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Abstract: Flooding is a natural disaster that coexists with human beings and causes severe loss of life
and property worldwide. Although numerous studies for flood susceptibility modelling have been
introduced, a notable gap has been the overlooked or reduced consideration of the uncertainty in
the accuracy of the produced maps. Challenges such as limited data, uncertainty due to confidence
bounds, and the overfitting problem are critical areas for improving accurate models. We focus
on the uncertainty in susceptibility mapping, mainly when there is a significant variation in the
predictive relevance of the predictor factors. It is also noted that the receiver operating characteristic
(ROC) curve may not accurately depict the sensitivity of the resulting susceptibility map to overfitting.
Therefore, reducing the overfitting problem was targeted to increase accuracy and improve processing
time in flood prediction. This study created a spatial repository to test the models, containing data
from historical flooding and twelve topographic and geo-environmental flood conditioning variables.
Then, we applied random forest (RF) and extreme gradient boosting (XGB) algorithms to map flood
susceptibility, incorporating a variable drop-off in the empirical loop function. The results showed
that the drop-off loop function was a crucial method to resolve the model uncertainty associated
with the conditioning factors of the susceptibility modelling and methods. The results showed that
approximately 8.42% to 9.89% of Marib City and 9.93% to 15.69% of Shibam City areas were highly
vulnerable to floods. Furthermore, this study significantly contributes to worldwide endeavors
focused on reducing the hazards linked to natural disasters. The approaches used in this study can
offer valuable insights and strategies for reducing natural disaster risks, particularly in Yemen.
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1. Introduction

Floods are naturally occurring events that result in a significant loss of life and eco-
nomic consequences annually while also exacerbating social, economic, and environmental
vulnerabilities [1]. They are usually the result of a complex situation caused by the in-
teraction of multiple factors. These factors include heavy rain, dam breaks, and coastal
storms, which form a large amount of surface runoff. When this runoff cannot be absorbed
and discharged in time, it will cause flooding and inundation [2]. People in developing
countries usually experience a severe impact from these disasters because their economies
rely heavily on natural resources and their inadequate physical, institutional, and infras-
tructural capabilities to adjust effectively [3]. Despite being an arid tropical region, flash
floods have severely affected Yemen in the past few years. According to the Centre for
Research on the Epidemiology of Disasters (CRED) (www.emdat.be/, accessed on 26 July
2021), floods have consistently emerged as one of Yemen’s severe natural disasters since
1990 because of their substantial economic impact [4].

The escalation of flooding may be due to the synergistic effects of climate change
and growing urbanization. Increases in flood disasters can be attributed to regional land
use change, population growth, inadequate environmental regulation, and construction of
residential buildings in flood-prone locations [5]. Floods in the study areas caused severe
crops and economic losses of USD 1638 million, including over 70 fatalities, 25,000 displaced
people, and over 2800 buildings destroyed; 340 houses were demolished in Tarim, Al-Kotn,
and Shibam [6]. There has been a noticeable increase in extraordinary flood events in
recent years, both in frequency and intensity. This trend began around 2015, marked by
two intense cyclones, Chapala and Meg, which impacted Yemen within a week. This pattern
persisted, with the region experiencing similar events in 2018 with cyclones Sagar and
Mekunu. Notably, Yemen typically experiences only one major storm or hurricane annually.
However, the floods of 2020 were exceptional in their scale and impact, primarily due to the
convergence of three severe rainfall events. This unprecedented situation led to extensive
and destructive flooding across the country [7]. Due to the numerous causes of this
occurrence, flood forecasting is still challenging [8]. Developing precise models is essential
to delineate flood-prone areas effectively. These models help local authorities and decision
makers manage disaster risks and lessen flood impacts. A critical step in this process is
creating flood susceptibility maps. These maps identify areas more vulnerable to flooding
based on environmental and geographic factors, focusing on susceptibility rather than
predicting specific flood probabilities. This process entails assessing the vulnerability of
various areas to flooding by using a range of risk factors, providing a comprehensive view of
potential flood impacts [9]. Flood susceptibility mapping is a systematic assessment, either
quantitative or qualitative, of the categorization, magnitude, and distribution of existing or
potential flood occurrences within a specified geographical region [10]. Flood susceptibility
mapping enables the identification of locations that are prone to flooding. Subsequently,
the most suitable structural and nonstructural measures can be applied to mitigate the
detrimental effects of flooding [11]. Several studies have been conducted to assess and map
flood-prone areas in different areas of the world. Pangali Sharma et al. (2022) used the
pressure, release and access model to identify differing household vulnerabilities to flooding
in Nepal [3]. Some studies used the maximum entropy (MAXENT) algorithm to map the
flood and geo-hazard susceptibility [12–14]. Several conventional approaches for flood
risk modelling, such as hydraulic modelling, rainfall-runoff modelling techniques, and
numerical simulation models, are typically limited because of insufficient data [15]. Remote
sensing (RS) and GIS technology have become crucial instruments for flood inundation
mapping in recent years and have also contributed enormously to improving efforts to
model flood events, designing successful flood mitigation strategies, and providing relevant
agencies with helpful information on flood risk alleviation [16]. Over the last decade,
flood susceptibility mapping (FSM) methods have been developed, including adaptive
hydraulics model (ADH) [17], analytical hierarchy process [18], frequency ratio and weight
of evidence [19], and machine learning (ML) algorithms (i.e., random forest (RF) [20],

www.emdat.be/


Remote Sens. 2024, 16, 336 3 of 25

support vector machine (SVM) [21], extreme gradient boosting (XGB) [22], convolutional
neural networks (CNNs) [23], and recurrent neural networks (RNNs) [24]). Although ML
models sometimes obtain good prediction results, it must be noted that in addition to the
problems of the model itself, uncertainties have led to inaccurate prediction results in these
models [25].

Although ML models can estimate flood inundation and combine results with GIS to
generate risk maps, some studies revealed that mapping susceptibility based on only a few
independent factors would lead to overfitting [26]. Thus, the primary aim of the present
study was to construct two susceptibility maps for two distinct test locations (e.g., Shibam
and Marib cities) using RF and XGB algorithms. In addition, according to the literature, RF
and XGB are ensemble algorithms that can develop excellent precision compared to other
conventional ML algorithms [27,28]. Further, the resultant maps were used to check the
uncertainties using the variables drop-off. Therefore, uncertainty analysis (overfitting) was
used for flood susceptibility modeling.

Overfitting is frequently used to refer to any undesirable performance drop in a
machine learning model. It is a ubiquitous problem in supervised machine learning
that cannot be avoided entirely [29]. Different methods are suggested to address these
causes and mitigate the effects of overfitting, including (i) the “early-stopping”(ES) method,
which is used to prevent overfitting by stopping training before the performance stops
optimizing; (ii) the “network-reduction” method, which is used to exclude noises from
the training set; (iii) “data-expansion” method, which is used for complicated models
to fine-tune the hyper-parameters sets with a large amount of data; (iv) “regularization”
method, which is used to ensure model performance to a large extent while dealing with
real-world challenges through feature selection and differentiation of more practical and
less helpful characteristics; (v) “cross-validation”, which can be used to observe overfitting;
(vi) “Bayesian Optimization Algorithm“, which is appropriate for discrete domains, and
(vii) “Random 3-SAT”, which is the problem used to test overfitting in EDAs [26,30]. ES
is a regularization technique that identifies the most suitable moment to halt an iterative
process [31]. Based on the training algorithm’s stopping criteria, ES is a widely used
strategy for fostering network generalization. It involves taking some of the data from the
training set and using it as a validation set. The error function is calculated on both the
training and validation sets at each iteration of the training algorithm: weights and biases
are changed depending on the error on the training set. This method involves comparing
the error function on the validation set with the error functions from earlier iterations. If
the error on the validation set grows for ten consecutive rounds, the learning process is
stopped. This method aims to mitigate the issue of overfitting in the network by improving
its performance on novel, unseen data [32]. In this study, the ES method has been used to
mitigate the effect of overfitting.

In many comparative case studies, FSM with superior performance was constructed
using these methods. In contrast, one of the most critical matters with these methods
is their potential to produce unpredictable and unstable outcomes. Tree-based models
have a fundamental drawback because they tend to overfit [33]. To compensate for this
disadvantage, the variable drop-off technique has been used in RF and XGB in the Marib
and Shibam city case studies. Analyzed is the phenomenon of overfitting, which serves
as the primary cause of uncertainty in prediction mapping analysis when employing ML
algorithms. Overfitting can occur due to the presence of noise, the limited amount of the
training dataset, and the complexity of classification models [30]. Although the training
error decreases after a few loops, the validation error rises, indicating that the model is
becoming overfit. The susceptibility map generated using ML accurately depicts the actual
conditions observed in the study. In contrast, when comparing the variability and biases
between the training and testing datasets, there is a risk of overfitting and overestimating
the modelling capabilities. This means that the model may have learned patterns exclusive
to the training dataset but which may not apply to the entire dataset [34]. The problem of
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overfitting has been assessed by utilizing ES as a procedure to remove predictive variables,
thus optimizing generalization in multilabel ML algorithms [35].

This study used a drop-off loop function to address model uncertainty and factor
trade-offs, a critical way to reduce data propagation errors. It is based on the ES principle,
well known in ML, to reduce overfitting and increase model resilience. In addition, this
method can play a crucial role in avoiding overfitting issues. Therefore, a drop-off loop
function was used in this study to address model uncertainty and factor trade-offs, which is
a critical way to reduce data propagation errors. It can significantly contribute to mitigating
overfitting problems. The outcomes of the drop-off loop function can offer empirical
evidence for designing appropriate models for different ML users. In addition, performing
an uncertainty study in conjunction with ML methods is a novel way in flood susceptibility
analysis and it could be used in analyzing other natural hazards such as debris flow,
landslides, snow avalanches, and mudflow.

2. Materials and Methods
2.1. The Case Studies

Yemen frequently suffers flash floods, which erode soil, harm plants, and can cause
serious crop loss. Many global climate models predict higher precipitation in Yemen, in-
creasing future flood severity and frequency [36]. The study areas were chosen because they
are prone to flooding and have undergone multiple flash flooding every year, particularly
in Marib and Shibam, leading to fatalities, damage to assets, and harm to the ecosystem.

2.1.1. Marib City

This study area is located in an arid region located 135 km northeast of Yemen’s
capital, Sana’a (15.7238◦–15◦43′26′′N, 46.0111◦–46◦0′40′′E), measuring 124.19 km2 and
1122 m above sea level (Figure 1). The geology of the study area is mainly Precambrian
metamorphic rocks and plutonic bedrock covered with the Jurassic carbonate rocks of
the Amur Group forming mountains [37,38]. It comprises thick limestone strata, marl-
limestone intercalations, Holocene travertine, marly lake, and soil deposits northwest of
the city. When this area is affected by the Indian Summer Monsoon (ISM) in winter, the
temperature can reach as high as 28 ◦C and the evaporation exceeds 1800 mm [39]. The
annual rainfall of Marib is less than 100 mm; the desert edge receives very little moisture
in the form of ISM rains, which have been mitigated by the winter leeward effects of the
Yemen Highlands. These drizzle of this area mainly from the North-East wind [40]. On
5 August 2020, a flood event in Marib Province flooded about 30 km2 of land, causing
damage to buildings, roads, and infrastructure [41]. In this area, the primary cause of the
floods was the heavy rainfall, which contributed to the overtopping of the Great Marib
Dam. Additionally, land use changes and rapid urban expansion in recent years have
played a role in heightening the area’s susceptibility to flooding. These changes have
altered the natural landscape, potentially affecting the region’s ability to manage excessive
surface run-off during heavy rain events.

2.1.2. Shibam City

Shibam is located in the Hadhramout Governorate (15.9267◦–15◦55′36′′N,
48.6262◦–48◦37′35′′E), with a total area extent of 1118.26 km2 and 683 m above sea level
(Figure 1). Shibam, a populous city, is located amid the basin along the wadi. It receives
occasional overflow from the steep hills to the north and south. The region is a significant
agricultural zone. The geological composition of the Shibam region consists of extensive,
horizontally deposited sedimentary strata that have undergone erosion, resulting in the for-
mation of an intricate Wadi pattern predominantly composed of limestone [42]. The annual
rainfall in this area is approximately 100 mm. The heavy rain in the study area resulted in
severe flooding [43,44]. A catastrophic flood that struck the region in October 2008 resulted
in numerous fatalities, the death of livestock, the destruction of houses, the pollution of
wells, the destruction of 450,000 palm trees, and other damage to agriculture and other
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nearby structures. The devastating flood in 2008 showed that catastrophic flooding could
destroy earthen structures in a few minutes [6].
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2.2. Data Sources
2.2.1. Flood Inventory Map

Future disaster incidents at a particular site might be estimated by analyzing historical
records of previous events [45,46]. Thus, an inventory map is critical to susceptibility
modeling, as it can depict a single or numerous incidents in a given area [47]. The inventory
map can be produced using various sources, including in situ mapping, flood predictions,
aerial photos, and remote sensing images [48,49]. We used alternative methodologies to
address the challenge of insufficient historical flood event records for the study area. These
included using readily available remote sensing data, which augmented and enhanced the
historical records. The empirical modelling approach is commonly employed for flood
hazard and sensitivity mapping. This method incorporates remote sensing data, historical
flood data, topographic maps, and soil maps [50]. This methodology is particularly well-
suited for areas where data availability is limited, such as Yemen. To identify and detect
flood areas in the study region, Sentinel-1 (GRD and IW) data were acquired for Marib city
on 1 July 2020 (prior to the flood) and 6 August 2020 (following the flood), as well as for
Shibam city on 28 June 2020 (before the flood) and 22 July 2020 (after the flood). The Sentinel
Application Platform (SNAP 7.0), along with the interferogram construction method (as
illustrated in Figure S1 of the Supplementary File), were employed to process and analyze
radar data from Sentinel-1 for both pre- and post-flood scenarios [51]. Two images, captured
on different dates, were utilized to accurately represent the area for the specified location
before and after the flood event. These images exhibited geometric distortion, necessitating
the application of terrain correction to enhance the geographic positioning accuracy [52].
To achieve this, we implemented a terrain-correcting technique. The subsequent procedure
involved the compilation of a composite image, in which the image captured before the
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flood was assigned to the red (R) channel, while the images taken after the flood were
assigned to the green (G) and blue (B) channels. After a series of images preprocessing
processes, as illustrated in (Figure 2), the main river path appeared black, while the flooded
sections appeared red. By utilizing the Sentinel-1 images, we conducted a thorough
mapping of areas affected by flooding, creating a precise inventory of the regions impacted
by the floods. The Landsat satellite data were downloaded from the Earth Explorer website
(https://earthexplorer.usgs.gov/, accessed on 6 April 2021) for the post-flood periods [53].
The data from flood events between 1996 and 2020 for Marib City and 2008 and 2020
for Shibam City were used to produce the flood inventory. The basis for choosing these
flood events was the extreme nature of those events. In addition to the described methods,
supplemental resources such as flood damage reports, Google Earth Pro, and on-site
surveys were used to assemble the flood inventory. The data obtained from Sentinel-1 SAR
was utilized to cross-verify the occurrence of floods in Marib and Shibam throughout 2020.
The fundamental process of flood susceptibility mapping entails identifying areas prone to
flooding and those not susceptible to flooding. This is accomplished by integrating remote
sensing data and historical records, as described by [54]. Equivalent non-flood areas were
randomly generated [23]. A pivotal aspect was creating a flood layer, where flood and
non-flood points were coded as 1 and 0. For the flood inventory, 240 random flood and
non-flood points were chosen in Marib and 350 in Shibam. A total of 75% of points were
used for training and 25% for validation in both areas [47,55,56].
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2.2.2. Flood Conditioning Factors

The selection of flood conditioning factors is essential for flooding susceptibility mod-
eling; therefore, the study should employ, test, and optimize various flood conditioning
factors [19,55]. The flood conditioning factors were chosen by the geoenvironmental con-
ditions and available data [57,58]. Twelve flood conditioning factors for FSM, namely
elevation, slope, aspect, curvature, stream power index (SPI), topographic wetness index

https://earthexplorer.usgs.gov/
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(TWI), drainage density (Dd), distance to road, rainfall, soil type, land use, and normal-
ized difference vegetation index (NDVI) were introduced in this study. Elevation and
Slope: They are essential factors in flood susceptibility since they influence surface runoff
and water accumulation. Elevated areas typically exhibit less susceptibility to flooding,
whereas more inclined slopes might result in accelerated water flow, hence heightening
the likelihood of flooding [1]. Aspect and Curvature: Aspect affects the microclimate of
an area, influencing parameters like moisture and vegetation cover, which are crucial in
flood dynamics. The presence of curvature can have an impact on the concentration and
dispersion of water flow [2]. SPI and TWI are important indexes for analysing the hydro-
logical characteristics of the terrain. They provide valuable information on areas where
water may accumulate and soil saturation may occur [9]. Dd is a quantitative measure that
directly reflects the ability of an area to handle the movement of water. Increased drainage
density can result in a more rapid flood response in the region [59]. Distance to the road:
Roads can influence flood behavior by acting as barriers or conduits for floodwaters. Their
influence on the local hydrological system is substantial when it comes to managing urban
floods [49]. Rainfall: The intensity and length of rainfall are the main factors that cause
floods. Historical precipitation data offer valuable insights into flood patterns and are
essential for the development of flood susceptibility models [28]. Soil Type: The infiltration
rates and water retention capacities of different soil types affect runoff and percolation,
which are important elements in determining flood susceptibility [47,60]. Land use: It has
a considerable impact on the flow of water on the surface and its ability to seep into the
ground. Urbanisation, such as the process of increasing urban areas, results in the creation
of impervious surfaces. This, in turn, leads to a greater amount of runoff and an increased
danger of flooding [61]. The NDVI is a quantitative indicator of the vitality and abundance
of vegetation. Vegetation can mitigate flood risk by enhancing soil stability and augmenting
water [9].

All related topographic and hydrological factors were calculated using DEM data.
The rainfall data were prepared based on a dataset of 10 years (2010–2019) from the online
source of NASA (https://power.larc.nasa.gov/data-access-viewer, accessed on 23 June
2021). The data were accessed and downloaded on 23 June 2021 (Table 1). The inverse
distance weighting method in the Geostatistical Tool (ArcGIS 10.3) was used to produce
the rainfall distribution map of the study area. The Renewable Natural Resources Research
Center (RNRRC) produced Yemen’s national soil map in 2006 [60]. The soil map was
rasterized, and the study area was derived and classified into three groups for the Marib
city case study: Eft (sedimentary soils, dry sedimentary soils, and dry limestone soils), Ess
(dry sandy soils), and Rtc (Dry soil, Sedimentary soil, dry limestone soils, and shallow
soils). For Shibam city, the soil map was rasterized, and the study area was derived and
classified into two groups: Etc (dry soil, dry sedimentary soil, soil dry, and limestone soil)
and Rcc (dry limestone, soil dry, shallow calcareous soil, and shallow soil). Sentinel 2 (10 m)
images, acquired in 2021 from (https://scihub.copernicus.eu, accessed on 6 April 2021),
were used to produce the NDVI map. The land use of 10 m resolution was loaded from
the website (https://livingatlas.arcgis.com/landcover, accessed on 26 June 2021). After
the flood conditioning factors were prepared, they were converted to raster format. Due
to concerns with pixel alignment, the projected raster function was utilized to ensure that
the extents and projections of the 12 variables were matched and normalized. As a result,
the factors were resampled to a grid size of 12.5 × 12.5 m, ensuring the elimination of
inconsistencies in the spatial resolution of the conditioning factors and achieving a uniform
spatial resolution [62], Figures S2 and S3 (Supplementary File).

https://power.larc.nasa.gov/data-access-viewer
https://scihub.copernicus.eu
https://livingatlas.arcgis.com/landcover
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Table 1. The data and data sources.

No Data Type Source Period Mapping Output Justification

1 ALOSPALSAR
(DEM/12.5 m)

Alaska satellite facility (ASF)
https://search.asf.alaska.edu
(accessed on 1 April 2021)

2021
Elevation, Slope, Aspect,
Curvature, SPI, Drainage
Density, and TWI

Tehrany et al. [49] demonstrate
the importance of topographic
data in flood susceptibility,
supporting the inclusion of these
features in our study.

2 Sentinel 2 (10 m) https://scihub.copernicus.eu
(accessed on 6 April 2021) 2021 NDVI map

The significance of NDVI in flood
susceptibility, as high-lighted by
Lin and Wu [9], validates its use
in our analysis.

3 Landuse/Landcover
(10 m)

https://livingatlas.arcgis.com/
landcover
(accessed on 26 June 2021)

2021 LU/LC map

Rahman et al. [10] emphasize the
importance of land use/cover in
assessing flood susceptibility,
justifying its inclusion in
our methodology.

4 Rainfall data
https://power.larc.nasa.gov/
data-access-viewer
(accessed on 23 June 2021)

2010–2019 Rainfall map

We incorporated rainfall data as
Pham et al. [63] underline its role
in flash flood
susceptibility modeling.

5 Soil type Data
(RNRRC.) in (AREA), Dhamar,
Yemen
(accessed on 19 August 2021)

2006 Soil type

Almeshreki et al. [60] discuss the
impact of soil types on
environmental conditions, which
supports the inclusion of this
factor in our flood study.

6 Distance to road https://www.diva-gis.org/
(accessed on 25 June 2021) 2021

The data were obtained
from the road networks
inside the district and
transformed into a raster
format with a cell size of
12.5 m × 12.5 m. These data
represent the distance to
the nearest road.

The relevance of road networks in
flood dynamics, as discussed in
Norallahi and Kaboli [13] backs
the inclusion of this factor in
our model.

2.3. Method
2.3.1. RF Model

The RF is highly effective in solving problems related to multi-classification and
prediction. It is a popular method in ensemble learning that utilizes decision tree models.
This technique involves training each tree on a subset of data independently sampled via
bootstrapping. Its applications have been explained in previous studies, as cited in the
works of [64,65]. The RF model is relatively insensitive to multicollinearity, and its results
are comparatively steady when missing or imbalanced data are present [66]. By creating
numerous trees and democratizing the decision, ensemble classifiers reduce the overfitting
of the final model while maintaining accuracy [67]. The main advantage of RF is that it
avoids overfitting in the models. Another feature of the RF is that it provides an automatic
system for handling missing values and is unaffected by outliers [68]. On the other hand, the
RF is frequently characterized as a ‘black-box’ model due to the challenges associated with
interpreting the underlying decision-making mechanisms [69]. Overall, randomness in RF
algorithms can reduce overfitting by (i) building several trees, (ii) portraying observations
with replacements (i.e., bootstrapped), and (iii) within a random subset, splitting the nodes
on the best split [69]. RF comprises an ensemble of independent regression decision trees,
each represented as {h(x, θk), kϵ1, 2, · · ·K} [70].

h(x) =
1
N ∑ h(x, θk) (1)

https://search.asf.alaska.edu
https://scihub.copernicus.eu
https://livingatlas.arcgis.com/landcover
https://livingatlas.arcgis.com/landcover
https://power.larc.nasa.gov/data-access-viewer
https://power.larc.nasa.gov/data-access-viewer
https://www.diva-gis.org/
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where the variable x denotes the particular factor being examined, while θk is characterized
as an independent, identically distributed random variable. The variable N is the total
number of decision trees that are generated within the model.

I(xi) =
K

∑
k=1

Ik(xi)

K
(2)

2.3.2. XGB Model

XGB is a nonlinear statistical algorithm used for regression, ranking, and classifica-
tion [71,72]. Instead of averaging the results of numerous independent trees, this method
builds several successive decision trees by using the prediction mistakes or residuals from
the tree that came before it. Consequently, it emphasizes samples with higher uncer-
tainty [73]. In addition to having parameters comparable to those of other tree-based
models, XGB requires additional hyper-parameters designed to limit the risk of overfitting,
reduce prediction variability, and increase accuracy [74].

Furthermore, XGB is a classification algorithm that can find nonlinear patterns in
missing-value datasets and is a form of gradient boosting. It has two key improvements:
(a) presenting a new distributed algorithm for tree searching and (b) speeding up the tree
construction [75]. Boosted trees are formed by solving the optimization problem. XGB
can solve any gradient-related optimization problem, which is especially useful when
datasets are generally incomplete [35]. XGB is characterized by its fundamental features of
versatility and efficiency. The algorithm’s outstanding skills have established it as a notable
and comprehensive model, as demonstrated by its extraordinary performance in many
Kaggle competitions [71]. The determination of the algorithm’s target value (Ot) after t
iterations is determined through the utilization of Equations (3)–(5) as elucidated by [76]:

Ot ∼= −1
2

T

∑
r=1

G2
r

Hr + σ
+ γT (3)

The penalty factors, σ and γ, are utilized in conjunction with the determined values
of Gr and Hr. T represents the total number of leaf nodes, whereas l represents the loss
incurred due to variations between the expected and actual values.

Gr = ∑
i∈Ir

δyi,t−1 l(yi, yi,t−1) (4)

Hr = ∑
i∈Ir

δ2
yi,t−1 l(yi, yi,t−1) (5)

where yi represents an actual variable, while yi,t−1 signifies the value subsequent to t
iterations of calculations. XGB and RF models were proposed using all the datasets of
conditioning factors.

2.3.3. Hyper-Parameter Optimization

In ML, hyper-parameter optimization determines which hyper-parameters for a partic-
ular model provide the best results when tested on a validation set [65]. ML for regression
and classification, such as RF, gradient boosting, and neural networks, require several
hyperparameters optimization [77]. Hyperparameter tuning is a crucial step in boost-
ing accuracy performance. To optimize the model, the aim should be to obtain the best
hyper-parameters.

The RF model offers the flexibility to be configured with a diverse range of hyper-
parameters. Two hyperparameters hold significant significance: the number of trees in the
forest, commonly referred to as n estimators or n-tree, and the number of features chosen
for the division at each node, known as M test or max features. To enhance these hyper-
parameters, two separate methodologies can be employed: grid search and randomized
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search, which are two types of cross-validation techniques [78]. The XGB consists of
many hyperparameters, and its performance varies significantly depending on the values
assigned to these parameters. Moreover, when the model parameters are not properly
configured, XGB tends to be more susceptible to overfitting [79]. RF and XGB models were
proposed using all datasets with the best conditioning factors. Models were developed
to operate with default settings. Hence, hyper-parameters were optimized with multiple
values and rerun with the suggested settings (Table 2). The RF algorithm utilized 500 trees,
and the optimal final value for the model was mtry = 7, with a grid search outperforming a
random search. In the XGB algorithm, subsample, eta, and minimum child weight were
discovered to have glaring inaccuracies. Notably, when the subsample reached a value of
1, it provided the highest accuracy; even minimal eta and minimum kid weight created
higher accuracy, whereas other hyper-parameters were less helpful. The optimization of
hyper-parameters is a very critical step in maximizing accuracy efficiency. More details
about hyper-parameter optimization and its associated functions are referred to in [35,79].

Table 2. Recommended settings for the hyper-parameters.

RF XGB

mtry ntree repeats search eta max depth gamma colsample
bytree

min child
weight subsample nrounds

7 500 3 Grid 0.3 6 0.01 0.75 0 1 200

2.3.4. Model Assessment

Running the model on testing data that it had never before utilized is essential for
obtaining an unbiased model evaluation [80]. The accuracy of predictions and success
rates is commonly assessed using the area under the curve (AUC). If the AUC reaches
1, it is a perfect classification; if the AUC reaches 0.5, it means poor classification. The
following four criteria should be considered when deciding on the best model after fit
testing: (i) it is preferable to have fewer factors in the model; (ii) it is preferable to have a
shorter processing time; (iii) a smooth distribution is preferable to a rigid one regarding
importance distribution overfitting; and (iv) the higher the AUC value of the ROC, the
better the model learning and prediction [35]. A high AUC does not reflect the best
susceptible map but merely fits the training data within the expected area, which sometimes
gets exaggerated (overfitting). It is about removing the factors that cause overfitting in
the final susceptible map. It will automatically shut down whenever the model reaches
the minimal ROC criterion. Here, the model’s predictive accuracy was assessed using
the test dataset. The iterative procedure entailed progressively reducing the number of
components and terminating the iteration when the prediction error for optimizing the
drop-off variable exceeded an undesirable threshold. The larger the factor space the
model searches, the longer it is trained. The performance metrics part is essential for the
evaluation of application results. For this aim, we considered more performance metrics
such as the coefficient of determination (R2), the root-mean-square error (RMSE), the mean
absolute error (MAE), and the Mean Squared Error (MSE). Because of the importance of
assessing results, these metrics are widely used in the literature, especially in extreme event
studies. The statistical indices R2, RMSE, MAE, MSE, and AUC were utilized to assess the
algorithms in this study. These indices are widely acknowledged as the principal criteria
for assessing the effectiveness of models. The efficacy of these tools has been demonstrated
in several previous investigations [23].

R2 = 1 −
∑n

i−1

(
p − a)2

∑n
i−1

(
p − a)2

(6)
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RMSE =

√
1
n∑n

i=1

[(
p − a)]2 (7)

MAE =
1
n

n

∑
i=1

(
p − a)2 (8)

SE =
1
n

n

∑
i=1

(
p − â)2 (9)

where a is the actual value, â is the mean of the actual values, p is the predicted value of
the model, and n indicates the number of observations. In this research, the analysis of
flood susceptibility is meticulously conducted using ArcGIS 10.3, R 3.6.1, and the Sentinel
Application Platform (SNAP 7.0). The flowchart illustrating the methodology utilized in this
work is presented in Figure 3. It outlines three primary steps: (1) gathering and preparing
the data, (2) enhancing the ML algorithm by applying a variable drop-off function, and
(3) evaluating accuracy, optimizing hyper-parameters, and performing the mapping process.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 25 
 

 

the coefficient of determination (R2), the root-mean-square error (RMSE), the mean abso-
lute error (MAE), and the Mean Squared Error (MSE). Because of the importance of as-
sessing results, these metrics are widely used in the literature, especially in extreme event 
studies. The statistical indices R2, RMSE, MAE, MSE, and AUC were utilized to assess the 
algorithms in this study. These indices are widely acknowledged as the principal criteria 
for assessing the effectiveness of models. The efficacy of these tools has been demonstrated 
in several previous investigations [23]. 𝑅 = 1 − ∑ (𝑝 − 𝑎)∑ (𝑝 − 𝑎)  (6)

𝑅𝑀𝑆𝐸 = 1𝑛 [(𝑝 − 𝑎)]    (7)

𝑀𝐴𝐸 = 1𝑛 (𝑝 − 𝑎)  (8)

𝑆𝐸 = 1𝑛 (𝑝 − 𝑎)   (9)

where a is the actual value, 𝑎 is the mean of the actual values, p is the predicted value of 
the model, and n indicates the number of observations. In this research, the analysis of 
flood susceptibility is meticulously conducted using ArcGIS 10.3, R 3.6.1, and the Sentinel 
Application Platform (SNAP 7.0). The flowchart illustrating the methodology utilized in 
this work is presented in Figure 3. It outlines three primary steps: (1) gathering and pre-
paring the data, (2) enhancing the ML algorithm by applying a variable drop-off function, 
and (3) evaluating accuracy, optimizing hyper-parameters, and performing the mapping 
process. 

  

Figure 3. (A) Step 1: conduct data preparation and image processing; Step 2: this involves running 
a loop for dropping off factors out of classification algorithms; (B) Step 3: select the optimal output 
depending on the criteria that have been applied and the hyperparameter optimization. 

Figure 3. (A) Step 1: conduct data preparation and image processing; Step 2: this involves running a
loop for dropping off factors out of classification algorithms; (B) Step 3: select the optimal output
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2.4. Development of Flood Probability Maps

The probability maps were generated using a GIS platform, with the “natural break”
classification method employed [81]. We selected the natural break method due to its
sensitivity to the inherent data distribution, making it well-suited for identifying natural
groupings and clusters in flood probability. This method aligns with the spatial character-
istics of flooding events. The qualitative probability categories (low to very high) on the
maps serve as a visual representation of relative likelihood, providing an intuitive inter-
pretation [82]. While we appreciate the convention of expressing probabilities numerically,
the qualitative categories offer a user-friendly approach for conveying complex spatial
information [83].
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3. Results
3.1. Visualization of Prediction Variables

The drop-off function has been tested in two study areas to understand how it can
effectively control overfitting and reduce uncertainty. Using the R tool, it is determined
during the model training process how relevant each conditioning factor is for the models
employed (Figure 4). In the RF model, drainage density was identified as the most crucial
element for Marib city, followed by elevation, rainfall, land use, NDVI, distance to the
road, soil type, SPI, TWI, slope, aspect, and curvature. In the XGB model, Dd was the most
influential factor in determining the outcome for the same city. Rainfall, NDVI, elevation,
distance to the road, slope, SPI, TWI, curvature, soil type, land use, and aspect followed.
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In Shibam City, the RF model identified elevation as the primary component, with
rainfall, TWI, Dd, slope, soil type, land use, curvature, distance to the road, SPI, aspect,
and NDVI following in importance. Similarly, in the XGB model for Shibam, elevation was
identified as the most influential component, followed by rainfall, Dd, TWI, slope, NDVI,
distance to the road, soil type, SPI, curvature, land use, and aspect.

The analysis revealed that elevation, Dd, and rainfall play crucial roles in the RF and
XGB models for flood prediction. These findings are consistent with earlier studies, confirm-
ing that factors such as elevation, Dd, and rainfall have a substantial role in determining
flood risk [9,59,84]. This can be explained as precipitation and runoff are easily funneled
into low-lying regions, reducing the chance of discharging surplus water from these areas.
In addition, flooding is more likely to occur in places with high drainage density. By con-
trast, curvature and aspect are the minor critical variables. However, uneven terrain with
low height, convergent curves, and downward slope angles increase flood risk in the study
areas. Furthermore, the other variables have a low and varying significance (Figure 4).
These variables play a role in flooding in the study areas. Figure S4 (Supplementary File)
shows similarities between the importance rankings of the RF and XGB factors distribution
by flood occurrences.

The probability of flooding was determined in this investigation by analyzing the
correlation between flood occurrence and each independent variable. The variables were
classified into different categories based on histogram analysis, and a flood factor distri-
bution (FD) was examined for these categories. This study facilitated the determination
of flood frequency across the various categories of each variable, as depicted in Figure S4
(Supplementary File). The study revealed that areas most vulnerable to flooding encom-
passed low-lying regions, zones with high water accumulation (as indicated by TWI and
SPI). Floods were primarily reported on slopes oriented towards the east, northeast, and
southeast and on nearly level slopes and surfaces with varying degrees of convexity to
flatness. Furthermore, these floods frequently took place near regions with substantial
drainage systems. Flood episodes were predominantly observed in areas characterized by
gravel, exposed soil, and little vegetation regarding land cover.

3.2. Modeling Using Default Settings

With 12 independent factors and two classes (yes, no), RF and XGB analysis began
with default settings. The loop stopped at reaching 84% accuracy using just the best factors
after the overall accuracy of the confusion matrix was achieved. McNemar’s test p-value
for statistical importance for both algorithms is less than 2.154 × 10−14. High accuracy
is achieved with the first three groups of factors in both models (i.e., those containing
12, 11, and 10). The case study conducted in Marib demonstrates the initial components’
notable precision, albeit resulting in different spatial representations of susceptible areas
(see Figure S5 in the Supplementary Materials). On the other hand, it can be observed
that in Shibam City, the places that are prone to susceptibility display a discernible spatial
pattern, particularly when taking into account the initial variables, namely elements 12, 11,
and 10. It is important to highlight that the flood classification maps shown in Figure S5 of
the supplementary file, particularly panels (a) and (c) in the Marib City case study, may not
represent highly accurate forecasts. Instead, they are more likely a result of overfitting. This
underscores the benefits of utilizing the drop-off technique to monitor changes in model
behavior while manipulating the number of components in the study.

Based on the available datasets and the performance results of XGB and RF, the optimal
outcome of Step 2, which involves running the drop-off factor loop within the classification
algorithms, is chosen. This selection is depicted in (Figure 4). Significantly, the initial
three sets of components in both models (comprising 12, 11, and 10 factors) demonstrate
a notable level of accuracy in both case studies. The performance of the RF algorithm
demonstrates a notable proficiency in illustrating the significance of factors, as exemplified
in (Figure 4).
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The ROC plots and their related AUC values shown in Figures 5 and 6 may need to
be more accurate if exclusively relied upon to determine the ideal number of factors in a
model. This is especially significant if the selection of the most suitable model is made
without properly assessing the influence of each factor. A high AUC score in these models
may suggest a propensity for overfitting. When comparing the two models, it is seen that
a confusion matrix is more sensitive to changes in overall accuracy than the ROC curve.
It is crucial to acknowledge that without accounting for a specific degree of inaccuracy
or uncertainty, such as model overfitting, it is not easy to develop a generally optimal
set of parameters or a generic procedure that precisely finds the correct model [35,85].
Nevertheless, this study provides the flexibility to tune parameters to control overfitting
and manage imbalanced data successfully.
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Figure 5. ROC plots for flood data (Marib City), produced according to the number of factors after
each drop-off. Using XGB: (a) 12 factors, (b) 11 factors, and (c) 10 factors; using RF: (d) 12 factors,
(e) 11 factors, and (f) 10 factors.

Table 3 shows the results of the performance of the proposed algorithms. The coef-
ficient of determination (R2) reached 1 in both models’ training and testing phases. In
addition, it was noticed that the RMSE, MAE, and MSE values for the RF method were
lower than those for the XGB algorithm throughout the training and testing phases.

Table 3. Performance assessment based on statistical indices.

XGB

Study Area
Training Dataset Testing Dataset

R2 RMSE MAE MSE R2 RMSE MAE MSE

Shibam 1.00 0.06154 0.00433 0.00379 1.00 0.06874 0.00655 0.00473

Marib 1.00 0.07167 0.00782 0.00514 1.00 0.08010 0.00641 0.00641

RF

Shibam 1.00 0.00760 0.00054 0.00006 1.00 0.02212 0.00211 0.00049

Marib 1.00 0.00829 0.00091 0.00007 1.00 0.07846 0.00628 0.00616
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Figure 6. ROC plots for flood data (Shibam City), produced according to the number of factors after
each drop-off. Using XGB: (a) 12 factors, (b) 11 factors, (c) 10 factors, (d) 9 factors, and (e) 8 factors;
using RF: (f) 12 factors, (g) 11 factors, (h) 12 factors, (i) 11 factors, and (j) 10 factors.

3.3. Selecting the Most Optimized Model for Susceptibility Mapping

In this study, RF outperformed XGB, especially in avoiding overfitting. There was
also the choice of isolating the significance of each factor for each class, which helps us
to know what factors might have an undesirable impact on low floods. With all factors,
RF takes a longer time (in terms of computational resources) to generate its output than
XGB. Furthermore, it is imperative to acknowledge that the RF model incorporates many
relevant predictors throughout each classification iteration. This contrasts with the XGB
model, which progressively assesses individual criteria. When assessing the test results, it
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is crucial to recognize the remarkable performance demonstrated by the RF model. Within
the specific context of Marib City, it is important to acknowledge that the ROC curve may
not adequately reflect the impact of unbalanced prediction elements (see Figure 7). In
both models (XGB and RF), the output of maps was in different spatial representations of
susceptible regions. The output susceptibility maps reflect a sole factor rather than a good
representation of other causative factors (the two models invert a single factor, which is the
drainage density). The significance of the other factors that contributed to the occurrence of
the flood was disregarded. However, the ROC value was 95% in both models. In the case
study of Shibam, the outputs of maps were reasonable spatial representations of susceptible
regions, and the two models inverted all factors. In some of the literature, it has been
proposed that the most suitable model fit can be determined by achieving a high level of
accuracy, as demonstrated by the AUC values in ROC analysis [86].
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Another approach involves assessing the proximity of the connection line between
false positive and true positive rates to obtain a desirable model fit. Nevertheless, it
is imperative to recognize that attaining a high level of performance on observed data
only sometimes corresponds to obtaining robust performance on unseen data. Within the
domain of ML, the technique of normalization or generalization is frequently employed to
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address modelling errors that arise due to capacity limitations. This strategy is employed
to prevent overfitting in models with a significant learning capacity. The statement above
highlights the importance of reducing bias and variability to improve the model’s capacity
to make accurate predictions on new and unexplored data.

When the number of trees (n-trees) is reduced or limited, the accuracy of the model
and kappa index are improved by predicting the frequency of each input line at least several
times. The best model for the kappa index is selected in the default XGB modeling settings.
The most successful RF model, with 12 components, is nevertheless examined by two
different hyperparameters: (i) the number of randomly selected variables for candidates
at each division (n-try); (ii) the number of forest-ended terminals (max nodes) as high as
possible (n-trees). The final probability maps (Figure S6 of the Supplementary File) show
good results with (11) factors in the case of Marib City and with several (10, 11, and 12)
factors in the case of Shibam City.

Compared to the Marib City, the maps produced by the two models with 10 factors
are inaccurate. After implementing the drop-off loop, the function stops at nine factors. In
Shibam City, the maps produced by the two models with 8 and 9 factors are inaccurate.
After implementing the drop-off loop, the function stops at 8 factors. Although, through-
out all periods, RF consistently outperforms XGB because it provides uniformity in the
spatial distribution of the indices and avoids overfitting, the XGB model with 11 factors
outperforms the RF model in Marib City.

The flood susceptibility map generated by both independent and ensemble models
employs a natural break classification to categorize areas with low, moderate, high, or
extremely high susceptibility (see Figure 8). The susceptibility map generated by the RF
model indicates that, in the case of Marib City, the proportions of the study area covered by
the low, moderate, high, and very high susceptibility classes are 49.79%, 26.06%, 14.24%,
and 9.89%, respectively. Similarly, for Shibam City, the corresponding proportions of
the study area occupied by these susceptibility classes are 68.23%, 9.80%, 12.02%, and
9.93%, respectively. In the case of the XGB model applied to Marib City, the surface area
proportions for each class are as follows: 78.66% for the low class, 8.08% for the moderate
class, 4.83% for the high class, and 8.42% for the very high class. Similarly, for Shibam City,
the respective proportions of the total surface area are 74.33%, 5.49%, 4.47%, and 15.69% for
the low, moderate, high, and very high classes. These values are depicted in Figure 9.
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4. Discussion

Several important variables, including meteorological factors, physical basin charac-
teristics, and human activities, contribute to the occurrence of floods. For flood mitigation,
numerous studies were conducted before, during, and after flooding [87]. Flood suscep-
tibility mapping is the first and most important step in assessing flood risk because it
shows the danger degree of a region to flood. Identifying regions susceptible to flooding
and implementing the required support measures to cut down on flood-related losses is
possible. The proposed method in this study seeks to map the probability of a specific
flood event utilizing flood-related factors from widely available sources, specifically remote
sensing data and GIS-related data. Two well-known ML methods (XGB and RF) were
initially used to combine the available data and estimate flood susceptibility mapping.
When compared to the XGB, RF performed marginally well in the experimental evaluation
process. To produce maps of flood susceptibility in two areas (Marib and Shibam), we
utilized this method as a predictor during the evaluation phase.

This study shows that the flood conditioning factors depend on the study area’s
geomorphological characteristics and the analyzed historical flood events [62,88]. One
of the most important steps in modeling flood susceptibility is selecting relevant flood-
affecting factors. In this study, elevation, drainage density, and rainfall play a significant
(approx.) influence in the training and assessment of the ML algorithms used in both
studies. This is a reasonable conclusion given that these factors influence flood spreading.
The results of this study are consistent with those found in other previous research [89,90].
Drainage density is crucial for flood risk management, as drainage density discloses the
soil’s composition and geotechnical properties. It is one of the most important criteria in
defining a region’s susceptibility to floods [91]. Both models achieved AUC values higher
than 0.84 in the ROC investigation, demonstrating their effective performance in predicting
flood susceptibility. Furthermore, the outputs of other statistical measures, such as the
kappa index, sensitivity, specificity, and accuracy, indicated that all models performed well
and produced reliable predictions.

The study shows that the XGB algorithm outperformed the RF algorithm in accurately
representing spatial data for assessing both Marib and Shibam flood-prone areas. The supe-
rior performance was achieved with few pre-training adjustments needed for the model.
This result is consistent with findings from earlier research, providing more confirmation of
the efficacy of the XGB algorithm in similar contexts [92]. Overfitting is a common problem
in supervised ML that cannot be prevented entirely. It occurs because of the limitations
of training data, which can be small samples or contain much noise, or the limitations of
methods that are too intricate and require too many variables [30]. In this study, RF is
superior to XGB in the whole process, especially in avoiding overfitting, although XGB is
superior to RF in spatial distribution.
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With all independent factors, RF takes a longer time (in terms of computational
resources) to produce its output than XGB. AlThuwaynee et al. (2021) stated that the RF
model could avoid overfitting, which is compatible with the results of this research [35].
A loop function is implemented for each approach to iteratively eliminate one element
at a time, with priority given to the variable that exhibits the highest sensitivity to the
target. This methodology provides significant observations regarding the behavior of the
models, thereby mitigating possible uncertainty that may arise from overfitting. The loop
function, when utilized in actual scenarios, serves as a checkpoint alongside the model’s
confusion matrix, which provides an assessment of the overall correctness. The loop will
terminate when the accuracy drops below 84%. The technique commences by progressively
analyzing all elements and eliminating one variable in each iteration, starting with the
contributor with the least impact. Upon the completion of the loop, several outcomes are
produced, including (1) an evaluation of the significance of factors, (2) the generation of
probability maps, (3) the creation of a classification map, (4) the compilation of a confusion
matrix that provides an overview of accuracy, (5) the calculation of the p-value, and (6) the
determination of the kappa index.

This study effectively showcases the effectiveness of the proposed models in gener-
ating flood susceptibility maps while also acknowledging certain limits. The techniques
underwent evaluation using a somewhat limited dataset, characterized by the lack of
essential hydrological variables such as flood depth, velocity, and discharge. This absence
presents difficulties in constructing a more resilient model. Hence, it is imperative to
authenticate the effectiveness of the models employed in this study across a wider spec-
trum of real-life situations. It is crucial to acknowledge that the model’s performance can
alter depending on the region, implying that the performance metrics produced in this
study may vary in different regions. Hence, validating these susceptibility models using
supplementary datasets in future studies is advisable to guarantee their suitability and
dependability across diverse geographical contexts.

Previous studies in flood susceptibility mapping should have focused on uncertainty
and error propagation in modeling. By investigating and curbing overfitting in flood
susceptibility mapping, this study focused hugely on uncertainty and error propagation by
investigating ML algorithms. This was controlled by utilizing a loop function known as ES
in classical work techniques to eliminate predictive variables, thus optimizing generaliza-
tion in multi-label machine learning algorithms. Again, the results of most existing studies
in this research domain were solely based on a single study and limited models. However,
this study was conducted in two study locations, integrated models of RF and XGB, and
considered several factors, including elevation, drainage density, slope, rainfall, and LULC.
Comparing the robustness of RF and XGB models and the results from various study areas
led to concrete conclusions. The current study will solve some of the gaps described above.
It will assist researchers and decision makers in making reliable and suitable decisions
about addressing and mitigating these challenges. It will also improve flood detection and
flood susceptibility mapping.

Finally, several recommendations for future research were suggested based on the
results. High-resolution DEMs should be using to predict floods. The higher the DEM reso-
lution, the more topographical terrain details are preserved. This improves the definition
of the floodplain, minor streams, highways, and other narrow flow conduits, which can
substantially affect the findings. While the availability of high-resolution topography data
is growing, it is still not universal. In addition, flood extents and depths must be explored in
flood validation studies because differences in the profile may affect the water’s horizontal
expanse. The algorithm’s application to other study sites and natural disaster-prone zones
must be examined to assess the model prediction and uncertainty owing to overfitting.
Diverse fields of study may give useful findings to improve the equations and validate the
output of the proposed algorithm.
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5. Conclusions

Flood modeling and uncertainty in the mapping of risk prediction are critical and
should be considered. According to current theories, various variables affect flooding in
urban areas, including rainfall, land use, slope, elevation, curvature, distance to canal or
river, proximity to a waterway, rapid population growth, inadequate drainage, and more
severe rainfall patterns. The study areas were subjected to analysis using Sentinel-1 pictures,
and flood zones were identified. In order to create a cartographic representation of the
inundated regions within the designated research vicinity, the identification and validation
of flood sites were conducted through the utilization of Google Earth photographs, Landsat
imagery, and press publications. The models utilized a spatial database incorporating
data from past flooding events and twelve topography and geo-environmental flood
conditioning variables for each specific study region. This study aimed to investigate and
clarify the uncertainties associated with flood susceptibility mapping in Marib and Shibam,
Yemen. The researchers employed the variable drop-off technique within the RF and XGB
algorithms to achieve this. These algorithms were utilized as part of a case study to analyze
and understand the factors contributing to flood susceptibility in the regions. High accuracy
was achieved with confidence bounds and error estimation despite the limited data (a
significant source of uncertainty). A drop-off loop function was utilized to resolve model
uncertainty and trade-offs between factors, a crucial method for lowering data propagation
mistakes. This study shows that the drop-off loop function is a critical approach to avoid
overfitting, especially in the case of Shibam City. In contrast, the drop-off loop was recorded
as overfitting in the case of Marib City. However, the factors that caused the overfitting in
the final susceptible map have been removed. The results show that approximately 8.42%
to 9.89% of Marib City and 9.93% to 15.69% of Shibam City areas are highly vulnerable to
floods. It can be inferred from the study results that human activity could exacerbate the
situation, including increased land use, increased frequency and severity of flooding, and
climate change. As a result, specialized processes are necessary to detect flood-prone sites.
The results of this study will assist researchers in demystifying uncertainty in machine
learning in flooding modeling. Furthermore, the study will raise the understanding of
flood-prevention strategies and their general effects on the environment and human life.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16020336/s1. Figure S1: Flow chart for detecting flood
areas in study areas using Sentinel-1 data. Figure S2: Flood conditioning factors (For Marib city
case study). Figure S3: Flood conditioning factors (For Shibam city case study). Figure S4: Factors
distribution by Floods occurrences. Figure S5: (A) Flood classification maps. (B) Flood classification
maps. Figure S6: (A) Flood probability maps (For Marib City). For the XGB algorithm: (a) 12 factors,
(b) 11 factors, and (c) 10 factors; For the RF algorithm: (d) 12 factors, (e) 11 factors, and (f) 10 factors.
(B) Flood probability maps (For Shibam City). Table S1: The statistical properties of used data indices
for Marib city (mean, min, max and median). Table S2: The statistical properties of used data indices
for Shibam city (mean, min, max and median).

Author Contributions: Writing—original draft, A.R.A.-A. and O.F.A.; Conceptualization, K.U. and
M.R.; Data curation, Y.A.A.-M. and N.M.A.-A.; Funding acquisition, H.A., H.-J.P. and B.Y.H.; Inves-
tigation, Y.A.A.-M.; Methodology, A.R.A.-A. and O.F.A.; Project administration, B.Y.H.; Resources,
K.U.; Software, A.R.A.-A. and O.F.A.; Supervision, X.L.; Validation, N.M.A.-A.; Visualization, M.R.;
Writing—review and editing, A.R.A.-A., H.A., H.-J.P. and X.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the King Saud University, Riyadh, Saudi Arabia. Re-
searchers Supporting Project number (RSP2024R425), and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A2C1003540).

Data Availability Statement: The necessary data is provided in the supplementary materials. The
rest of the files which are large on size are available upon request.

Acknowledgments: We express our profound appreciation to the Scientists Adoption Academy for
their great assistance. Their online research collaboration platform was important in fostering the

https://www.mdpi.com/article/10.3390/rs16020336/s1


Remote Sens. 2024, 16, 336 22 of 25

interactions and exchanges that greatly helped the development of this research. We also thank
editors and anonymous reviewers for their valuable comments and constructive suggestions that
improve the manuscript’s quality.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B. Bin A systematic review on approaches and methods used for flood

vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [CrossRef]
2. Shaw, R.; Surjan, A.; Parvin, G.A. Urban disasters and approaches to resilience. In Urban Disasters and Resilience in Asia; Elsevier:

Amsterdam, The Netherlands, 2016; pp. 1–19.
3. Pangali Sharma, T.P.; Zhang, J.; Khanal, N.R.; Nepal, P.; Pangali Sharma, B.P.; Nanzad, L.; Gautam, Y. Household Vulnerability to

Flood Disasters among Tharu Community, Western Nepal. Sustainability 2022, 14, 12386. [CrossRef]
4. Wiebelt, M.; Breisinger, C.; Ecker, O.; Al-Riffai, P.; Robertson, R.; Thiele, R. Climate Change and Floods in Yemen: Impacts on

Food Security and Options for Adaptation; IFPRI Discussion Paper. 2011. Available online: https://www.preventionweb.net/
publication/climate-change-and-floods-yemen-impacts-food-security-and-options-adaptation (accessed on 29 June 2021).

5. Zaid, H.A.H.; Jamaluddin, T.A.; Arifin, M.H. Overview of slope stability, earthquakes, flash floods and expansive soil hazards in
the Republic of Yemen. Bull. Geol. Soc. Malays. 2021, 71, 71–78. [CrossRef]

6. Breisinger, C.; Ecker, O.; Thiele, R.; Wiebelt, M. The Impact of the 2008 Hadramout Flash Flood in Yemen on Economic Performance and
Nutrition: A Simulation Analysis; Kiel Working Paper 1758; Kiel Institute for the World Economy: Kiel, Germany, 2012; pp. 1–28.

7. Lackner, H. Global Warming, the Environmental Crisis and Social Justice in Yemen. Asian Aff. 2020, 51, 859–874. [CrossRef]
8. Edouard, S.; Vincendon, B.; Ducrocq, V. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters

and initial soil moisture uncertainties. J. Hydrol. 2018, 560, 480–494. [CrossRef]
9. Lin, L.; Wu, Z.; Liang, Q. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Nat. Hazards

2019, 97, 455–475. [CrossRef]
10. Rahman, M.; Ningsheng, C.; Islam, M.M.; Dewan, A.; Iqbal, J.; Washakh, R.M.A.; Shufeng, T. Flood susceptibility assessment in

Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst. Environ. 2019, 3, 585–601. [CrossRef]
11. Kourgialas, N.N.; Karatzas, G.P. Flood management and a GIS modelling method to assess flood-hazard areas—A case study.

Hydrol. Sci. J. –J. Des Sci. Hydrol. 2011, 56, 212–225. [CrossRef]
12. Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy

and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [CrossRef]
13. Norallahi, M.; Kaboli, H.S. Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB. Nat.

Hazards 2021, 106, 119–137. [CrossRef]
14. Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning

techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [CrossRef]
15. Guo, E.; Zhang, J.; Ren, X.; Zhang, Q.; Sun, Z. Integrated risk assessment of flood disaster based on improved set pair analysis

and the variable fuzzy set theory in central Liaoning Province, China. Nat. Hazards 2014, 74, 947–965. [CrossRef]
16. Joy, S.; Lu, X.X. Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Nat.

Hazards 2004, 33, 283–301.
17. Burgan, H.I.; Icaga, Y. Flood analysis using adaptive hydraulics (AdH) model in Akarcay Basin. Tek. Dergi 2019, 30, 9029–9051.

[CrossRef]
18. Hussain, M.; Tayyab, M.; Zhang, J.; Shah, A.A.; Ullah, K.; Mehmood, U.; Al-Shaibah, B. GIS-Based Multi-Criteria Approach for

Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability 2021, 13, 3126.
[CrossRef]

19. Ullah, K.; Zhang, J. GIS-based flood hazard mapping using relative frequency ratio method: A case study of panjkora river basin,
eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [CrossRef] [PubMed]

20. Rahman, M.; Chen, N.; Elbeltagi, A.; Islam, M.M.; Alam, M.; Pourghasemi, H.R.; Tao, W.; Zhang, J.; Shufeng, T.; Faiz, H.; et al.
Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh. J. Environ. Manag.
2021, 295, 113086. [CrossRef] [PubMed]

21. Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine
model with different kernel types. Catena 2015, 125, 91–101. [CrossRef]

22. Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol.
2021, 598, 126382. [CrossRef]

23. Ullah, K.; Wang, Y.; Fang, Z.; Wang, L.; Rahman, M. Multi-hazard susceptibility mapping based on Convolutional Neural
Networks. Geosci. Front. 2022, 13, 101425. [CrossRef]

24. Khosla, E.; Ramesh, D.; Sharma, R.P.; Nyakotey, S. RNNs-RT: Flood based prediction of human and animal deaths in Bihar using
recurrent neural networks and regression techniques. Procedia Comput. Sci. 2018, 132, 486–497. [CrossRef]

https://doi.org/10.1007/s11069-018-03567-z
https://doi.org/10.3390/su141912386
https://www.preventionweb.net/publication/climate-change-and-floods-yemen-impacts-food-security-and-options-adaptation
https://www.preventionweb.net/publication/climate-change-and-floods-yemen-impacts-food-security-and-options-adaptation
https://doi.org/10.7186/bgsm71202106
https://doi.org/10.1080/03068374.2020.1835327
https://doi.org/10.1016/j.jhydrol.2017.04.048
https://doi.org/10.1007/s11069-019-03615-2
https://doi.org/10.1007/s41748-019-00123-y
https://doi.org/10.1080/02626667.2011.555836
https://doi.org/10.1016/j.scs.2022.103812
https://doi.org/10.1007/s11069-020-04453-3
https://doi.org/10.1016/j.ijdrr.2020.101687
https://doi.org/10.1007/s11069-014-1238-9
https://doi.org/10.18400/tekderg.416067
https://doi.org/10.3390/su13063126
https://doi.org/10.1371/journal.pone.0229153
https://www.ncbi.nlm.nih.gov/pubmed/32210424
https://doi.org/10.1016/j.jenvman.2021.113086
https://www.ncbi.nlm.nih.gov/pubmed/34153582
https://doi.org/10.1016/j.catena.2014.10.017
https://doi.org/10.1016/j.jhydrol.2021.126382
https://doi.org/10.1016/j.gsf.2022.101425
https://doi.org/10.1016/j.procs.2018.05.001


Remote Sens. 2024, 16, 336 23 of 25

25. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classifica-
tion and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [CrossRef]
[PubMed]

26. Wu, H.; Shapiro, J.L. Does overfitting affect performance in estimation of distribution algorithms. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 433–434. [CrossRef]

27. Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random
forest and boosted regression trees. Geocarto Int. 2021, 37, 5479–5496. [CrossRef]

28. Aydin, H.E.; Iban, M.C. Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms
with SHapley Additive exPlanations. Nat. Hazards 2023, 116, 2957–2991. [CrossRef]

29. Roelofs, R.; Shankar, V.; Recht, B.; Fridovich-Keil, S.; Hardt, M.; Miller, J.; Schmidt, L. A meta-analysis of overfitting in machine
learning. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://dl.acm.org/doi/pdf/10.5555/3454287.3455110
(accessed on 29 June 2021).

30. Ying, X. An overview of overfitting and its solutions. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing:
Bristol, UK, 2019; Volume 1168, p. 22022.

31. Raskutti, G.; Wainwright, M.J.; Yu, B. Early stopping and non-parametric regression: An optimal data-dependent stopping rule. J.
Mach. Learn. Res. 2014, 15, 335–366.

32. Zanotti, C.; Rotiroti, M.; Sterlacchini, S.; Cappellini, G.; Fumagalli, L.; Stefania, G.A.; Nannucci, M.S.; Leoni, B.; Bonomi, T.
Choosing between linear and nonlinear models and avoiding overfitting for short and long term groundwater level forecasting in
a linear system. J. Hydrol. 2019, 578, 124015. [CrossRef]

33. Besler, E.; Wang, Y.C.; Chan, T.C.; Sahakian, A.V. Real-time monitoring radiofrequency ablation using tree-based ensemble
learning models. Int. J. Hyperth. 2019, 36, 427–436. [CrossRef]

34. Mutasa, S.; Sun, S.; Ha, R. Understanding artificial intelligence based radiology studies: What is overfitting? Clin. Imaging 2020,
65, 96–99. [CrossRef]

35. AlThuwaynee, O.F.; Kim, S.-W.; Najemaden, M.A.; Aydda, A.; Balogun, A.-L.; Fayyadh, M.M.; Park, H.-J. Demystifying
uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF)
algorithms. Environ. Sci. Pollut. Res. 2021, 28, 43544–43566. [CrossRef]

36. Wilby, R.L.; Yu, D. Mapping Climate Change Impacts on Smallholder Agriculture in Yemen Using GIS Modeling Approaches; Final
Technical Report on behalf of the International Fund for Agricultural Development; IFAD: Rome, Italy, 2013.

37. Kruck, W.; Schäffer, U.; Thiele, J. Explanatory Notes on the Geological Map of the Republic of Yemen-Western Part-(Former Yemen
Arab Republic). 1996. Available online: https://www.schweizerbart.de/publications/detail/isbn/9783510962594/Geologisches_
Jahrbuch_Reihe_B_Heft (accessed on 27 June 2021).

38. Weiss, C.; O′Neill, D.A.; Koch, R.; Gerlach, I. Petrological characterisation of ‘alabaster’from the Marib province in Yemen and its
use as an ornamental stone in Sabaean culture. Arab. Archaeol. Epigr. 2009, 20, 54–63. [CrossRef]

39. Bruggeman, H.Y. Agro-Climatic Resources of Yemen. Part 1. Agro-Climatic Inventory; FAO Project GCP/YEM/021/ NET, Field
Document 11; AREA: Dhamar, Yemen, 1997.

40. Al-Akad, S.; Akensous, Y.; Hakdaoui, M.; Al-Nahmi, F.; Mahyoub, S.; Khanbari, K.; Swadi, H. Mapping of Land-Cover Change
Analysis in Ma’rib at Yemen Using Remote Sensing and GIS Techniques. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2019, 4212, 1–10. [CrossRef]

41. United Nations Office for Disaster Risk Reduction. Satellite Detected Waters in Marib Governorate of Yemen. 2020. Avail-
able online: https://www.preventionweb.net/publication/satellite-detected-waters-marib-governorate-yemen-15-august-2020
(accessed on 27 July 2021).

42. Soliman, M.M.; El Tahan, A.H.M.H.; Taher, A.H.; Khadr, W.M.H. Hydrological analysis and flood mitigation at Wadi Hadramawt,
Yemen. Arab. J. Geosci. 2015, 8, 10169–10180. [CrossRef]

43. Al-Masawa, M.I.; Manab, N.A.; Omran, A. The effects of climate change risks on the mud architecture in Wadi Hadhramaut,
Yemen. In The Impact of Climate Change on Our Life; Springer: Singapore, 2018; pp. 57–77. [CrossRef]

44. El Tahan, A.H.M.H.; Elhanafy, H.E.M. Statistical analysis of morphometric and hydrologic parameters in arid regions, case study
of Wadi Hadramaut. Arab. J. Geosci. 2016, 9, 88. [CrossRef]

45. Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide
susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at
Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [CrossRef]

46. Tehrany, M.S.; Kumar, L. The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping
and comparison with frequency ratio and logistic regression methods. Environ. Earth Sci. 2018, 77, 490. [CrossRef]

47. Al-Aizari, A.R.; Al-Masnay, Y.A.; Aydda, A.; Zhang, J.; Ullah, K.; Islam, A.R.M.T.; Habib, T.; Kaku, D.U.; Nizeyimana, J.C.;
Al-Shaibah, B.; et al. Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen. Remote Sens.
2022, 14, 4050. [CrossRef]

48. Pradhan, B.; Tehrany, M.S.; Jebur, M.N. A new semiautomated detection mapping of flood extent from TerraSAR-X satellite
image using rule-based classification and taguchi optimization techniques. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4331–4342.
[CrossRef]

https://doi.org/10.1007/s10661-015-5049-6
https://www.ncbi.nlm.nih.gov/pubmed/26687087
https://doi.org/10.1145/1143997.1144078
https://doi.org/10.1080/10106049.2021.1920636
https://doi.org/10.1007/s11069-022-05793-y
https://dl.acm.org/doi/pdf/10.5555/3454287.3455110
https://doi.org/10.1016/j.jhydrol.2019.124015
https://doi.org/10.1080/02656736.2019.1587008
https://doi.org/10.1016/j.clinimag.2020.04.025
https://doi.org/10.1007/s11356-021-13255-4
https://www.schweizerbart.de/publications/detail/isbn/9783510962594/Geologisches_Jahrbuch_Reihe_B_Heft
https://www.schweizerbart.de/publications/detail/isbn/9783510962594/Geologisches_Jahrbuch_Reihe_B_Heft
https://doi.org/10.1111/j.1600-0471.2008.00309.x
https://doi.org/10.5194/isprs-archives-XLII-4-W12-1-2019
https://www.preventionweb.net/publication/satellite-detected-waters-marib-governorate-yemen-15-august-2020
https://doi.org/10.1007/s12517-015-1859-7
https://doi.org/10.1007/978-981-10-7748-7_3
https://doi.org/10.1007/s12517-015-2195-7
https://doi.org/10.1007/s11069-012-0347-6
https://doi.org/10.1007/s12665-018-7667-0
https://doi.org/10.3390/rs14164050
https://doi.org/10.1109/TGRS.2016.2539957


Remote Sens. 2024, 16, 336 24 of 25

49. Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using
machine learning techniques. CATENA 2019, 175, 174–192. [CrossRef]

50. Mudashiru, R.B.; Sabtu, N.; Abustan, I. Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: A
review. Arab. J. Geosci. 2021, 14, 941. [CrossRef]

51. Mohammadi, A.; Kamran, K.V.; Karimzadeh, S.; Shahabi, H.; Al-Ansari, N. Flood detection and susceptibility mapping using
sentinel-1 time series, alternating decision trees, and bag-adtree models. Complexity 2020, 2020, 4271376. [CrossRef]

52. Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens.
2016, 37, 2990–3004. [CrossRef]

53. Arora, A.; Arabameri, A.; Pandey, M.; Siddiqui, M.A.; Shukla, U.K.; Bui, D.T.; Mishra, V.N.; Bhardwaj, A. Optimization of
state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the
Middle Ganga Plain, India. Sci. Total Environ. 2021, 750, 141565. [CrossRef] [PubMed]

54. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support
vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [CrossRef]

55. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami,
S.; et al. Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach:
Hybrid intelligence of bagging ensemble based on K-Nearest Neighbor classifier. Remote Sens. 2020, 12, 266. [CrossRef]

56. Rahmati, O.; Pourghasemi, H.R. Identification of critical flood prone areas in data-scarce and ungauged regions: A comparison of
three data mining models. Water Resour. Manag. 2017, 31, 1473–1487. [CrossRef]

57. Chakrabortty, R.; Pal, S.C.; Janizadeh, S.; Santosh, M.; Roy, P.; Chowdhuri, I.; Saha, A. Impact of Climate Change on Future Flood
Susceptibility: An Evaluation Based on Deep Learning Algorithms and GCM Model. Water Resour. Manag. 2021, 35, 4251–4274.
[CrossRef]

58. Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Malik, S.; Das, B. Threats of climate and land use change on future flood
susceptibility. J. Clean. Prod. 2020, 272, 122757. [CrossRef]

59. Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and
hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [CrossRef]

60. Almeshreki, D.; Mohamed, H.A. Renewable Natural Resources Research Center (RNRRC) in the Agricultural Research &
Extension Authority (AREA), Dhamar, Yemen. Geocarto Int. 2006.

61. Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence
models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [CrossRef]

62. Ha, H.; Luu, C.; Bui, Q.D.; Pham, D.-H.; Hoang, T.; Nguyen, V.-P.; Vu, M.T.; Pham, B.T. Flash flood susceptibility prediction
mapping for a road network using hybrid machine learning models. Nat. Hazards 2021, 109, 1247–1270. [CrossRef]

63. Pham, B.T.; Phong, T.V.; Nguyen, H.D.; Qi, C.; Al-Ansari, N.; Amini, A.; Ho, L.S.; Tuyen, T.T.; Yen, H.P.H.; Ly, H.-B. A comparative
study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood
susceptibility mapping. Water 2020, 12, 239. [CrossRef]

64. Tsagkrasoulis, D.; Montana, G. Random forest regression for manifold-valued responses. Pattern Recognit. Lett. 2018, 101, 6–13.
[CrossRef]

65. Breiman, L.; Last, M.; Rice, J. Random forests: Finding quasars. In Statistical Challenges in Astronomy; Springer: New York, NY,
USA, 2003; pp. 243–254. [CrossRef]

66. Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B. Modeling flood susceptibility
using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020,
701, 134979. [CrossRef] [PubMed]

67. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
68. Al-Abadi, A.M. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: A

comparative study. Arab. J. Geosci. 2018, 11, 218. [CrossRef]
69. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for

landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [CrossRef]
70. Pradhan, A.M.S.; Kim, Y.-T. Rainfall-induced shallow landslide susceptibility mapping at two adjacent catchments using advanced

machine learning algorithms. ISPRS Int. J. Geo-Inf. 2020, 9, 569. [CrossRef]
71. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: Extreme gradient boosting. R Packag. Version 0.4-2 2015,

1, 1–4.
72. Hariri-Ardebili, M.A.; Barak, S. A series of forecasting models for seismic evaluation of dams based on ground motion meta-

features. Eng. Struct. 2020, 203, 109657. [CrossRef]
73. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar,

N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by
stacking machine learning models and rescanning covariate space. Remote Sens. 2020, 12, 1095. [CrossRef]

74. Boehmke, B.; Greenwell, B. Hands-on Machine Learning with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019;
ISBN 0367816377.

75. Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning–XGBoost analysis of language networks to classify
patients with epilepsy. Brain Inform. 2017, 4, 159–169. [CrossRef] [PubMed]

https://doi.org/10.1016/j.catena.2018.12.011
https://doi.org/10.1007/s12517-021-07263-4
https://doi.org/10.1155/2020/4271376
https://doi.org/10.1080/01431161.2016.1192304
https://doi.org/10.1016/j.scitotenv.2020.141565
https://www.ncbi.nlm.nih.gov/pubmed/32882492
https://doi.org/10.1016/j.jhydrol.2014.03.008
https://doi.org/10.3390/rs12020266
https://doi.org/10.1007/s11269-017-1589-6
https://doi.org/10.1007/s11269-021-02944-x
https://doi.org/10.1016/j.jclepro.2020.122757
https://doi.org/10.1016/j.jhydrol.2020.125007
https://doi.org/10.1080/10106049.2015.1041559
https://doi.org/10.1007/s11069-021-04877-5
https://doi.org/10.3390/w12010239
https://doi.org/10.1016/j.patrec.2017.11.008
https://doi.org/10.1007/b97240
https://doi.org/10.1016/j.scitotenv.2019.134979
https://www.ncbi.nlm.nih.gov/pubmed/31733400
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s12517-018-3584-5
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.3390/ijgi9100569
https://doi.org/10.1016/j.engstruct.2019.109657
https://doi.org/10.3390/rs12071095
https://doi.org/10.1007/s40708-017-0065-7
https://www.ncbi.nlm.nih.gov/pubmed/28434153


Remote Sens. 2024, 16, 336 25 of 25

76. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

77. Probst, P.; Boulesteix, A.-L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn.
Res. 2019, 20, 1934–1965.

78. Mangukiya, N.K.; Sharma, A. Flood risk mapping for the lower Narmada basin in India: A machine learning and IoT-based
framework. Nat. Hazards 2022, 113, 1285–1304. [CrossRef]

79. Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning
algorithms. Sci. Rep. 2020, 10, 9952. [CrossRef] [PubMed]

80. Remondo, J.; González, A.; De Terán, J.R.D.; Cendrero, A.; Fabbri, A.; Chung, C.-J.F. Validation of landslide susceptibility maps;
examples and applications from a case study in Northern Spain. Nat. Hazards 2003, 30, 437–449. [CrossRef]

81. Avand, M.; Kuriqi, A.; Khazaei, M.; Ghorbanzadeh, O. DEM resolution effects on machine learning performance for flood
probability mapping. J. Hydro-Environ. Res. 2022, 40, 1–16. [CrossRef]

82. Yariyan, P.; Janizadeh, S.; Van Phong, T.; Nguyen, H.D.; Costache, R.; Van Le, H.; Pham, B.T.; Pradhan, B.; Tiefenbacher, J.P.
Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping. Water Resour.
Manag. 2020, 34, 3037–3053. [CrossRef]

83. Baig, M.A.; Xiong, D.; Rahman, M.; Islam, M.M.; Elbeltagi, A.; Yigez, B.; Rai, D.K.; Tayab, M.; Dewan, A. How do multiple kernel
functions in machine learning algorithms improve precision in flood probability mapping? Nat. Hazards 2022, 113, 1543–1562.
[CrossRef]

84. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector
machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [CrossRef]

85. Van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.; van Dongen, B.F.; Kindler, E.; Günther, C.W. Process mining: A two-step
approach to balance between underfitting and overfitting. Softw. Syst. Model. 2010, 9, 87–111. [CrossRef]

86. Erzin, Y.; Cetin, T. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple
regressions. Comput. Geosci. 2013, 51, 305–313. [CrossRef]

87. Hasanuzzaman, M.; Islam, A.; Bera, B.; Shit, P.K. A comparison of performance measures of three machine learning algorithms
for flood susceptibility mapping of river Silabati (tropical river, India). Phys. Chem. Earth Parts A/B/C 2022, 127, 103198. [CrossRef]

88. Antzoulatos, G.; Kouloglou, I.-O.; Bakratsas, M.; Moumtzidou, A.; Gialampoukidis, I.; Karakostas, A.; Lombardo, F.; Fiorin,
R.; Norbiato, D.; Ferri, M. Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using
Satellite Imagery and GIS Data. Sustainability 2022, 14, 3251. [CrossRef]

89. Arabameri, A.; Seyed Danesh, A.; Santosh, M.; Cerda, A.; Chandra Pal, S.; Ghorbanzadeh, O.; Roy, P.; Chowdhuri, I. Flood
susceptibility mapping using meta-heuristic algorithms. Geomat. Nat. Hazards Risk 2022, 13, 949–974. [CrossRef]

90. Sachdeva, S.; Kumar, B. Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods. Ecol. Inform.
2022, 67, 101498. [CrossRef]

91. Saqalli, M.; Hamrita, A.; Maestripieri, N.; Boussetta, A.; Rejeb, H.; Mata Olmo, R.; Kassouk, Z.; Belem, M.; Saenz, M.; Mouri, H.
“Not seen, not considered”: Mapping local perception of environmental risks in the Plain of Mornag and Jebel Ressass (Tunisia).
Euro-Mediterr. J. Environ. Integr. 2020, 5, 30. [CrossRef]

92. Ghosh, S.; Saha, S.; Bera, B. Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan
foreland basin. Nat. Hazards Res. 2022, 2, 363–374. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11069-022-05347-2
https://doi.org/10.1038/s41598-020-67024-3
https://www.ncbi.nlm.nih.gov/pubmed/32561836
https://doi.org/10.1023/B:NHAZ.0000007201.80743.fc
https://doi.org/10.1016/j.jher.2021.10.002
https://doi.org/10.1007/s11269-020-02603-7
https://doi.org/10.1007/s11069-022-05357-0
https://doi.org/10.1007/s00477-015-1021-9
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1016/j.cageo.2012.09.003
https://doi.org/10.1016/j.pce.2022.103198
https://doi.org/10.3390/su14063251
https://doi.org/10.1080/19475705.2022.2060138
https://doi.org/10.1016/j.ecoinf.2021.101498
https://doi.org/10.1007/s41207-020-00166-y
https://doi.org/10.1016/j.nhres.2022.06.003

	Introduction 
	Materials and Methods 
	The Case Studies 
	Marib City 
	Shibam City 

	Data Sources 
	Flood Inventory Map 
	Flood Conditioning Factors 

	Method 
	RF Model 
	XGB Model 
	Hyper-Parameter Optimization 
	Model Assessment 

	Development of Flood Probability Maps 

	Results 
	Visualization of Prediction Variables 
	Modeling Using Default Settings 
	Selecting the Most Optimized Model for Susceptibility Mapping 

	Discussion 
	Conclusions 
	References

