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Abstract: Urban renewal planning and development are vital for enhancing the living quality of city
residents. However, such improvement activities are often expensive, time-consuming, and in need
of standardization. The convergence of remote sensing technologies, social big data, and artificial
intelligence solutions has created unprecedented opportunities for comprehensive digital planning
and analysis in urban renewal development and management. However, fast interdisciplinary
development imposes some challenges because the data collected and the solutions built are defined
piece by piece and require further fusion and integration of knowledge, evaluation standards,
systematic analyses, and new methodologies. To address these challenges, we propose a municipal
and urban renewal development index (MUDI) system with data modeling and mathematical analysis
models. The MUDI system is applied and studied in three circumstances: (1) at regional level,
337 cities are selected in China to demonstrate the MUDI system’s comparable analysis capabilities
on a large scale across cities; (2) at city level, 285 residential communities are selected in Xiamen to
demonstrate the use of remote sensing data as key MUDIs for a temporal urban land change analysis;
and (3) at the level of residential neighborhoods’ urban renewal practices, Xiamen’s Yingping District
is selected to demonstrate the MUDI system’s project management capabilities. We find that the
MUDI system is highly effective in municipal and urban data model building through the abstraction
and summation of grid-based satellite and social big data. Secondly, the MUDI system enables
comprehension of the high dimensionality and complexity of multisource datasets for municipal
and urban renewal development. Thirdly, the system is applied to enable the use of the newly
developed UMAP algorithm, a model based on Riemannian geometry and algebraic topology, and
the carrying out of a principal component analysis for the key dimensions and an index correlation
analysis. Fourthly, various artificial intelligence-driven algorithms can be developed for urban
renewal analyses based on the MUDIs. The MUDI system is a new and effective method for urban
renewal planning and management that can be flexibly extended and applied to various cities and
urban districts.
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1. Introduction

Over the past half-century, global urbanization has profoundly changed the built
environment [1]. Rapid growth and development have led to increased complexity in
the mix of environments and ecology [2]. Urban populations grow at a fast pace, and,
by 2050, the global population residing in cities is projected to reach 70% of the total
population, a figure currently standing at approximately 55% [3,4]. Urban areas, some
with aging buildings, consume about 78% of the global energy and account for 60% of
greenhouse gas emissions [5]. In China, urbanization has gained an unprecedented speed,
with more than half of the world’s building materials being used in construction [6].
Given pressing challenges such as the heat island threat [7], environmental pollution,
and renewable energy usage [8], urban renewal and sustainable development [9] have
become increasingly important. For urban planning and management, interdisciplinary
urban research converges rapidly, requiring further in-depth studies. These converging
areas include remote sensing and satellite technologies, planning and development from
municipal organizations and urban communities, and, more recently, social big data and
artificial intelligence solutions [10], which we will review next.

With the advancement of remote sensing technologies and improved AI algorithms,
land use and land change have been studied extensively over the last half century [11], and
satellite applications with multiple spatial resolutions are available, ranging from coarse
resolutions to finer resolutions, from classical mapping classifiers to advanced convolutional
neural networks (CNNs) algorithms [12,13]. For example, resolutions vary from the 1 km
International Geosphere Biosphere Programme data and information system cover (IGBP-
DISCover) map [14] to the 300 m European Space Agency (ESA) Climate Change Initiative
(CCI) land cover maps from 1992 to 2015 [15] (UCL-Geomatics, 2017) and the 30 m global
land cover data product [16]. As for the AI algorithms, in addition to random forest
(RF) [17], cart [18], etc., machine learning algorithms such as the support vector machine
(SVM) [19] and CNNs are explored for urban studies. These advancements have greatly
facilitated various applications, including image segmentation, object recognition, and land
use classification.

Municipal planners have an increasing need for urban renewal planning and manage-
ment [20,21]. In a sense, how city planners and stakeholders see and plan the city will shape
the city’s future. As cities are expressed by their defined characters, their heritage includes
almost anything inherited from the past and destined for the future, fabricated through the
combinations of history interpretation, memory consolidation, and collection of relics [20].
Therefore, municipal planning reflecting accurately such complexities is essential for ur-
ban renewal [21]. These characteristics of a city can be defined as indicators or indexes.
Examples include the following: (1) the International Green Example New Town Stan-
dard 3.0 issued by the Global Habitat Environment Forum in 2016 [22]; (2) the “European
Green City” indicators launched by the European Environment Commission [23]; (3) the
annual report of New York [24]; and (4) the annual planning report (AMR) of London [25].
These studies have laid a good foundation for urban renewal development from a social
science perspective. The above-mentioned urban renewal practices are commonly applied
in urban neighborhood areas with planned budgets. For this reason, in this paper, urban
renewal studies are assumed to be destined for residential neighborhood urban renewal or
regeneration efforts.

Social big data have become increasingly important for urban planning and man-
agement due to the need of modeling and analyzing of different data types, including
social media and internet content [26]. Research teams worldwide have initiated studies by
combining urban design and policy making with digital technologies. In Israel, a research
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team has set up a multiparametric framework to analyze urban regeneration quality and
present different scenarios of neighborhood renewal alternatives [27]. A process-driven
framework for Mediterranean historic city centers has been proposed [28]. In Budapest, dig-
ital planning is evaluated for the urban regeneration of a fragmented heterogeneous urban
fabric environment [29]. Smart Cities Mission was launched in 2015 for 100 cities in India, a
project in which ICT and digital technologies are particularly emphasized [30]. In Dresden,
Germany, a population-weighted accessibility digital index for a 50 m grid has been used
for four urban area regeneration studies [31]. Furthermore, digital placemaking for tourist
attractions has been explored in several cities such as Riga, Kaunas, and Taipei [32]. In
Beijing, urban regeneration plans have presented methodologies for conserving a thousand
years of history and focusing on crucial urban areas’ regeneration [33]. More recently, the
relationships between public service indicators and economic development for different
regions in China have been studied [34].

Many scholars have proposed different indicator systems and measuring methods.
Lucy et al. have classified public services into four categories to establish an indicator
system [35]: routine services, protective services, developmental services, and social mini-
mum services. Liao has considered the level of investment performance and constructed an
indicator system consisting of five primary indicators and sixteen secondary indicators [36].
Ardeshiri et al. have paid attention to the impact of eight different indicators on residents’
lives and social development, including parks, local shopping centers, public transit, police
stations, schools, medical centers, sports courts, and post offices [37]. A local economic
system can be measured from different perspectives, such as the per capita GDP [38], the
fiscal capacity of local governments [39], and the living standards of residents [40]. The
relative levels of income and consumption are typical indicators of local economic system
characteristics [41]. Existing research methods to determine the weight coefficient of the
above-mentioned indicator systems include the analytic hierarchy process (AHP) [42], the
expert evaluation method [43], data envelopment analysis (DEA) [44], principal component
analysis (PCA) [45], etc.

As discussed above, the use of digital planning and management for urban renewal
is relatively new and at an early stage of its technology development cycle. The follow-
ing needs of policymakers and stakeholders are not satisfied. First, urban diversity and
social fabrics are complex [46]. Parametric models for urban neighborhoods are rela-
tively small in scale [27,28], and their data sources are limited. Large amounts of data
processing work are needed to set up a high-dimensional digital model and accumulate
historical data. Secondly, parametric models are limited to specific urban neighborhood and
projects [29,47]. A comparable analysis of municipal planning and development is lack-
ing across multiple cities and regions. Thirdly, the digital urban planning framework
quantifies urban development objectives by their defined indicators. Up until now, such
indicators have been relatively simple. The creation and specification of these indicators
are often project-specific without systematically analyzing the indicators chosen and their
correlations [27,32,47]. Comprehensive digital indicators or index systems with high di-
mensionalities are needed. Fourthly, the advancement of remote sensing and satellite
technologies has provided new means for urban planning and management evaluations.
For example, submeter satellite images can be used as data sources for urban renewal
progress evaluations, and previously developed algorithms in remote sensing can be fur-
ther used and enhanced for finer-scale applications. Fifthly, from a data perspective, the
more data sources for the indicators, the better the data model. However, a mathematical
analysis of the relationship among these indicators is needed for answering questions like
the following: Out of hundreds of indicators, which are the most important for an analysis?
What are the correlations between these indexes or indicators? Mathematical models and
algorithms need to be studied and developed. Finally, applying the latest technologies to
solve real-world urban problems within and across cities is greatly needed to add value
for stakeholders.
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In this study, we propose the municipal and urban renewal development index (MUDI)
for municipal and urban development evaluation purposes. An MUDI system is developed
with the following key components: (1) a data model; (2) MUDI specifications, MUDI
dimensionality, and a correlation analysis; and (3) GIS- and AI-driven methodologies and
algorithms. The data model is set up by leveraging the previously established city meta
unit (CMU) modeling methodology [48]. We have applied the MUDI system in three
circumstances for problem solving. First, at a regional level, 337 cities are selected in China
to demonstrate the MUDI system’s comparable analysis capabilities across cities, which are
important for regional planning and development. This analysis is based on mathematical
models and algorithms including uniform manifold approximation and projection (UMAP)
classifications, principal component analysis (PCA) components, and correlation analysis.
Our MUDI analysis provides insightful observations by grouping cities based on the
specific intrinsic characteristics and properties of each city. Secondly, at a city level, we
apply the system to study 285 residential communities in Xiamen to demonstrate the use of
remote sensing data as key MUDIs to monitor land change, taking advantage of historical
data which are often readily available via satellite sensors. Thirdly, at the level of residential
urban renewal practices, Xiamen’s Yingping District’s residential neighborhood is chosen
to demonstrate the MUDI system’s functionalities, which take substantial amounts of time
and development efforts from system setup to project completion. The rest of this paper is
structured as follows: Section 2 introduces the MUDI system. Section 3 describes the study
area and data sources in detail. Section 4 introduces the methodology and implementation
of the system in detail. Section 5 illustrates the experimental results and analysis. Section 6
provides a discussion of the results and future works. Section 7 presents the conclusions of
this study.

2. Municipal and Urban Renewal Development Index (MUDI) System

The MUDI system is an index system that we propose to systematically define, develop,
analyze, and visualize the MUDIs for urban renewal evaluations. The MUDI system serves
three primary purposes: (1) set up an urban area data model as the foundation for digital
planning and management; (2) build up indexes or indicators to provide insightful and
intrinsic evaluations for city and urban development efforts; and (3) apply various AI-
driven technologies to urban studies. The MUDI system functional diagram is shown in
Figure 1, which will be described in detail in this section.

2.1. MUDI Data Model Building

The data model is based on the city meta unit (CMU) data model established previously
in Xiamen [48]. The data model functionalities include the following: (1) scalable and
traceable multi-dimensional meta-model for collecting, storing, describing, and grouping
multisource data; (2) ability to process hierarchically grouped information and generate
features and indexes based on the data collected.

2.2. MUDI Design and Specification

The MUDI system is designed to comprehensively quantify and evaluate the status of
urban development and construction and formulate targeted solution measures. MUDI
is proposed with the following principles: (1) scientificity, i.e., the need to construct the
index system with data reflecting physical reality objectively; (2) operability, meaning
that the indexes or indicators should be collectible and quantifiable; (3) all-inclusivity,
recognizing that the city is an extensive complex system involving many aspects, such as
environment and socioeconomic status. All dimensions of urban development should be
fully considered to ensure the comprehensiveness and accuracy of urban examinations
with layers of information.

The MUDIs include the determination of different index dimensions, data collection,
data analysis, etc. Figure 2 is an example of the MUDIs we have specified for 337 cities
in China.



Remote Sens. 2024, 16, 456 5 of 25

Figure 1. The MUDI system’s functional diagram for data model building, MUDI setup, and AI-
driven technologies.

Figure 2. 2022 MUDI for city studies.
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MUDI comprises a broad range of city data and multiple high dimensions. It is
essential to accumulate satellite and social big data across different regions on a finer scale.
These data are stored in the MUDI data model.

2.3. MUDI System Dimensionality and Correlation Study

With the high dimensionality of the MUDI system, it is important to mathematically
analyze the classifications, correlations, and main components of the MUDIs. In this study,
we have attempted to apply UMAP, PCA, and K-means independently and jointly.

UMAP is a notable dimensionality reduction and presentation method used more
recently [49] that originated from the theoretical framework based on Riemannian geometry
and algebraic topology [50]. Assuming that the available data samples are uniformly
distributed in the topological space (manifold), it is possible to approximate these limited
data samples and map them to the low dimensional space (projection). UMAP can be
divided into two main steps: (1) learn the various structure in a high-dimensional space;
(2) map the approximate manifold in the high-dimensional space to a low-dimensional
space. The UMAP algorithm aims to show the clusters of samples in a high-dimensional
space and the relationship between sample points on low-dimensional images.

PCA is a commonly used dimension reduction method [51]. Principal component anal-
ysis transforms feature variables into main components resulting in dimension reduction
with minimum information loss.

We propose a new method to combine PCA and UMAP to analyze index correlations
from high dimensionalities to low-ranking dimension representations. First, PCA is applied
for dimension reductions. Then, the feature variables reduced using PCA are taken as
the input for UMAP, which can be further reduced to a lower three-dimensional space.
The similarity score is calculated using K-means to visualize proximity between sample
points in the low-dimensional space so that the dimension reduction results of the PCA
can be more intuitively understood. Specifically, the following methods are applied:
(a) UMAP classification into sub-groups; (b) PCA dimension reduction analysis for each
sub-group; and (c) using UMAP again to classify each sub-group based on key components.
A mathematical flow chart is shown in Figure 3 below.

Figure 3. Dimension reduction methodology and analysis diagrams: (a) UMAP; (b) PCA; and
(c) PCA–UMAP–K-means.

2.4. AI-Driven Temporal Land Change Study by Applying MUDIs to Evaluate Urban
Renewal Progress

There are many MUDIs for cities or urban communities, sometimes exceeding hun-
dreds of indexes. In this study, we select green ecology subindexes to study land change
and explore AI-driven technologies for such purposes. We use the semantic segmenta-
tion method for land classification and land change analysis of selected residential ar-
eas [52]. DeeplabV3+ [53] is a semantic segmentation AI model, as shown in Figure 4. The
DeeplabV3+ model introduces many empty convolutions in the Encoder. It is realized using
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the spatial pyramid pool module and the encoder–decoder structure in a two-pronged
manner. The attention mechanism [54] is applied to help improve the performance of
the DeeplabV3+ model. The attention mechanism weighs different parts of the model for
different geographical elements in residential communities. The DeeplabV3+ pretrained
model is further trained in this study as described in detail in Section 4.2.5.

Figure 4. DeeplabV3+ based AI land change functional diagram.

3. MUDI System Setup: Study Area and Datasets
3.1. MUDI Study Area

First, we selected 337 cities in China for our MUDI setup and analysis, which included
333 prefecture-level administrative regions and four municipalities directly under the
central government. For this study, 68 cities were further selected from 337 cities for a
detailed analysis, as shown in Figure 5 below.

Secondly, we set up MUDI for the urban renewal planning and analysis of Xiamen’s
Yingping District. Xiamen is a provincial city along the southeast coast of China. The
Yingping Road–Kaiyuan Road historic district is located on the southwest coast of Xiamen
Island, across the sea from Gulangyu Island. As the birthplace of Xiamen’s central districts,
with historic block patterns, spatial textures, and continuous arcades combing Chinese and
Western-style architecture, this district represents the essence of Xiamen as the birthplace
of modern Minnan culture and the characteristics of urban development and construction
in modern China. Yingping District comprises three communities, including Yingping,
Datong, and Lujiang, with a population above 26,000. As time passes, the area with aging
infrastructure needs urban renewal improvements. In this context, the area’s traditional
style and historical memory are at risk of deteriorating. Therefore, it is vital to engage
in urban renewal planning and development efforts and revive historical heritage and
memories in such districts.
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Figure 5. A total of 68 cities selected from 337 cities in China.

3.2. Datasets

We used multisource datasets, mainly categorized into two groups: (1) high-resolution
satellite data from Gaofen-7; and (2) social data collected from publicly available internet
resources and different companies, such as Tsinghua 2861 DaaS Project, Baidu, and Gaode.
The Tsinghua 2861 DaaS Project aims to digitally represent every square kilometer grid in
China. It includes a data processing engine with several layers, the foundation of which is
an internet-based data collection system.

Regarding the satellite data, Gaofen-7 satellite images were collected for the identifica-
tion and comparative analysis of green space, buildings, parking space, and other elements
in residential areas in Xiamen, as shown in Figure 6b. The Gaofen-7 satellite provides
high-resolution and refined images, with a resolution of 0.65 m after true-color image
fusion. Gaofen-7 also includes high-resolution images in the red, green, blue, infrared,
and near-infrared bands. The three-dimensional remote sensing information obtained by
Gaofen-7 can extract DEM/DSM and variations in information from different time periods.
Therefore, the images collected by Gaofen-7 that were used in this study can provide
more on-site information when restoring urban details. Meanwhile, using the multiband
images of Gaofen-7, remote sensing indexes such as NDVI, NDBI, and NDWI can be calcu-
lated. By using these indexes, we could obtain the land vegetation characteristics, building
distribution, and water body distribution of Xiamen.

In addition to satellite images, different types of social data of Xiamen, especially from
Yingping District, were collected. The data sources included POIs, 2861 DaaS index, street
boundary, road network, population density, green space, 3D building model, detailed
building information, oblique aerial images, BIM sample data for a specific building, etc.
The POI data collected from 2019 to 2021 from Shuijingzhu datasets contained information
including name, location coordinates, urban function attributes, etc. A total of 437,085 POIs
were retained in Xiamen after data cleaning and filtering, as shown in Figure 6d. We
checked the geospatial projection and mapped the POIs into four groups.
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Figure 6. (a) Xiamen location; (b) 285 residential community areas; (c) Yingping District; and
(d) POI data.

4. MUDI System Setup and Study for 337 Cities and Xiamen’s Yingping District and
285 Residential Communities

We set up the MUDI data model for processing multisource datasets into abstract
feature layers for 337 cities and Xiamen’s Yingping District. Secondly, we developed MUDIs
for both the cities and Yingping District. A UMAP analysis was applied to classify the
cities. A dimension reduction analysis on the indexes was performed to extract their key
components and analyze the correlation of different cities. Thirdly, we studied land classifi-
cation and temporal land changes using semantic segmentation algorithms, identifying
residential areas’ land changes. The implementation of the proposed method is shown in
Figure 7.

4.1. MUDI Setup

MUDIs were set up for 337 cities in China, which consisted of eight categories and a
total of 102 index dimensions. For Yingping District’s urban renewal project, the indexes
comprised eight categories and a total of 55 index dimensions. The MUDIs will be described
in detail in this section.

4.1.1. MUDIs for 337 Cities

The MUDIs for 337 cities are specified in Figure 8 below.
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Figure 7. Implementation process for the MUDI analyses of 337 cities and Xiamen’s Yingping District
and the MUDI Green Ecology Index analysis of Xiamen’s 285 residential areas.

Figure 8. (a) Ontology description of MUDI; and (b) zoomed-in area within the red frame.

Taking the urban vitality category as an example, the index definition is shown in
Table 1 below. The index data were originally produced based on the open social data
from the Internet, following rigorous data processing based on the Tsinghua 2861 DaaS
Project. The latter gathers remote sensing and crowdsourced internet data to compute
monthly statistics for 55,000 categories for each of the 9.8 million grids in China. Monthly,
over 3000 micro indicators are generated for each grid based on these statistics. Utilizing
data algorithms and validation samples and the micro indicators of each grid of a city, we
calculated 102 index values for each city in this study.
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Table 1. MUDI urban vitality index for 337 cities.

Category Level I Index Level II Index

Urban
Vitality

Economic vitality

Foreign direct investment
R&D expenditure ratio to GDP

Number of top 500 private-owned enterprises
Number of unicorn enterprises

Number of high-tech enterprises

Population vitality

Working age population ratio
Working age average education level

Number of R&D personnel per 10,000 people
Full-time R&D equivalent of scientific researchers

Labor force demand ratio for higher education personnel

Innovation vitality

Patent applications
PCT patent applications

Certified ICT patents
Contract amount of technology transactions

Urban land output coefficient
Fixed assets investment output for GDP

Industrial vitality

Value increase in high-tech industry
Ration of value increase in high-tech industry

Exports ratio of high-tech product
Ratio of value increase in cultural and creative industries to GDP

Market
vitality

Number of universities and research institutions
Business environment index

Market economy index
Number of national free-trade zones
Number of market economy entities

Number of mobile phone users
Number of Internet users

4.1.2. Yingping District’s Data Model and MUDI Setup

For the data model setup, 34 different data layers of 2062 objects were obtained,
covering the three communities in Yingping District. The MUDIs for Yingping District
consist of eight categories. The MUDIs of 337 cities in China are used as the base model, and
additional specific indexes are added for Yingping District with systematic investigations
and verifications. The MUDIs for Yingping District are shown in Table 2 below. Similarly,
after data collection and processing, we used data algorithms to calculate the corresponding
value for each index.

4.1.3. MUDI Green Ecology Index-Based Land Change Study for 285 Residential
Communities

GF-7 satellite images were used for the land change analysis of residential areas. The
ground control point (GCP), the orthophoto correction reference image, and the digital
elevation model (DEM) were used for the orthophoto correction of GF-7 satellite images
containing rational polynomial coefficients (RPC). By leveraging image fusion techniques,
a low-resolution multiband satellite image was fused with a high-resolution panchromatic
image to generate high-resolution multi-spectral data.

The labeling of the images of residential areas in different periods was processed
manually. The year 2002 was selected as the benchmark year initiating the urban renewal
development of the residential area, and 2021 was selected as the evaluation year for our
temporal progress analysis. In this study, the following results were obtained: (1) the
shapefile of the residential areas corresponding to the name of the community, the year
of completion, the address, the current transformation status, etc.; (2) the green space
boundary shapefile of the residential area, including the green space boundary of each
residential area; (3) the boundary shapefile of the parking space in the residential area,
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including the boundary of the parking space (or open space) in each residential area; and
(4) the building boundary shapefile of the residential area including the boundary of a
single building in each residential area. On-site field surveys and verifications were carried
out for 19 communities. Training samples were produced for semantic segmentations of
the land change studies.

Table 2. MUDIs for Yingping District.

Categories Level I Index Level II Index

Ecological and
Living

Environment

Ecological environment

Coverage rate of green space per neighborhood area
Coverage rate of building space per neighborhood area

Proportion of roads length with poor lighting
Proportion of roadway with wet ground

Proportion of roadways with environmental noise conforming to standard

Habitat sanitation
Number and coverage of garbage collection stations

Number and coverage of sanitation facilities

Health and
Comfort

Senior and elderly facilities

Number and coverage of convenient community commercial
service facilities

Number and coverage of elderly community service stations
Proportion of the number of beds in elderly community service stations to

the number of elderly people

Health care
Number and coverage of community medical service stations

Number of beds in community medical service station
Per capita area of community sports venues

Education facilities

Coverage of inclusive kindergartens
Number of kindergarten student permissions per thousand

Primary school coverage
Number of primary school student permissions per thousand

Safety and
Resilience

Facility
security

Intactness rate of important pipeline network
Density of waterlogging points in the neighborhood area

Area of emergency shelter per capita
Coverage of fire service stations

Annual number of safety accidents in the neighborhood

Residential safety
Number of dilapidated houses in the neighborhood

Proportion of the area of dilapidated buildings to the total area of buildings

Transportation
Convenience

Transportation convenient

Public transport station coverage
Proportion of continuous pedestrian road facilities to the total number

of roads
Proportion of cut-off roads to total roads

Parking
facilities

Parking area per capita
Proportion of residential parking space to total number of households in

the neighborhood
Proportion of commercial and public parking spaces

Cultural
Characteristics

Cultural characteristics Cultural presenting building area per 10,000 people

Historical buildings protection
Listing rate of historic buildings in the neighborhood

Vacancy rate of historic buildings in the neighborhood
Protection and repair rate of historic buildings in the neighborhood

Street style

Proportion of streets with distinctive features in the neighborhood
Distinctive cultural area that is in poor-quality conditions

Area with well-preserved historical features
The largest single area of the neighborhood with well-preserved

historical features
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Table 2. Cont.

Categories Level I Index Level II Index

Tidiness
Street

tidiness

Street pole and skyline regularity
Tidiness ratio of buildings

Orderliness of street vehicle parking

Diversity and
Inclusivity

Group inclusivity

Rate of barrier-free roads
Proportion of people living on subsistence allowances in the neighborhood

Proportion of migrant workers in the neighborhood
Elderly population ratio in the neighborhood

Proportion of the per capita housing area of public housing in the
neighborhood is lower than the national standard

Housing guarantee Proportion of guaranteed housing in the neighborhood

Vitality and
Innovation

Existing commercial and
industrial status Main store types in the neighborhood

Emerging commercial and
industrial

development

Proportion of special-characteristics shops in key commercial streets to
total shops

Proportion of creative and innovative shops in key streets
Proportion of mobile street stalls in the neighborhood

Store customer flow
High-quality brand ratio

Number of business types
Shopping environment evaluation

4.2. MUDI System Methodology and Analysis

We used the UMAP method described in Section 2.3 to group the cities. Second, the
dimension reduction algorithms were applied to analyze two city groups classified using
the UMAP method. Third, the MUDIs for Yingping District were used to evaluate its
urban renewal progress. Finally, we used the semantic segmentation algorithm described
in Section 2.3 to identify the MUDI Green Ecology Index for land changes in 285 residential
areas in Xiamen.

4.2.1. UMAP Classification and Correlation Study for 337 Cities

There are 337 cities in China, with 102 indexes for each city. We applied the UMAP
algorithm to the data to classify 337 cities into different groups. The mathematical flowchart
is shown in Figure 9 below, and the specific steps are as follows:

1. The original data were processed with missing values and standardization.
2. The UMAP algorithm was applied to the data, mapping high-dimension data to a 2D

space and classifying the data.
3. We selected 34 group 1 cities and 34 group 2 cities based on the results. The data of

the selected cities were further analyzed by means of a dimension reduction and main
components study.

Figure 9. UMAP study of the MUDIs for 337 cities in China.

4.2.2. PCA Dimension Reduction and Main Components Study for Group 1 and 2 Cities

Two city groups were selected based on the results produced by the UMAP analysis.
Then, we used the PCA dimension reduction algorithm to analyze the data. The specific
steps were as follows:

4. The original data were processed with missing values and standardization.
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5. The PCA algorithm was applied to the data, determining the number of principal
components according to whether the eigenvalue was greater than 1.

6. We calculated the index weights based on the principal components’ load matrixes,
eigenvalues, and variances. Then, we rank the indexes from high to low to compare
and analyze the importance of the MUDIs of the group 1 cities and group 2 cities.

4.2.3. PCA–UMAP Analysis for Group 1 and 2 Cities

After the PCA dimension reduction, we applied UMAP again to further map the main
components into a 3D space. Based on the UMAP output results, we further classified the
city groups into finer categories using the K-means clustering method.

4.2.4. MUDI Analysis for Yingping District’s Urban Renewal Development

First, we collected data based on the MUDIs for Yingping District as described in
Table 2. Two types of data were collected, including data uploaded by users and data
captured through social big data. Secondly, based on the collected data from Yingping
District, the calculation of MUDIs was completed. Thirdly, for the MUDIs created, a GIS-
based analysis was applied, which provided quantitative guidance for subsequent urban
renewal efforts.

4.2.5. MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential
Communities in Xiamen

First, the image resolution was set to 0.26 m, and the label classification was set
to a pixel level, including MUDI Green Ecology subindexes, green space, building, and
“parking and others”. Second, to facilitate the AI algorithm’s training, the dataset was
divided into 512 × 512 sub-images, with 3686 sub-images in total, and the ratio of the
training set, verification set, and test set was 6:2:2. Third, the improved DeeplabV3+
semantic segmentation network was trained using the dataset to identify the green space,
building, and “parking and others” elements.

5. Results and Analysis
5.1. MUDI Experiments and Analysis

As a result of the MUDI UMAP analysis, 337 cities in China were classified into two
categories. A total of 34 cities were selected from each category.

5.1.1. MUDI Classification and Correlation Analysis for 337 Cities

The UMAP grouping analysis results are shown in Figure 10 below.
Two city groups were selected, as shown in Tables 3 and 4. The group 1 cities included

Beijing, Tianjin, Shanghai, Chongqing, Shijiazhuang, Taiyuan, Harbin, etc., which are more
advanced in their administrative capacities, population sizes, built-up areas, economic
levels, and other aspects. The group 2 cities included Tangshan, Jincheng, Hohhot, Baotou,
Daqing, Siping, Dongying, etc., which fall behind the group 1 cities in those aspects
mentioned above.

Table 3. The 34 group 1 cities selected from the UMAP analysis.

Beijing Tianjin Shanghai Chongqing Shijiazhuang Taiyuan Harbin
Changchun Shenyang Dalian Jinan Qingdao Nanjing Hefei
Hangzhou Ningbo Fuzhou Xiamen Zhengzhou Wuhan Changsha
Guangzhou Shenzhen Nanning Kunming Chengdu Xi’an Urumqi
Nanchang Guiyang Wuxi Suzhou Foshan Dongguan
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Table 4. The 34 group 2 cities selected from the UMAP analysis.

Tangshan Jincheng Hohhot Baotou Daqing Siping Dongying
Xuzhou Bozhou Quzhou Jingdezhen Ganzhou Luoyang Huangshi

Changde Haikou Sanya Liuzhou Lincang Anshun Suining
Yan’an Lanzhou Baiyin Yinchuan Wuzhong Karamay Xining
Lhasa Mudanjiang Zhoushan Lijiang Jiuquan Turpan

Figure 10. UMAP analysis of MUDIs for 337 cities in China: (a) 2D mapping result; and (b) two city
groups selected from graph (a).

5.1.2. MUDI Component and Correlation Analysis

The PCA algorithm was used for analyzing the principal components and correlations
of the MUDIs of the two city groups, separately.

Group 1 Cities Analysis

According to the method described in Section 4.2.2, a PCA dimension reduction analy-
sis was conducted for the 34 group 1 cities. For an eigenvalue bigger than 1,
18 principal components were extracted, as shown in Figure 11. Among them, the first
principal component contributed the most to the MUDIs, and its variance reached 24.14%.

Figure 11. MUDI PCA display for group 1 cities: (a) eigenvalue; and (b) cumulative variance.

By calculating the index weights based on the extracted principal components and
ranking them from high to low, the top 15 most essential indexes of the group 1 cities are
obtained, as shown in Figure 12.
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Figure 12. Importance ranking of MUDIs in group 1 cities.

Group 2 Cities Analysis

Similarly, a PCA dimension reduction analysis was conducted for the 34 group
2 cities. Figure 13 shows that, for an eigenvalue bigger than 1, 19 principal components are
extracted. Among them, the first principal component contributed the most to MUDI, and
its variance reached 26.79%.

Figure 13. MUDI PCA display for group 2 cities: (a) eigenvalue; and (b) cumulative variance.

By calculating the index weights based on the extracted principal components and
ranking them from high to low, the top 15 most important indexes of the group 2 cities are
obtained, as shown in Figure 14.



Remote Sens. 2024, 16, 456 17 of 25

Figure 14. Importance ranking of MUDIs in group 2 cities.

5.1.3. MUDI PCA Dimension Reduction and UMAP Finer Classification Analysis

After the PCA dimension reduction (18 dimensions for the group 1 cities and 19 di-
mensions for the group 2 cities), the remaining principal components were further reduced
to a 3D space using the UMAP algorithm. We found that, by using the key component
dimensions out of the 102 total dimensions, the method not only made understanding
complex data structures and samples simpler but also reduced the data processing time
and resources. After applying the UMAP algorithm, the distance similarity between the
sample points in the 3D space was calculated using the K-means clustering algorithm to
obtain four clusters. Thus, the group 1 cities and group 2 cities could be classified into finer
categories. The categories and the associated relationship of sample cities’ visualizations
are shown in Figures 15 and 16 below, in which the classification results in the map of
China are the same as the right 3D scatter chart corresponding to the specified colors.

Figure 15. Dimension reduction and classification analysis of group 1 cities: (a) four city classes; and
(b) presentation in a 3D scatter chart.
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Figure 16. Dimension reduction and classification analysis of group 2 cities: (a) four city classes; and
(b) presentation in a 3D scatter chart.

5.2. MUDIs for Yingping District’s Urban Renewal Development Analysis in Xiamen

The GIS analysis results of Yingping District were as follows: (1) Through GIS analysis
tools, MUDIs based on spatial data were analyzed. (2) MUDI visualization and interactive
analyses were further applied. For example, to calculate the service coverage rate of a
specific facility in a neighborhood, we used the GIS tool to find out the overall service
coverage area of the facility with its service radius as the navigation distance, as shown
in Figure 17a,b. (3) Then, we analyzed a building’s surrounding environment. This
included, for example, analyzing the nearby noise, finding the nearest parcel delivery
station, calculating the distance of the nearest green space, etc., as shown in Figure 17d.
(4) Finally, we used an interactive analysis tool to sum up the number of buildings and
building types within any specified area.

Figure 17. Main MUDIs’ analysis: (a) park and green space coverage; (b) elderly service station
coverage area; (c) proportion of streets with distinctive features in Yingping District; and (d) building
information regarding the surrounding neighborhood.
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5.3. MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential Communities

In Sections 5.1 and 5.2, we described the MUDI analyses for both 337 cities and
Xiamen’s Yingping District. In this section, we further demonstrate that, for each MUDI,
such as the MUDI Green Ecology Index, AI-driven algorithms can be developed effectively
to support city planners and builders. This further exemplifies the capabilities of the MUDI
system in supporting various urban renewal needs. Take the MUDI Green Ecology Index
as an example: a detailed historical land change analysis of 285 residential communities in
Xiamen was performed in our study, which is in general very important for city planners
to study green ecology-related changes in residential neighborhoods.

We used the method described in Section 4.2.5 to complete the training and testing of
the semantic segmentation model. The results are shown in Table 5. The final OA of the
DeeplabV3+ model for the test set was 72.79%, and the Kappa coefficient was 0.5839.

The land use predictions for the 285 residential community areas in Xiamen in 2002
and 2021 are shown in Figure 18. Due to insufficient labeled data and different times and
imaging angles during the image acquisition processes in 2002 and 2021, the identification
results for the buildings, green space, and “parking and others” categories could be fur-
ther improved. Moreover, the image features of the building and “parking and others”
categories on the RGB remote sensing images are relatively similar, so the two categories’
accuracy is less than that for the green space category.

Figure 18. MUDI Green Ecology Index land change mappings of 285 urban communities in Xiamen:
(a) in 2002; (b) in 2021; (c) zoomed-in area within the red frame in graph (a); and (d) zoomed-in area
within the red frame in graph (b).
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Table 5. Evaluation results of the DeeplabV3+ model.

Building Green Space Parking and
Others OA Kappa

72.75% 78.30% 68.50% 72.79% 0.5839

6. Discussion
6.1. MUDI-Based Dimensionality and Correlation Analysis

We applied a UMAP analysis of 337 cities in China and classified the cities into adjacent
groups. We observed that the city groups classified using UMAP had apparent differences
in their administrative levels, population sizes, built-up areas, economic levels, and other
aspects. This is in line with the actual situation. Secondly, the weighted results of the
principal components analysis demonstrated the importance of the significant indexes
selected for group 1 and group 2 cities. For the group 1 cities, important major indexes
included internet rankings of environmental pollution events, green economy, openness,
resource conservation, infrastructure coordination, digital economy index, etc. For the
group 2 cities, important major indexes included the proportion of the added value of the
service industry, tertiary industries, industry inclusivity, green economy, road network
density index, infrastructure coordination, etc.

Among the top 15 most important indexes for the group 1 and group 2 cities, the
co-occurring indexes were green economy, infrastructure coordination, living standard,
the proportion of the added value of the service industry, the proportion of the added
value of the tertiary industry, and the rural road unblocked index. These important indexes
reflected the importance of green ecology, diversity and inclusivity, and living comfort in
these cities. These indexes had a prominent impact in the group 1 and group 2 cities. In
addition, the two types of cities also had specific indexes that stood out. For example, the
openness of the group 1 cities was an important index reflecting city characteristics, and
the road network density index of the group 2 cities was an important index reflecting the
convenience of transportation in these cities.

There were both similarities and differences in the MUDIs emphasized by the group
1 cities and the group 2 cities. This is because the principal components are a linear
combination of various index variables, which fully account for the correlation between
the indexes. It is worth mentioning that we could further analyze the index correlations
to explore the data distribution, which could help us understand the index weight results
of the PCA. There were apparent differences between the group 1 and group 2 cities in
population size, built-up area, economic development level, and other aspects, so the
indexes that played an essential role in the urban development of these cities are different.
This method can guide an in-depth analysis of the MUDI system, the evaluation of urban
development, the discovery of urban problems, etc.

6.2. MUDI-Based City Finer Classification Analysis

After the MUDI dimension reduction and classification analysis, the group 1 and
group 2 cities could be further classified into finer categories. We found more internal
correlations among the selected cities through an in-depth analysis of the characteristics
of cities in the same category. We found that cities with similar administrative levels or
close to each other in geographical space were more likely to be classified into the same
category. For example, among the group 1 cities, as shown in Figure 15, Beijing, Shanghai,
Guangzhou, and Shenzhen belong to the same category. They are all first-tier cities in
China. Changchun, Dalian, Harbin, and Shenyang belong to the same category, located in
Northeast China. Ningbo, Hangzhou, Wuxi, and Suzhou fall into the same category; they
are all located in the Yangtze River Delta in Eastern China. Among the group 2 cities, as
shown in Figure 16, Yinchuan, Lanzhou, and Xining belong to the same category, located
in Northwest China. Lincang, Lhasa, and Lijiang fall into the same category in Southwest
China. This is in line with the actual situation. Cities in the same category are more likely
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to be at a similar stage of development in terms of economic conditions, policies, resource
conditions, etc. There exist intrinsic correlations in the characteristics of MUDIs, which is
worthy of further research.

By combining the PCA and UMAP algorithms, a secondary dimension reduction
analysis of the MUDI data could be realized, simplifying and emphasizing key dimension
reduction factors. At the same time, UMAP could be used to approximate the spatial
distribution relationship of the data after PCA dimension reduction, which would help
display the similar relationship between sample points in a high-dimensional space and
those in a low-dimensional space, providing a more intuitive understanding of the cor-
relation between sample cities and PCA dimension reduction results. The experiment
results verified the thinking that running UMAP once would have presented grouping
characteristics purely from the abstract mathematical space. However, after group 1 and 2
cities had been selected, by breaking down the 102 total dimensions to the key component
dimensions for both groups, UMAP made understanding complex data structures and
samples simpler by allowing us to observe the key indexes visually, reducing the data
processing times and resources required at the same time.

6.3. MUDI-Based Yingping District’s Urban Renewal Analysis

Our quantitative evaluations objectively portrayed the urban renewal status of Ying-
ping District. Based on the MUDI analysis, the following results provide guidance for
urban renewal development: (1) Relevant industrial and service sectors are not in satis-
factory conditions. (2) The safety measures for businesses and services need to improve.
(3) Further research and analyses are needed to promote a business atmosphere with re-
gional characteristics by improving historical buildings and focusing on regional heritage.
(4) The progress of emerging new businesses and industries is satisfactory, with suggestions
to build a business street with Yingping characteristics to attract more tourists and local
citizens. (5) Green space is lacking. With a population of about 13,907 people, the per capita
green space is 0.1532 per square meter, which is below the national standard. (6) There is
only one elderly service station located in Yingping District with insufficient beds, which
is not enough to meet the needs of the area. (7) The sanitary environment should also be
improved for the commercial street.

By applying the MUDI system to urban renewal efforts for Yingping District, we found
that the system can be applied as a comprehensive dynamic monitoring and evaluation
framework for urban renewal planning and development, diagnosing urban development
problems, supporting the realization of effective urban risk warnings, planning guidance,
and development supervision. By integrating social big data, AI, remote sensing, visualiza-
tion technologies, etc., insightful and noteworthy results were achieved through our MUDI
evaluation and analysis, with scientific quantifications. As urban renewal development and
management needs are critically important worldwide, the MUDI system can be further
developed for and applied to such growing needs.

6.4. MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential Communities

The land use prediction results for 285 residential community areas in 2002 and 2021
presented noticeable differences, as shown in Figure 18. During the past 20 years, the
land changes in these residential areas have been large. In general, the areas occupied by
buildings and “parking and others” are increasing, while the areas dedicated to green space
are decreasing. Through the urban renewal development evaluation of the old residential
areas in Xiamen, the following benefits were observed: (1) analysis of the residential areas
before and after the urban reconstructions; (2) refined management and monitoring of
the reconstruction process for the residential areas; and (3) objectively and accurately
evaluation of the reconstruction effectiveness.

We now take the MUDI Green Ecology Index as an example to demonstrate that all
102 MUDIs can be studied using AI-driven technologies and algorithms, which exemplifies
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the effectiveness and broader applicability of the MUDI system for urban renewal planning
and development.

The MUDI Green Ecology Index was set up using remote sensing data in the finer
scale of submeter satellite images. In our study, we found that historical remote sensing
data are readily available for cities and that using remote sensing sensors’ information as
key components or dimensions in MUDI specifications adds value and additional means
for urban planning and management.

6.5. Limitations and Future Research

First, the MUDI component and finer classification analysis in this study was con-
ducted for two groups of cities selected from UMAP groupings of 337 cities in China.
It may be beneficial to consider more cities to verify further the generality of the PCA
and UMAP dimension reduction algorithms. Secondly, for land use prediction, more
sample data, such as infrared features, are needed to use the transfer learning method
to optimize the DeeplabV3+ algorithm to improve the accuracy of building, green space,
and parking identification and improve further the reliability of land change analyses of
residential areas.

We selected the green ecology subindexes and applied the semantic segmentation
algorithm to study the land change in residential community areas in Xiamen. In the future,
this methodology could be expanded for more MUDIs to explore AI-driven solutions.

We built a knowledge graph to visualize the MUDIs in this study. We also studied a
dialogue system to help users query MUDI- and data-related information and obtain the
corresponding knowledge. The human–computer dialogue realized using AI algorithms
and knowledge graphs can be used to quickly search for answers and achieve real-time
interactions with users. It is an essential direction for AI-driven studies for urban renewal.
The system can also be integrated with large language models [55,56]. We believe that this
is conducive to solving the information islands’ problems among different stakeholders
and for effective information sharing.

Historical temporal data can be collected and processed based on MUDI specifications.
By applying the data model and specific vertical industry MUDI specifications, the dynamic
simulation of future urban and industrial growth can be projected and studied for Xiamen
and other cities.

For our study of 337 cities in China, information was collected entirely from public
internet domain data, which take time to collect and process. Such an effort can be extended
internationally in the future for additional understanding in the selection of cities and
regions and data collections.

7. Conclusions

Rapid urbanization over the past half-century has posed great challenges to global
urban renewal and regeneration efforts. With the advancement of digital technologies,
three main discipline research areas are converging; these are remote sensing technologies,
planning and management for and by urban development organizations and communi-
ties, and social big data- and artificial intelligence-driven technologies. Empowered by
newly developed technologies, comprehensive goal-oriented digital planning and analyses
provide unprecedented benefits for urban renewal development and regeneration. We
developed a municipal and urban renewal development index (MUDI) system with math-
ematical analysis models and a methodology and implementation framework for urban
renewal and regeneration studies. The MUDI system consists of three main components:
(1) a data model; (2) MUDI specifications, MUDI dimensionality, and a correlation analysis;
and (3) GIS- and AI-driven technologies and algorithms. By applying the MUDI system
to 337 cities in China and to 285 residential communities and the Yingping District in
Xiamen, we found that the MUDI system is effective and inclusive for designing, managing,
and monitoring urban renewal projects, meaning that it can be applied to urban renewal
efforts across cities and regions. The MUDI system contributes to the existing studies in the
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following areas. First, the data model is extended and used for urban renewal processing
by combining multisource datasets into abstract feature layers consisting of multi-level
functions, including a foundation layer, a summation feature layer, a density index function,
a visualization analysis layer, and an application solution layer. It supports large volumes
of data with high dimensionalities and effectively stores temporal data. Secondly, the MUDI
system is created with built-in mathematical analysis functionalities such as UMAP and
PCA to provide insightful interpretations of multi-dimensional indexes and correlations.
Thirdly, AI-driven technologies and algorithms can be built into the MUDI system for
various indexes, adding additional capabilities for the MUDI solution layer. Such a system
shall enable urban renewal planning and management more effectively by leveraging
fast-advancing digital twin technology. This study presents a detailed demonstration of a
data-driven analysis for cities and urban areas with rich experiments. Incorporating the
MUDI system with additional AI-driven algorithms is a new and effective method for
urban renewal development, which can be flexibly extended and applied to various cities
and urban districts.
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Korol,ova, A.; et al. Digital Placemaking for Urban Regeneration: Identification of Historic Heritage Values in Taiwan and the
Baltic States. Urban Plan. 2021, 6, 257–272. [CrossRef]

33. Wand, F.; Shi, X.; Zheng, H.; Wu, Y. The Crucial Question and Ten Relationships: Reforming Exploration of Beijing Master Plan
2016–2035. Les Cahiers 176-Les villes changent le monde. L’institut Paris Region. Juillet 2020.

34. Li, Z.; He, S.; Su, S.; Li, G.; Chen, F. Public Services Equalization in Urbanizing China: Indicators, Spatiotemporal Dynamics and
Implications on Regional Economic Disparities. Soc. Indic. Res. 2020, 152, 1–65. [CrossRef]

35. Lucy, W.H.; Gilbert, D.; Birkhead, G.S. Equity in local service distribution. Public Adm. Rev. 1977, 37, 687–697. [CrossRef]
36. Liao, Z. The analysis of basic public service supply regional equalization in China’s provinces—Based on the Theil Index

evaluation. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012106. [CrossRef]
37. Ardeshiri, A.; Willis, K.; Ardeshiri, M. Exploring preference homogeneity and heterogeneity for proximity to urban public

services. Cities 2018, 81, 190–202. [CrossRef]
38. Zhang, X.; Feng, Z. Spatial Correlation and Regional Convergence in per-capita GDP in China: 1978–2003. China Econ. Q. 2008,

7, 399.
39. Schneider, M. Local fiscal equalisation based on fiscal capacity: The case of Austria. Fisc. Stud. 2002, 23, 105–133. [CrossRef]
40. Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance? Evidence from China. J. Dev. Econ. 2016,

123, 18–37. [CrossRef]
41. Chen, J.; Fleisher, B.M. Regional income inequality and economic growth in China. J. Comp. Econ. 1996, 22, 141–164. [CrossRef]
42. Saaty, T.L. The Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA; McGrew Hill: New York, NY, USA, 1980;

Volume 9, pp. 19–22.

https://doi.org/10.1080/19475683.2016.1164247
https://doi.org/10.1080/20964471.2021.1939243
https://doi.org/10.1038/nature14539
https://doi.org/10.1080/014311600210191
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://doi.org/10.1016/j.isprsjprs.2014.09.002
https://doi.org/10.3390/rs14112654
https://doi.org/10.3390/ijgi6050149
https://doi.org/10.11591/ijece.v12i2.pp2040-2046
https://doi.org/10.1080/13574809.2017.1326712
https://doi.org/10.3846/20297955.2016.1246986
https://gfhsforum.org/?_l=en
https://www.eea.europa.eu
https://climate.cityofnewyork.us/reports/planyc-reports/
https://www.london.gov.uk/programmes-strategies/planning/implementing-london-plan/monitoring-london-plan
https://www.london.gov.uk/programmes-strategies/planning/implementing-london-plan/monitoring-london-plan
https://doi.org/10.17645/up.v6i4.4905
https://doi.org/10.17645/up.v6i4.4405
https://doi.org/10.3390/su11164483
https://doi.org/10.17645/up.v6i4.4446
https://doi.org/10.17645/up.v6i4.4484
https://doi.org/10.17645/up.v6i4.4425
https://doi.org/10.17645/up.v6i4.4406
https://doi.org/10.1007/s11205-020-02405-9
https://doi.org/10.2307/975337
https://doi.org/10.1088/1755-1315/100/1/012106
https://doi.org/10.1016/j.cities.2018.04.008
https://doi.org/10.1111/j.1475-5890.2002.tb00056.x
https://doi.org/10.1016/j.jdeveco.2016.07.002
https://doi.org/10.1006/jcec.1996.0015


Remote Sens. 2024, 16, 456 25 of 25

43. Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat.
Resour. 2008, 23, 911–919.

44. Benito, B.; Faura, Ú.; Guillamón, M.D.; Ríos, A.M. The efficiency of public services in small municipalities: The case of drinking
water supply. Cities 2019, 93, 95–103. [CrossRef]

45. Zere, E.; Mandlhate, C.; Mbeeli, T.; Shangula, K.; Mutirua, K.; Kapenambili, W. Equity in health care in Namibia: Developing a
needs-based resource allocation formula using principal components analysis. Int. J. Equity Health 2017, 6, 3. [CrossRef]

46. Hartmann, T.; Jehling, M. From diversity to justice—Unraveling pluralistic rationalities in urban design. Cities 2019, 91, 58–63.
[CrossRef]

47. Duch-Zebrowska, P.; Zielonko-Jung, K. Integrating Digital Twin Technology Into Large Panel System Estates Retrofit Projects.
Urban Plan. 2021, 6, 164–171. [CrossRef]

48. Wang, X.; Chen, B.; Li, X.; Zhang, Y.; Ling, X.; Wang, J.; Li, W.; Wen, W.; Gong, P. Grid-Based Essential Urban Land Use
Classification: A Data and Model Driven Mapping Framework in Xiamen City. Remote Sens. 2022, 14, 6143. [CrossRef]

49. McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.
2018, 3, 861. [CrossRef]

50. Leland, M.; John, H. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020,
arXiv:1802.03426.

51. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci.
2016, 374, 20150202. [CrossRef] [PubMed]

52. Bao, H.; Ming, D.; Guo, Y.; Zhang, K.; Zhou, K.; Du, S. DFCNN-Based Semantic Recognition of Urban Functional Zones by
Integrating Remote Sensing Data and POI Data. Remote Sens. 2020, 12, 1088. [CrossRef]

53. Du, S.; Du, S.; Liu, B.; Zhang, X. Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very
high resolution remote sensing images. Int. J. Digit. Earth 2020, 14, 357–378. [CrossRef]

54. Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in
computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

55. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. Comput. Sci. 2018.
56. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need.

Neural Inf. Process. Syst. 2017, 30, 5998–6008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cities.2019.04.016
https://doi.org/10.1186/1475-9276-6-3
https://doi.org/10.1016/j.cities.2018.02.009
https://doi.org/10.17645/up.v6i4.4464
https://doi.org/10.3390/rs14236143
https://doi.org/10.21105/joss.00861
https://doi.org/10.1098/rsta.2015.0202
https://www.ncbi.nlm.nih.gov/pubmed/26953178
https://doi.org/10.3390/rs12071088
https://doi.org/10.1080/17538947.2020.1831087
https://doi.org/10.1007/s41095-022-0271-y

	Introduction 
	Municipal and Urban Renewal Development Index (MUDI) System 
	MUDI Data Model Building 
	MUDI Design and Specification 
	MUDI System Dimensionality and Correlation Study 
	AI-Driven Temporal Land Change Study by Applying MUDIs to Evaluate Urban Renewal Progress 

	MUDI System Setup: Study Area and Datasets 
	MUDI Study Area 
	Datasets 

	MUDI System Setup and Study for 337 Cities and Xiamen’s Yingping District and 285 Residential Communities 
	MUDI Setup 
	MUDIs for 337 Cities 
	Yingping District’s Data Model and MUDI Setup 
	MUDI Green Ecology Index-Based Land Change Study for 285 Residential Communities 

	MUDI System Methodology and Analysis 
	UMAP Classification and Correlation Study for 337 Cities 
	PCA Dimension Reduction and Main Components Study for Group 1 and 2 Cities 
	PCA–UMAP Analysis for Group 1 and 2 Cities 
	MUDI Analysis for Yingping District’s Urban Renewal Development 
	MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential Communities in Xiamen 


	Results and Analysis 
	MUDI Experiments and Analysis 
	MUDI Classification and Correlation Analysis for 337 Cities 
	MUDI Component and Correlation Analysis 
	MUDI PCA Dimension Reduction and UMAP Finer Classification Analysis 

	MUDIs for Yingping District’s Urban Renewal Development Analysis in Xiamen 
	MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential Communities 

	Discussion 
	MUDI-Based Dimensionality and Correlation Analysis 
	MUDI-Based City Finer Classification Analysis 
	MUDI-Based Yingping District’s Urban Renewal Analysis 
	MUDI Green Ecology Index-Based Land Change Analysis for 285 Residential Communities 
	Limitations and Future Research 

	Conclusions 
	References

