) coordinate system, orbital coordinate system, and sensor
coordinate system to the image plane coordinate system. The transformation matrix is
as shown:

rsen = Rsen
orb

(
BRorb

ECIrT + c
)

(17)

where Rorb
ECI is the rotation matrix from the ECI coordinate system to the orbital coordinate

system and Rsen
orb is the rotation matrix from the orbital coordinate system to the sensor

coordinate system. Assuming that the image plane coordinate of the target is point T, it is
known from the imaging principle that the relationship between the image plane coordinate
and the sensor coordinate is shown as follows:(

xI
yI

)
= − f

zsen

(
xsen
ysen

)
(18)

Convert the image plane coordinates to the pixel coordinates of the target using the
following equation: (

xp
yp

)
=
( xI

d
yI
d
)T

+
(

Nx
2

Ny
2

)T
(19)

where f is the focal length, d is the pixel size, and Nx, Ny are the number of pixels in the row
and column of the image plane, respectively. When a point source is imaged, a diffraction
ring with a bright central spot and several alternating bright and dark diffraction rings is
formed on the imaging surface, where the central bright spot is called the Airy spot, whose
energy accounts for about 84% of the entire image spot. The irradiance response of the
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target after diffraction at any image position is calculated by the two-dimensional Gaussian
point spread function:

p(x, y) =
I

R2 ·
1

2πσ2
ps f

exp

(
− (x − xi)

2 + (y − yi)
2

2σ2
ps f

)
(20)

where (xi, yi) is the target position of the image plane and σps f is the energy diffusion range
when σps f = 0.5, about 98% of the target energy diffuses to 3 × 3 areas in the center of
the pixel.

According to the above radiation intensity model and imaging model of the target,
the position and irradiance value of the target at any moment during the flight can be sim-
ulated. Combined with the dual-band temperature measurement algorithm, CAMDF
algorithm, dual-star positioning, and velocity extraction algorithms of the target, six
dimensions—long-wave radiation intensity (8–12 µm), long-medium-wave radiation in-
tensity (6–7 µm), temperature, emissivity–area product, micromotion period, and velocity
of the target—can be extracted from multi-frame infrared images, which provides data
support for the multi-dimensional feature decision-level fusion and recognition below.

3. Preliminaries
3.1. Structure of ROCKET

ROCKET was proposed by Dempster et al. to solve univariate time series classification
in 2020 [43], drawing on the successful applications of convolutional kernels in image,
signal, and other fields. It has proven to achieve state-of-the-art classification accuracy with
less training time and computational complexity than MrSEQL [44], Ts-CHIEF [45], and
InceptionTime [46] on the 85 datasets from the UCR archive. ROCKET initializes a series
of random convolution kernels which are determined by five parameters: length, weight,
bias, dilation, and padding. All the kernels are convolved with the original time series to
produce a series of feature maps. Then the two values, the proportion of positive values
(PPV) and maximum value are extracted as a representation of each feature map. Finally,
the vectors formed by the two types of values are used to train the classifier and the PPV
and maximum value of the new time series are used as input for classification.

Define the set of time series
{(

xN
1 , y1

)
, · · · ,

(
xN

i , yi
)
, · · ·

(
xN

T , yT
)}

, where xN
i is the i-th

time series, yi is the corresponding category label, N is the length of each time series and T
is the length of the set. ROCKET is mainly composing three main steps:

(1) Setting Random Convolution Kernel. A series of convolution kernels are defined
by the following five parameters:

• Length: The length of the convolution kernel is chosen from {7,9,11}; in most cases, the
size of the convolution kernel can be guaranteed to be less than N.

• Weights: The weights are randomly selected from a standard normal distribution.
• Bias: The value of the bias is randomly generated from a uniform distribution,

b ∼ 0(−1, 1)
• Dilation: Define the effective length of the kernel as Lkernal ; the value of dilation is

obtained from an exponential scale e = 2a, where a ∼ 0
(

0, log2
N−1

Lkernal−1

)
.

• Padding: Whether padding is performed or not is randomly determined. When the
padding is required, zero values are padded to the start and end of the series to ensure
that the convolution kernel is centered with both the start and the end of the series.

(2) Extracting features by transforming. ROCKET generates a feature map by perform-
ing a convolution operation on each time series with the kernel, and then extracts the PPV
and the maximum value max. The convolution operation step is as follows:

f = x ∗ w =
Lk

kernal

∑
j=1

xi+j·e·wj i = 1, · · · , N (21)
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where f is the feature map and w is the kernel corresponding to the time series. The PPV
is calculated by the following:

PPV =
1
N

N

∑
j=0

1
[

xj
i > 0

]
num = 1, · · · , N (22)

where xj
i is the jth value of the ith time series and the 1

[
xj

i > 0
]

represents that 1
[

xj
i > 0

]
= 1

when xj
i > 0. Then, the extracted feature matrix is formed by V = ({PPV1, max1}, · · · ,

{PPVT , maxT}) ∈ RT×2 for all input time series data.
(3) Training the Classifier. Two linear classifiers, logistic regression and ridge regres-

sion, are recommended. These capture the rich information from the extracted matrix well.
Considering the number of the training set in the paper, we choose the ridge regression in
which the number of hyperparameters is 2. Then the matrix is input to the classifier. Finally,
the PPV and maximum value of the new time series are used as input for classification.

3.2. Long Short-Term Memory (LSTM) Network Architecture

LSTM is one of the famous variants of the recurrent neural networks (RNN) [47].
It has shown the excellent ability to learn the long-term and short-term dependencies
in time series, partially overcoming the gradient disappearance and gradient explosion
problems during training. LSTM has a wide range of applications in the fields of wind
speed forecasting, speech classification, emotion recognition, and so on. The architecture of
the LSTM network is shown in Figure 3.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 28 
 

 

𝑓 = 𝑥 ∗ 𝑤 = 𝑥 ∙ ∙ 𝑤         𝑖 = 1, ⋯ , 𝑁 (21) 

where 𝑓  is the feature map and 𝑤 is the kernel corresponding to the time series. The 𝑃𝑃𝑉 is calculated by the following: 

𝑃𝑃𝑉 = 1𝑁 1 𝑥 > 0         𝑛𝑢𝑚 = 1, ⋯ , 𝑁 (22) 

where 𝑥   is the 𝑗 th value of the 𝑖 th time series and the 1 𝑥 > 0   represents that 1 𝑥 > 0  =1 when 𝑥 > 0 . Then, the extracted feature matrix is formed by 𝑉 =( 𝑃𝑃𝑉 , 𝑚𝑎𝑥 , ⋯ , 𝑃𝑃𝑉 , 𝑚𝑎𝑥 ) ∈ ℛ ×  for all input time series data. 
(3) Training the Classifier. Two linear classifiers, logistic regression and ridge regres-

sion, are recommended. These capture the rich information from the extracted matrix 
well. Considering the number of the training set in the paper, we choose the ridge regres-
sion in which the number of hyperparameters is 2. Then the matrix is input to the classi-
fier. Finally, the PPV and maximum value of the new time series are used as input for 
classification. 

3.2. Long Short-Term Memory (LSTM) Network Architecture 
LSTM is one of the famous variants of the recurrent neural networks (RNN) [47]. It 

has shown the excellent ability to learn the long-term and short-term dependencies in time 
series, partially overcoming the gradient disappearance and gradient explosion problems 
during training. LSTM has a wide range of applications in the fields of wind speed fore-
casting, speech classification, emotion recognition, and so on. The architecture of the 
LSTM network is shown in Figure 3. 

 
Figure 3. The architecture of the LSTM cell with gates. 

The most critical components of LSTM are the memory cell and three kinds of gates 
including forget gate, input gate, and output gate. The flow of information in the structure 
is described in three stages. The first stage is to determine what information from the pre-
vious state should be removed and forgotten, which is finished by relying on the value 𝑓  
of the forget gate. It can be modeled as follows: 𝑓 = 𝜎 𝑊 ∙ [ℎ , 𝑥 ] + 𝑏  (23) 

where 𝜎 is the sigmoid function, 𝑊  is the weight, ℎ  represents the output state from 
the previous state, 𝑥  is the input value at the moment and 𝑏  is the bias item. The second 
stage is to decide which input information to be stored in the memory cell. It includes the 
two main parts: an input gate which decides the information to be updated and a tanh(∙) 

Figure 3. The architecture of the LSTM cell with gates.

The most critical components of LSTM are the memory cell and three kinds of gates
including forget gate, input gate, and output gate. The flow of information in the structure
is described in three stages. The first stage is to determine what information from the
previous state should be removed and forgotten, which is finished by relying on the value
ft of the forget gate. It can be modeled as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(23)

where σ is the sigmoid function, W f is the weight, ht−1 represents the output state from
the previous state, xt is the input value at the moment and b f is the bias item. The second
stage is to decide which input information to be stored in the memory cell. It includes the
two main parts: an input gate which decides the information to be updated and a tan h(·)
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function which generates a new vector of new updated information. The mathematical
expressions can be written as follows respectively:

it = σ(Wi·[ht−1, xt] + bi) (24)

Ĉt = tanh(WC·[ht−1, xt] + bC) (25)

where it is the value of the input gate, Ĉt is the new vector, Wi, Wc are the weight values
and bi, bC are the bias items.

The value it controls how much new data from Ĉt is adopted, while the value of the
signal ft controls how much the memory element Ct−1 is retained. The new cell state Ct
can be calculated as follows:

Ct = ft ∗ Ct−1 + it ∗ Ĉt (26)

If the values of ft, it are always 1 and 0, respectively, the past memory information
Ct−1 will be saved over time and passed to the current state Ct. This design is introduced
to alleviate the gradient disappearance problem, and the structure can better capture the
long-range dependencies in the time series.

The third stage is to determine what information about the cell state Ct can be the
output of the current state. This stage is controlled mainly by the value ot of the output
gate and scales the Ct using a tan h(·) function. The calculation process of the value ot the
output state ht at present is the below:

ot = σ(Wo·[ht−1, xt] + bo) (27)

ht = ot ∗ tanh(Ct) (28)

When the value ot is close to 1, it can effectively update all the memory information to
the output value. While the value is close to 0, only all the information within the memory
element is retained without updating the output state ht. The output state ht whose range
is (−1, 1) contains short terms. After passing the three stages, the invalid information can
be filtered and the effective part can be output.

3.3. The SVM Classifier

The traditional SVM is only suitable for binary classification scenarios, so many re-
searchers have paid attention to improving and proposing SVM for multi-classification sce-
narios, such as one-versus-one SVM(OVO-SVM) [48], one-versus-all SVM (OVR-SVM) [49],
error correction coding SVM (ECC-SVM) [50], and decision binomial tree SVM (DBT-
SVM) [51]. Considering that the number of recognition categories is 5, the maximum
number of binary classification SVMs to be constructed is 10, and the training time is
short, so OVO-SVM is chosen as one of the classifiers in this paper. For a test sample,
all 10 classifiers classify and vote, and the category with the most votes is the final result
corresponding to the sample.

The output of the SVM Is the category labels, which need to be mapped to the posterior
probability to obtain the probability value for each category to construct the BPA of DS.
Platt [52] used the sigmoid-fitting method to map the output categories to probability:

P =
1

1 + exp(A f + B)
(29)

where P is the posterior probability value, f is the output of SVM, and A, B are the
parameters that can be obtained by calculating the minimum negative log-likelihood value.

3.4. DS Evidence Theory

The Dempster–Shafer theory is one of the powerful processing algorithms in the field
of information fusion and was proposed and improved by Dempster and Shafer. It can
flexibly handle incomplete, uncertain, and imprecise information in multi-dimensional
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data fusion without any prior knowledge. It is a new experiment to apply DS evidence
theory to the decision fusion of space infrared dim target recognition.

Definition 1. Frame of discernment.

Assuming the elements in the framework of Θ = {θ1, θ2, · · · θn} are mutually exclusive
without intersection, Θ is called the frame of discernment (FOD). Additionally, all subsets
of Θ form the power set 2θ , which is denoted in the following form:

2θ = {∅, {θ1}, {θ2}, · · · , {θ1 ∪ θ2}, {θ1 ∪ θ3}, · · · , Θ} (30)

Definition 2. Basic probability Assignment.

When a mapping relation m : 2θ → [0, 1] satisfies the following relation:

m(∅) = 0
0 ≤ m(A) ≤ 1, ∀A ∈ Θ

∑
A∈Θ

m(A) = 1
(31)

For the recognition framework Θ, the mapping relationship m is considered the basic
probability assignment (BPA), also called the mass function. Each m(A) represents the
probability value that is assigned for event A, where m(∅) represents the probability for
the empty set. If m(A) > 0, A is considered the focal element. It is critical for m(A) to be
the result of the fusion decision.

Definition 3. Combination Rules.

When N evidence sources or feature sources make judgments on the type of one
sample A, the corresponding output probability values are m1, m2, · · ·mn respectively, and
all probability values are combined according to the following equations:

(m1 ⊕ m2 ⊕ · · · ⊕ mn)(A) =
1

1 − K ∑
A1∩A2∩···∩An=A

m1(A1)·m2(A2)· · · · ·mn(An) (32)

K= ∑
A1∩A2∩···∩An=∅

m1(A1)·m2(A2)· · · · ·mn(An)

= 1 − ∑
A1∩A2∩···∩An ̸=∅

m1(A1)·m2(A2)· · · · ·mn(An)
(33)

where K is a measure of the conflict degree of this evidence. It is noted that the above fusion
rule is valid only when 0 ≤ K < 1.

4. The Proposed Method of Target Recognition

Uncertainty feature data processing is an indispensable step for space target recog-
nition. In the process of judging the types of the space target, it is often necessary to fuse
different feature data from observed targets to implement a comprehensive judgment and
evaluation of target types. In addition, in the ensemble classifier architecture, the variability
in the learning degree of different classifiers for feature data sources leads to divergent
recognition results of space targets, which is called information source conflict. To enhance
the rationality of feature data fusion, attenuate the conflicts among feature data and further
improve the recognition accuracy, this paper proposes a new space target recognition
method that combines an ensemble classifier and improved DS. Firstly, three kinds of
trained classifiers (ROCKET + Ridge, LSTM, SVM) to test based on the six-dimensional tar-
get features (long-wave radiation intensity (8–12 µm)), infrared radiation intensity (6–7 µm),
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temperature, emissivity–area product, velocity, and micromotion period) extracted from
multi-frame infrared radiation images to construct the base BPA.

The proposed method consists of three main modules: an ensemble-classifier-based
information processing module for multidimensional feature data, an improved DS in-
formation fusion module, and a decision module. The information-processing module
uses the three types of classifiers based on the six-dimensional space target features for
initial classification and outputs the posterior probability density values of each category to
construct the basic BPA matrix for use in the next module. In the information fusion model,
the credibility of the BPA value is judged based on the number of space target categories,
and the contraction–expansion function is introduced for evidence scaling. The accuracy
of each classifier is used as the discount coefficient to improve the reasonableness of the
evidence. Finally, the target decision recognition module, by setting decision thresholds,
makes fusion judgments on the target category. The flowchart of the proposed algorithm is
shown in Figure 4.
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In the information processing stage, the main purpose is to perform pre-processing of
the dual-band multi-frame infrared images generated from the infrared detector, including
blind element removal, infrared dim target detection, target signal enhancement, target
tracking, and so on. Then a series of pixel point coordinates and gray value information
of the target can be extracted. In this paper, assuming that these two types of information
about the target have been accurately obtained, the focus is on the feature extraction and
the decision recognition of the target category. Extraction of infrared radiation intensity,
temperature, emissivity–area product, and micromotion period of the target is achieved by
using the gray value of the target in two infrared bands, and the velocity information of the
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target is extracted by using the pixel point coordinates of the target in the image combined
with the infrared detector position and LOS vector. The main contents of this section are
as follows:

4.1. Multi-Dimensional Feature Extraction

Features are the intrinsic information describing the properties of objects, and different
categories of targets have distributional variability in the feature space. Space targets have
variability in the above six-dimensional features due to differences in materials, emissivity,
mass distribution, etc. These provide feature data references for recognizing targets. For
the infrared radiation intensity, its magnitude is reflected by the level of the pixel gray
value of the target. The corresponding function equation of the radiation of the target
and the gray value is required to obtain by the blackbody radiation calibration. Once the
radiation equation is obtained, the inverse functional relationship can be used to achieve
the conversion of gray values to radiation. In general, the equation is often characterized as
a linear relationship, as shown below:

L = a ∗ DN + b (34)

where L is the infrared radiation of the target; DN is the gray values; and a, b are the
coefficients obtained by fitted.

By performing the above calculation, the consecutive radiation signal of the target
in two infrared bands can be extracted. Because of the long distance between the target
and the detector, the irradiance magnitude of the target reaching the pupil is weak, so the
effect of detector noise cannot be ignored. Considering that the infrared signal is regular,
the DA-VMD algorithm [53] is used to denoise the radiation signal. This approach avoids
the artificial subjective setting of mode number K and quadratic penalty term α in the
VMD and finds the optimal parameter values by iterating the objective function through
the optimization algorithm. After that, the feature of infrared radiation intensity signals
(8–12 µm, 6–7 µm) can be obtained. The extraction of temperature can be operated with the
help of dual-band thermometry. However, since the radiation in the pupil of the detector
contains not only the self-radiation of the target but also the external radiation reflected
by the target during observing the target, the real temperature and the emissivity of the
target can be accurately derived using the method, assuming that the value of the external
radiation reflected by the target is known. However, when the target is flying in space,
the external radiation is in dynamic change and difficult to know. This difficulty leads
to a deviation between the extracted temperature from the real temperature of the target.
According to previous studies, it has been shown that the use of 8–12 µm and 6–7 µm as the
detector bands can reduce this bias to some extent. The principle of dual-band thermometry
is shown in the following equation:

ϵs(T1)
∫ λ2

λ1
Lλ(T)dλ

ϵs(T2)
∫ λ4

λ3
Lλ(T)dλ

=

∫ λ2
λ1

Lλ(T)dλ∫ λ4
λ3

Lλ(T)dλ
=

S1

S2
= R(T) (35)

where ϵs is the emissivity of the target; λ1, λ3 are the lower edge of bands; λ2, λ4 are the
upper edge of bands; T is the temperature; and Lλ(·) is Planck’s Law equation. R(T) is
the relation between the temperature and ratio of the radiation of the two infrared bands,
which can be obtained by the blackbody. In general, R(T) is a monotonic function, and the
T for the target can be solved by using the dichotomous method.

After that, under knowing the distance between the infrared detector and target, the
emissivity-area product can be calculated by the following:

ϵs A =
πR2S∫ λ2

λ1
Lλ(T)dλ

=
π I∫ λ2

λ1
Lλ(T)dλ

(36)
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where ϵs A is the emissivity-area product of the target, R is the distance, S is the irradiance
in the pupil, and I is the radiant intensity.

Since the micromotion leads to periodic fluctuations in the radiation signal of the
target in the time domain dimension, the CAMDF is used to extract the micromotion period
of the target [54], which can overcome the drawback of the relevant algorithms to some
extent: false valley points lead to period misclassification. The algorithm is as follows:

F(k) =
1
N

N

∑
i=1

|I[mod(i + k, i)]− I(i)| (37)

where I is the radiation signal, N is the length of the signal, k is the delay length, and mod(·)
is the remainder operator.

When using a single-star infrared detector for target observation, if only the motion
properties of the target are assumed to conform to the two-body motion law and the
position and velocity of the target at the initial moment of observation are known, the space
position and velocity of the target during the whole flight can be deduced by combining
the Kalman filter and other related derived algorithms. However, there are two drawbacks:
(1) In the actual observation scenario, when the LOS of the infrared detector captures
the flying target and carries out stable tracking, the position and velocity of the target
cannot be known at the initial moment; (2) when the target performs variable orbital
motion, the characteristics of the target do not conform to the two-body motion model,
failing single-star infrared detector extraction of velocity. Therefore, a combination of dual
infrared detectors and the least-squares method is used to achieve the extraction of the
target velocity in this paper [55].

We first establish the mathematical model for solving the space position of the target
and extracting the velocity based on the position. Firstly, according to the geometric
positioning model of the dual infrared detectors, we establish the equation for solving the
space position: 

ujx − ljy = ujXj − ujYj
vjy − ujz = vjYj − ujZj
−vjx − ljz = vjXj − ljZj

, j = 1, 2 (38)

where (x, y, z) is the position coordinate of the space target and Vj =
(
lj, uj, vj

)
, Rj =(

Xj, Yj, Zj
)

denote the unit observation vector and the position of the detector in the J2000
coordinate system, respectively. According to the above equations, the unknown quantities
are the position coordinate of the target, and the number of independent equations is six.
According to the least-squares method, the target position (x, y, z) can be solved. Then, the
velocity

(
vx, vy, vz

)
of the target can be calculated according to the following equation:

(
vx, vy, vz

)
=

(
∆x
∆t

,
∆y
∆t

,
∆z
∆t

)
=

(
x(t + ∆t)− x(t)

∆t
,

y(t + ∆t)− y(t)
∆t

,
z(t + ∆t)− z(t)

∆t

) (39)

Where ∆t is the time difference and ∆x, ∆y, ∆z are the variation of displacement.
Based on the above, the six-dimensional target features are extracted from the multi-

frame images. for the velocity feature, its extraction accuracy is independent of the error
of the radiation magnitude of the target and is related to these error sources, such as the
location of the centroid of the target imaging point, the space coordinates of the infrared
detector, the velocity of the infrared detector, the pose of the infrared detector, and so on.
For the remainder, it should be explained that those which are non-independent are derived
from the infrared radiation signal. Therefore, the accuracy of the infrared radiation has an
impact on the extraction of other features. In particular, the emissivity–area product feature
is affected not only by the infrared radiation but also by the accuracy of the temperature
and the distance between the target and the detector.
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4.2. Construction of the BPA and Decision Making

As mentioned above, building an ensemble classifier usually accomplishes two main
tasks: (1) selecting several independent classifiers; (2) combining classification probability
values to construct the basic BPA. Three classification algorithms, such as ROCKET + Ridge,
LSTM, and SVM + sigmoid-fitting, are selected as individual classifiers in this paper. It
should be clarified that ROCKET + Ridge is used to recognize the radiation intensity
sequences of two infrared bands, and LSTM is used to separately recognize temperature
sequences, emissivity–area product sequences, and velocity sequences. In the general case,
the micromotion period remains constant rather than a time series during space targets
flying outside the atmosphere, so the micromotion period is trained using SVM instead of
LSTM or ROCKET, which can increase the computational speed and reduce the time to build
the BPA. It should be explained that LSTM can also handle the classification of radiation
intensity sequence signals, and we choose the additional classification algorithms because
they have different classification mechanisms that complement as much information as
possible to provide more accurate classification results. In addition, we found that for
radiation intensity classification, ROCKET + Ridge has better classification results compared
to LSTM.

For a test sample, the process of calculating the basic BPA corresponding to the
radiation intensity sequence based on ROCKET is as follows:

4.2.1. Determine the Initial BPA

The first step is to establish a basic recognition framework, use the classifier’s recogni-
tion results of six-dimensional features to construct an initial BPA, and assign evidence to
each target category.

Assuming that there are M categories of space targets, the initial recognized frame-
work can be constructed as Θ′ = {K1, K2, · · ·KM}. The radiation intensity signals of all
space targets are divided into a training set and a test set, and the training stage of the
ROCKET + Ridge is accomplished using the training set, after which the denoising test set
is input to the algorithm to obtain the accuracy, which is φ. When the infrared radiation
intensity signal of a test sample is obtained and input to the algorithm, the probability
value corresponding to each category is {p1, p2, · · · pM}, which is the basic BPA value
corresponding to the feature.

Therefore, the overall initial BPA matrix BPA for all feature is as follows:

BPA =

p11, p12, · · · p1M
· · ·

p61, p62, · · · p6M

 ∈ R6×M (40)

4.2.2. Information Fusion

This step is to accomplish the modification of the initial BPA, discount processing, and
evidence fusion to better amplify the differences between the different probability values,
which will help to make a category judgment.

From the previous description, it is known that there are conflicting situations among
the evidence, which leads to fusion recognition results contrary to the facts. The sum of
BPA is 1, and the average BPA of each category is 1/M. In the extreme case, when the BPA
value of a feature is 1/M for all categories, the feature is not credible and is unsuccessful
in recognizing the target. Therefore, 1/M can be used as a threshold for scaling the BPA
value. Here, we introduce a contraction-expansion function to improve the DS algorithm
by modifying the basic BPA value.

pij =

{
102∗pij−2/M pij ≤ 1/M
102∗pij+2/M pij > 1/M

i = 1, · · · 6; j = 1, · · ·M; (41)
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When the BPA value of a feature corresponding to a certain category of the target is
less than 1/M, we consider that the probability of the test sample belonging to this category
is small, so the BPA value is compressed. When the BPA value is greater than 1/M, we
consider that the probability of the sample belonging to this category is large, and the BPA
value is scaled up. Then, the above-modified BPA values are normalized as follows:

pij =
pij

∑M
j=1 pij

(42)

After scaling, the accuracy of each recognition algorithm is used to weight the BPA
of each category, and the algorithm uncertainty 1 − φi is assigned to the BPA value of the
overall recognition framework for the feature source. The calculation formula is below for
each feature: 

pi1 = φi·pi1
· · ·

piM = φi·piM
piΘ = 1 − φi

(43)

where φi denotes the accuracy of the ith classifier and piΘ denotes the probability that the
recognition result belongs to all categories, i.e., it cannot be distinguished to which category
the test sample belongs.

4.2.3. Category Result Output

This step is to make a target category judgment based on the results of evidence fusion.
Obtain the above-modified BPA values and use Equation (32) to fuse these data. The
probabilities after fusing are (p1, p2, · · · , pm, pΘ), and the probability assignment-based
decision method is used as follows:

Supposing that M1, M2 ∈ Θ and pM1 = max
{

pMi , Mi ∈ Θ
}

, pM2 = max{pMi , Mi ∈ Θ ,
Mi ̸= M1}. If M1, M2 satisfy the following conditions:

pM1 − pM2 > ϵ1
pΘ < ϵ2

pM1 > pΘ

(44)

where ϵ1, ϵ2 are the thresholds, then we consider the recognition result of the target to be
the type M1.

5. Experiments Results

The purpose of this section is to verify the necessity of multi-dimensional feature
decision-level fusion and the performance of the proposed algorithm by implementing
multiple experiments. First, the range of attribute value of space target and parameter
of flight scene in this experiment are described in detail, and the dataset of space targets
is built based on the infrared radiation model and target imaging model in the previous
section. Subsequently, the recognition performance of multidimensional feature decision-
level fusion is analyzed compared with the performance under a single feature. Then, the
performance of our proposed algorithm and the comparison algorithm with different SNRs
and different observation time lengths are discussed in the paper.

5.1. Experimental Parameter Setting

For the ROCKET, we choose the default parameters in the paper [43]. Namely, the
number of kernels of ROCKET is 10,000, and it produces 20,000 features for each infrared
radiation sequence. The kernel function of SVM is RBF, the sigma of the kernel is 0.5,
and the penalty factor is 1. The LSTM network is a five-layer neural network: one input
layer, one LSTM layer with 200 hidden units, one fully connected layer, one softmax
layer, and one classification layer. The classification layer outputs the probability for each
category. For the training stage, the Adam optimizer is used with a learning rate of 0.001.
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The maximum number of epochs is 120, and the loss function is the cross-entropy in the
network architecture. In the decision rule, ϵ1, ϵ2 are set to 0 and 0.10, respectively.

5.2. Flight Scene and Space Target Property Setting

In the second section, the infrared radiation intensity model and imaging model of
the space target are established in detail, and the main factors affecting the variation of
infrared radiation intensity are analyzed. In this subsection, the corresponding parameters
are set for the two models of the space target. To be more realistic, we simulate the infrared
radiation image data of five types of space targets in six flight scenarios. The flight scenario
environment, the flight time, the starting position, and the landing position of the targets
are expressed in Table 1. Although the starting position and the landing position of the
targets in Scenes 1–3 are set to the same, the flight paths of the targets in each scene are
different. The target flight path and observation satellite motion state are the same in
Scene 5 and Scene 6; the difference is the lighting environment. Additionally, the lighting
conditions of the targets in flight are set to three: full sunlight, full shadow, sunlight for the
first half of the flight time, and shadow for the rest time.

Table 1. The scenario environment, the starting position, and the landing position of the targets.

Number Scenario Environment The Flight Time The Position

1 Sunlight

The start time:
21 March 2021 03:59:55 UTCG

The end time:
21 March 2021 04:12:00 UTCG

The starting position:
26.34◦N, 127.8◦E

The landing position:
40.001◦N, 116.314◦E

2 Shadow

The start time:
21 March 2021 13:00:00 UTCG

The end time:
21 March 2021 13:12:00 UTCG

The starting position:
26.34◦N, 127.8◦E

The landing position:
40.001◦N, 116.314◦E

3 Sunlight for the first half of all
flight; shadow for the rest

The start time:
21 March 2021 20:10:00 UTCG

The end time:
21 March 2021 20:22:00 UTCG

The starting position:
26.34◦N, 127.8◦E

The landing position:
40.001◦N, 116.314◦E

4 Sunlight

The start time:
21 March 2021 00:00:00 UTCG

The end time:
21 March 2021 00:30:36 UTCG

The starting position:
47.6062◦N, 122.332◦W
The landing position:
39.913◦N, 116.302◦E

5 Shadow

The start time:
21 March 2021 11:30:00 UTCG

The end time:
21 March 2021 12:00:36 UTCG

The starting position:
47.6062◦N, 122.332◦W
The landing position:
39.913◦N, 116.302◦E

6 Sunlight for the first half of all
flight; shadow for the rest

The start time:
21 March 2021 15:30:00 UTCG

The end time:
21 March 2021 16:00:36 UTCG

The starting position:
47.6062◦N, 122.332◦W
The landing position:
39.913◦N, 116.302◦E

The detector bands of infrared detectors are 8–12 µm and 6–7 µm respectively, and the
frame frequency is 10 Hz, and the LOS of detectors always points to the centroid of the true
target which is destructive. Also, the properties of each target are shown in Table 2. The
four shapes of targets are flat-base cone, ball-base cone, cone–cylinder, and cylinder. The
categories of targets are real target (flat-base cone), master cabin (cone–cylinder), light decoy
(ball-base cone, cylinder), and heavy decoy (cone–cylinder). There are 100 samples for
each flight scene and 600 samples for the total flight scene, where the ratio of these targets
number is 1:1:1:1:1. We used the infrared-observed images from 85 s to 100 s for recognition.
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Table 2. The properties of each target.

Master Cabin Real Target Light Decoy 1 Light Decoy 2 Heavy Decoy

Shape Cone–cylinder Flat-base cone Cylinder Ball-base cone Cone–cylinder

Size
r = 3 ± 0.5 m

h1 = 3 ± 0.5 m
h2 = 3 ± 0.5 m

r = 1 ± 0.5 m
h = 1 ± 0.5 m

r = 1.5 ± 0.5 m
h = 1.5 ± 0.5 m

r = 1 ± 0.5 m
h = 1 ± 0.5 m

r = 0.5 ± 0.1 m
h1 = 0.5 ± 0.1 m
h2 = 0.5 ± 0.1 m

Material White TiO2 paint Grey TiO2 paint White epoxy paint Black paint Aluminum
Absorption of solar

radiation 0.19 0.87 0.248 0.975 0.192

Emissivity 0.94 0.87 0.924 0.874 0.036
Density (kg/m³) 4260 4260 980 1300 2710

Specific heat
capacity J/(kg ·K)

811 811 550 910 880

Micromotion mode Spinning and
Coining

Spinning and
Coining Tumbling Spinning and

Coining
Spinning and

Coining
Micromotion

velocity 0.5π ± 0.2π rad/s 2π ± 0.2π rad/s 0.5π ± 0.2π rad/s 1π ± 0.2π rad/s 4π ± 0.5π rad/s

Initial
Temperature (K) 400 300 300 300 300

It should be noted that the infrared radiation intensity of the target extracted from
the images can be disturbed by various factors: non-uniformity of the sensor image, target
point coordinate extraction residual, measurement distance error, and other factors. These
factors are usually described as Gaussian white noise to improve the realism of the data.
Figure 5a shows the normalized infrared radiation intensity of five targets under ideal
conditions, and it can be seen that the radiation intensity of the targets is characterized by
long-term variation and local fluctuation, which is the result of the micromotion. Master
cabin and light decoy 1 have a relatively small amplitude of periodic variation, while real
target, light decoy 2, and heavy decoy have large periodic variations. Figure 5b shows the
normalized radiation intensity signal extracted under noise interference (SNR = 10). It can
be seen that the detailed information of the target radiation signal is seriously disturbed
by noise, which may lead to a sharp decrease in the performance of target recognition.
Therefore, 70% of the original data are randomly assigned to the training set and 30% of
the data to the test set by adding different level noises to verify the performance of the
proposed algorithm under different SNR ratios.
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As shown in Figure 6, five target images for six different flight scenarios are shown.
The image pixel size is 1024 ∗ 1024, and it is assumed that the line of sight of the detector
always points to the real target, which is always located at the center pixel point of the image.
There is also a separation velocity relative to the real target when the other targets follow
the set trajectories, causing each target to move towards the surroundings in the image,
and it can be seen that there is indeed variability in the velocity of the individual targets.
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5.3. Performance Comparison with the Single Feature

Since each dimensional feature data can be used as recognition, taking the case of
the observation time length of 15 s as an example, the recognition accuracies of the single-
dimensional feature under different noise levels are first calculated. In addition, to compare
the recognition effect under fusing different dimensions, the accuracies of the proposed
algorithm under fusing four features (temperature, emissivity–area product, period, and
velocity) and fusing all features are also calculated, as shown in Table 3.

Table 3. The recognition accuracies of the proposed algorithm under fusing different features.

The Category of Feature
SNR

5 10 15 20 25 30

Long-wave radiation intensity 67.32% 85.14% 89.61% 92.26% 95.67% 93.89%
Medium–long-wave radiation intensity 78.89% 88.33% 93.88% 95.56% 96.67% 97.22%

Temperature 62.22% 73.33% 70.00% 70.00% 71.11% 70.56%
Emissivity–area product 66.11% 70.56% 66.67% 70.00% 66.67% 66.11%

Period 54.11% 61.11% 63.33% 62.78% 65.00% 65.56%
Velocity 30.00% 30.00% 30.00% 36.67% 40.00% 33.33%

Four features 83.89% 92.22% 93.33% 94.11% 93.33% 95.00%
All features 93.33% 97.22% 97.22% 98.33% 98.89% 97.78%

It can be seen that for single-dimensional feature recognition, the recognition accu-
racies of long-wave radiation intensity and medium–long-wave radiation intensity are
higher than that of other four dimensional features under any noise level—especially when
the SNR > 10—the recognition accuracies of radiation intensity can be greater than 85%.
For the three categories of features—namely, temperature, emissivity–area product, and
period—the effect of recognition has a smaller difference. What surprises us is that the
recognition accuracy is poor for the feature of velocity. We guess that the reason is that the
difference of velocity of space flight targets is small, which leads to a reduced performance
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of the recognition algorithm during this observation process. By comparing the results in
the table, it is found that the recognition effect of fusing six-dimensional features is higher
than that of fusing four-dimensional features. For example, for SNR = 5, the recognition
accuracy of the proposed algorithm for the fusion of six-dimensional features is 93.33%,
which is higher than 83.89%. For the contribution of a single feature to the recognition
accuracy, the most important is the radiation intensity, the contribution of velocity is the
lowest, and the difference between the contribution of the remaining features is small.
Although the recognition accuracy of fusing features is only slightly better than that relying
only on radiation intensity at SNR ≥ 15, the method of fusing features has a clear advan-
tage at low SNR. In addition, although the recognition accuracy for any of the features
(temperature, emissivity–area product, period, velocity) is lower, the accuracy after fusing
is equally better than that of relying on the radiation intensity at low SNR, which shows
that it is necessary to perform decision-level recognition with multidimensional feature
fusion for space target recognition.

5.4. Comparison with Other Baseline Methods

We evaluate the performance of the proposed method with five classical baseline
algorithms: the traditional DST [31], the Murphy method [34], the Gao method [56], the
Zhang method [24], and the Zhou method [29]. The Murphy method mainly averages the
BPAs generated by multiple features for target discrimination and fuses the average BPAs
several times to obtain the final recognition result. The Gao method introduces a new cross-
entropy-based similarity criterion to modify the BPAs of multiple features and fuse the
new values for decision recognition. The Zhang and Zhou methods fuse multidimensional
features based on fuzzy sets and Bayesian theory, respectively, which are different from the
DS evidence theory in this paper and therefore have wider reference value as comparative
methods. It should be noted that the initial BPAs of the first three baseline algorithms are
also obtained according to the ensemble classifier of this paper. To illustrate the recognition
process of the proposed method, a test sample is used as an example, and Table 4 shows
the initial BPA values obtained after processing by the ensemble classifier.

Table 4. The initial BPA values obtained when SNR is 5.

Feature {Master Cabin} {Real Target} {Light Decoy 1} {Light Decoy 2} {Heavy Decoy}

Long-wave radiation intensity 0.1515 0.3198 0.1902 0.1657 0.1728
Medium–long-wave radiation

intensity 0.1522 0.3502 0.1770 0.1670 0.1536

Temperature 2.6642 ∗ 10−5 0.0273 0.0002 0.0136 0.9588
Emissivity–area product 0.0015 0.1768 0.0023 0.0796 0.7399

Period 0.0035 0.9801 0.0033 0.0026 0.0105
Velocity 0.0090 0.2558 0.2733 0.2491 0.2128

During the whole observation process, assuming that the number of categories of the
target is 5, the threshold value of the contraction-expansion function is 0.2. According to the
Formula (41), the modified BPA is calculated, then the BPA is weighted by the accuracies of
the classifiers to obtain the final BPA value. Finally, the final fusion results of this sample
are obtained according to the DS fusion and decision rules, as shown in Table 5, while
the fusion results in the comparison algorithms are also listed. In this case, traditional
Dempster’s rule, and Murphy’s method all have made wrong decisions. Gao’s method has
a certain degree of improvement in the decision and makes correct judgments. The result of
the proposed method is more discriminable and resolvable, which is more conducive to the
control center making a reasonable judgment on the category of the target. Furthermore,
both Zhang and Zhou’s methods made correct judgments, but their fusion results were still
lower than the proposed method.
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Table 5. The fusion results of different methods.

Method {Master Cabin} {Real Target} {Light Decoy 1} {Light Decoy 2} {Heavy Decoy} {Θ} Result

Dempster 0.0011 0.2435 0.0129 0.0318 0.6086 0.1021 Heavy
decoy

Murphy 0.0241 0.3681 0.0426 0.0473 0.4842 0.0337 Heavy
decoy

Gao 0.0400 0.3581 0.1158 0.1108 0.2915 0.0838 Real target
Zhang 0.0350 0.6195 0.1173 0.1858 0.0349 0.0075 Real target
Zhou 0.0001 0.5407 0.0020 0.1152 0.3420 0 Real target

Proposed 0.0096 0.6562 0.0153 0.0142 0.2773 0.0273 Real target

We compare the recognition performance of these algorithms under different observa-
tion times (L = 5 s, 10 s, 15 s) and different noise levels (SNR = 5, 10, 15, 20, 25, 30). The
results are as shown in Figure 7.
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These results illustrate that when the observation time is fixed, with the improvement
of the SNR, the recognition accuracy of each algorithm is improved to varying degrees,
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and then tends to be smooth. Once entering the smooth stage, increasing the SNR has no
obvious effect on the improvement of the final recognition effect. This provides a certain
index reference for designing the infrared detection system of the space target. Additionally,
although the signal of the space target is pre-processed, it is undeniable that the residual
noise still distorts the extracted features, which leads to a negative impact on the accuracy
of space target recognition. In addition, the proposed algorithm in this paper outperforms
the other five benchmark algorithms in most cases. For example, when the observation
time is 15 s and the SNR is 5, the recognition accuracy of the proposed algorithm is 93.33%,
which is better than 81.11% of the traditional DST algorithm. In summary, compared to the
other algorithms, the proposed algorithm performs a higher recognition effect and certain
robustness, especially in the case of low SNR.

The process of observing a space target by an infrared detector is dynamic and the
size of the collected multi-frame images increases with time, which makes it necessary
to analyze the effect of the images on the recognition accuracy at different observation
times. Comparing the three figures, it can be seen that the recognition accuracy of the
six algorithms improves with the increase in the observation time, and the proposed
method outperforms the others. This is because the larger the observation time, the more
information about the target can be obtained, which is useful for improving the recognition
performance. It should be noted that when the length of observation time (L = 5 s) is smaller
than the microrotation period of some targets, it will cause the complete information of one
cycle of the target cannot be collected, which will lead to a larger recognition error rate. In
this case, the length of observation time needs to be increased to ensure that the detector
can acquire complete information about the target.

5.5. Comparison of ROC Curves

To assess the recognition performance of the proposed method more comprehensively,
Figure 8 illustrates the receiver operating characteristic (ROC) curves and the area under
the ROC curve (AUC) for the above six methods at an observation time of 15 s and an
SNR of 5. The conventional ROC represents how the binary classifier performance varies
with the classifier threshold and is created by plotting the true positive rate (TPR) and false
positive rate (FPR) at different classifier thresholds.
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Since the space target recognition is a multi-classification scenario, the micro-ROC is
used to evaluate the performance of the algorithm in the paper. AUC is defined as the area
under the micro-ROC curve, which means the probability that when a positive sample and
a negative sample are randomly selected, the confidence of the positive sample calculated
based on the classifier is greater than the confidence of the negative sample. Generally, the
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AUC value is in the range of 0.5–1, and the larger the AUC value corresponding to the
classifier, the more effective the classifier is. Generally, at 0.5–1, the larger the AUC value,
the better the performance of the recognition model. According to the results, it can be
found that the AUC of the proposed algorithm is the highest, which proves the proposed
algorithm shows prominent performance.

5.6. Comparison of Different Frequencies

Since the signals sampled by the infrared detector are discrete and the infrared radia-
tion intensity of the target is periodic, the frequency of the detector will affect the sampled
radiation intensity waveform. Figure 9 illustrates the recognition accuracy of space targets
at different sampling frequencies when the SNR is 10. We can see that the performance
of recognition is the lowest when the frequency is 1 Hz, and the second-lowest when the
frequency is 2 Hz. This is because the micromotion velocity of some targets is fast, and
the signal obtained from the detector loses important local information about the target
according to Nyquist’s sampling law, which is different from the real radiation intensity of
the target. In addition, it leads to a larger error in period extraction based on the sampled
signal. These factors cause the poor accuracy of target recognition at low sampling frequen-
cies. As the sampling frequency increases, the amount of information in the sampled signal
increases, and the recognition accuracy increases gradually. When the sampled frequency
of the detector is 10 Hz, the accuracy of target recognition is relatively highest at the same
noise level. From the comparison of methods, at low frequencies (1 Hz and 2 Hz), the
proposed method has the best accuracy, followed by the Zhou method; at high frequencies
(5 Hz and 10 Hz), the proposed method still has the best accuracy, followed by the Zhang
method. This verifies the effectiveness of the proposed method at different frequencies.
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6. Conclusions

For the problem of the space infrared dim target recognition, a novel intelligent method
that combines an ensemble classifier and improved Dempster–Shafer evidence theory
for multi-feature decision-level fusion is proposed. The method innovatively combines
ROCKET, LSTM, and SVM classifiers with information fusion theory to take full advantage
of the different classifiers in information processing to generate the BPA required for the
fusion decision stage. Then, a contraction-expansion function is defined to attenuate the
contradiction between the BPAs of features, and the value of BPA is scaled by comparing it
to the threshold value, which is determined according to the type and number of targets.
Next, a discount operation is performed on the values according to the classifier accuracy,
to improve the rationality among the features. Then the final discriminations of the target
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categories are made according to the decision rules. The experimental results show that the
recognition accuracy of the method is significantly better than that with a single feature,
especially when the SNR of the data is low (when the observation duration is 15 s, the
accuracy of the method can still achieve 90%). This gives full play to the advantages of
data fusion in improving recognition performance and significantly reflects the effect of
feature fusion. In the case of different observation times, the method is still able to identify
the target categories more accurately than other existing fusion decision methods, and
the recognition accuracy can reach 87%, which is higher than 71.67%, 72.22%, and 84.44%
for an observation time of 5 s and an SNR of 5. In addition, the proposed method can be
applied to the fields of space situational awareness and multi-source data fusion to provide
the corresponding technical support for the decision-making process.

In addition to the field of spatial infrared technology, this method can also be extended
to security monitoring, industrial automation, medical diagnosis, and other fields. However,
when applying this method to other domains, certain challenges and limitations may arise.
Variations in target characteristics and background environments across different fields
may necessitate adjustments and optimizations to the method. Additionally, practical
considerations such as real-time performance, robustness, and computational efficiency
should be considered. Enhancing the algorithm’s usability and applicability will be a focal
point of our future research endeavors.

In future research work, we will further optimize our algorithm using more scene
datasets, fully exploit the support of the velocity feature for recognition, and continue to
study the correction rules of the BPA function to generate more appropriate weight data.
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