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Abstract: The thermal band of a satellite platform enables the measurement of land surface temperature
(LST), which captures the spatial-temporal distribution of energy exchange between the Earth and
the atmosphere. LST plays a critical role in simulation models, enhancing our understanding of
physical and biochemical processes in nature. However, the limitations in swath width and orbit
altitude prevent a single sensor from providing LST data with both high spatial and high temporal
resolution. To tackle this challenge, the unmixing-based spatiotemporal fusion model (STFM) offers a
promising solution by integrating data from multiple sensors. In these models, the surface reflectance
is decomposed from coarse pixels to fine pixels using the linear unmixing function combined with
fractional coverage. However, when downsizing LST through STFM, the linear mixing hypothesis fails
to adequately represent the nonlinear energy mixing process of LST. Additionally, the original weighting
function is sensitive to noise, leading to unreliable predictions of the final LST due to small errors in
the unmixing function. To overcome these issues, we selected the U-STFM as the baseline model and
introduced an updated version called the nonlinear U-STFM. This new model incorporates two deep
learning components: the Dynamic Net (DyNet) and the Chang Ratio Net (RatioNet). The utilization of
these components enables easy training with a small dataset while maintaining a high generalization
capability over time. The MODIS Terra daytime LST products were employed to downscale from 1000
m to 30 m, in comparison with the Landsat7 LST products. Our results demonstrate that the new model
surpasses STARFM, ESTARFM, and the original U-STFM in terms of prediction accuracy and anti-noise
capability. To further enhance other STFMs, these two deep-learning components can replace the linear
unmixing and weighting functions with minor modifications. As a deep learning-based model, it can
be pretrained and deployed for online prediction.

Keywords: spatial-temporal fusion; deep learning; U-STFM; land surface temperature downscaling;
MODIS Terra; Landsat7

1. Introduction

Land surface temperature (LST) data from satellite-based thermal sensors captures
detailed variations in the energy distribution of the Earth’s surface over space and time.
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These data play an essential role in applications such as evapotranspiration observation
and urban heat modeling [1–3]. However, owing to the limitations of the satellite orbit and
sensor design, there is usually a trade-off between the spatial and temporal resolutions
of the thermal band. Daily sensors can only provide data with a lower spatial resolution,
such as MODIS LST with a 1 km resolution. Fine-resolution (100 or less) sensors are
usually limited to their swath width and orbit altitude and can only provide data within
days, such as the Landsat series platform within eight days (combining Landsat7 , 8, and
9). Therefore, regarding the boosting of available satellite resources, merging data from
multiple satellite sensors is one of the key challenges for obtaining high spatial-temporal
resolution observations, which will further benefit many comprehensive applications such
as earth surface energy modeling and precision farming [3].

To overcome this limitation, many super-resolution or fusion models have been re-
cently developed to produce daily LST observations with fine spatial resolution in both
computer vision and remote sensing fields. These models can be grouped into three
categories: (1) learning-based, (2) regression-based, and (3) spatial-temporal fusion-based.

Learning-based models are mainly from the computer vision perspective, with the
assumption that the relationship between coarse and fine pixels can be described by a point
spread function (PSF), which represents a mixing process that builds low-resolution pixels
with high-resolution pixels [4]. The PSF is scale-related but maintains temporal and spatial
consistency and can be modeled by a learning system. Before 2015, PSFs were mainly
constructed using image reconstruction (RE) models, such as kernel-based methods [5],
deconvolution models [6], sparse coding [7–9], and SVM-based methods [10]. With the
considerable advances of deep learning technologies in semantic segmentation and imaging,
deep networks were first introduced in the super-resolution problem to capture PSF with
SRCNN [11] and SRGAN [12]. Later, these technologies enhanced the remote sensing field
models, including CNN-based: STFDCNN [13], DCSTFN [14], stfNet [15], EDCSTFN [16],
and HSRNet [17]; and GAN-based: ISRGAN [18], STFGAN [19], CycleGAN-STF [20],
and GAN-STFM [21]. The advantage of a learning-based model is that once it has been
trained with sufficient samples, both the accuracy and efficiency of the prediction can be
guaranteed. However, considering the rapid changes in both the spatial and temporal
variations in daily LST, it may be impossible for a universal PSF to accurately capture the
mixing of low-resolution remote sensing images based on a limited number of samples.
Furthermore, without the guidance of physical principles, the features, and weights learned
by the deep learning-based models are usually difficult for humans to comprehend, which
limits error tracing when an unreliable prediction occurs.

In contrast to learning-based models, which focus on learning the relationship only
from coarse and fine images, the second category comprises regression-based models. These
models are based on the assumption that the thermal band values detected by sensors can be
modeled using several ancillary biophysical parameters (e.g., surface reflectance ratio, land
use, land cover types, vegetation indices, and other outputs from simulation models) [22].
Disaggregation of radiometric surface temperature (DisTrad) [23] and thermal imagery
sharpening (TsHARP) [24] are the first two models to downscale coarse LST based on
the vegetation index-radiometric surface temperature relationship (VI-based model). This
relationship has been evaluated at global and local scales [25]. Many nonlinear machine
learning-based methods have been used to capture this relationship, such as random
forest regression [26], random forest area-to-point kriging [27], and Gaussian filtering [22].
Based on vegetation index and slope data, high-level passive microwave (PMW) LST data
were downscaled to fill the gap in MODIS LST observations with cumulative distribution
function (CDF) matching and multiresolution Kalman filtering (MKF) to produce all-
weather LST data [28]. In addition to satellite-based ancillary data, the land surface models
can be integrated with MODIS and Landsat LST to generate a gapless LST for diurnal
dynamic studies [29]. However, regression-based models assume that the relationship
between LST and LST predictors is location-invariant, which may not be applicable when
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applying local pretrained relationships on a regional scale. Moreover, the performance of
these models relies on the spatial resolution and accuracy of ancillary data.

The spatial-temporal fusion-based models (STFM) are based on the spatially and
temporally continuous characteristics of land surface dynamics and utilize time-series
satellite data to capture the relationships between coarse and fine pixels over space and
time [30]. They provide a promising method for merging data from multiple sensors
without considering the limitations of the downscaling ratio problem in most learning-
based models in the computer vision field. Because both resolution observations are
continuously updated by different satellites, the fused high-resolution spatial-temporal
data can capture the dynamic changes of the surface, such as phenological and land cover
changes [31,32]. Over the last decade, several STFMs have been developed based on
these two essential concepts. First images are fused based on a weighting process that
assumes that the residual between the coarse and fine pixels at the target time point (tk)
can be estimated by a linear weighting function with the number of residuals of available
coarse-fine pixel pairs at the time before (t0). These coarse-fine pixel pair searches can be
based on the spectral and temporal similarities at given spatial and temporal searching
windows. Therefore, these models have been grouped as weighting-based models such
as STARFM [33,34], STAARCH [35], ESTARFM [36], and Fit-FC [37]. Second, images are
fused based on an unmixing process that assumes that the coarse pixel changing signal
(usually the changing ratio or residual in the time series) can be unmixed based on several
endmembers with factional cover, which can then be added to the fine-resolution image
with a weighting function. Typical models include the MMT [38], STDFA [39], ESTDFM [40],
U-STFM [41], STRUM [42], OB-STVIUM [43], and ISTDFA [44]. In these models, the number
of endmembers, or homogeneous change regions (HCRs), is one of the criterion parameters
for any unmixing-based model. In recent years, many models have combined these two
fundamental ideas (weighting and unmixing) and achieved great success in overcoming
the limitations of the weighting-based model when modeling surface changes. They are
suitable for capturing changes such as phenological and land cover changes. Typical models
include FSDAF [45], FSDAF 2.0 [46], TC-Umixing [47], RASDF [48], and VSDF [49].

When considering the downscaling of land surface temperature (LST), it is important to
acknowledge that the diurnal dynamics of LST experience changes influenced by dynamic
solar radiation at varying azimuth and zenith angles, as well as factors such as wind
speed and surface moisture. This highly dynamic spatial and temporal characteristic
presents three significant challenges for the conventional spatial-temporal fusion-based
model (detailed analysis is shown in Section 2.1). Firstly, the mixing process of the thermal
signal exhibits nonlinearity. For instance, in coarse pixels, the signal can be dominated by
subpixel hot or cold spots, which are unrelated to the fractional coverage. Consequently,
the current linear system may not be suitable for the spatial-temporal unmixing of LST [50].
Secondly, in the current linear unmixing system, too many endmembers or HCRs with
small factional coverage cause the unmixing function to become an ill-posed problem and
fail to provide the correct solution. Thirdly, the current weighting function is susceptible to
noise, resulting in unreliable predictions of the final LST due to minor errors in the input
data. The underlying reason for this is that the theoretical weighting function have a low
tolerance for data noise.

To address the three limitations of the current spatiotemporal fusion model (STFM),
this study introduces an enhanced U-STFM model that incorporates deep learning com-
ponents for nonlinear downscaling of land surface temperature (LST). Specifically, we
incorporate two deep learning components, namely DyNet and RatioNet, to replace the
original unmixing and weighting functions. We selected the U-STFM as the baseline model,
which initially focused on downscaling MODIS surface reflectance [41] and later extended
its application to predict dynamic parameters by downscaling MODIS ocean chlorophyll
concentration products [51]. In this study, we tested and compared the model in Shenzhen,
China, a region characterized by rapid land cover changes driven by economic growth.

The primary objectives of this study are as follows:
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• Develop a deep learning component (DyNet) for nonlinear unmixing of LST within
the U-STFM framework.

• Improve the anti-noise capability of the weighting function by leveraging the data
distribution captured by a deep learning component (RatioNet).

• Extend the original U-STFM model from surface reflectance downscaling to accommo-
date sensors with higher temporal variability, enabling the production of daily LST
products at a 30 m scale.

The structure of this study is as follows: Section 2 introduces the study area and the
datasets selected for this research. Section 3 discusses the limitations of the original U-STFM
and provides detailed information about the nonlinear U-STFM. Section 4 presents the
results, while Section 5 highlights the limitations of the nonlinear U-STFM. Finally, the
conclusion is presented in Section 6.

2. Study Area and Datasets
2.1. Study Area

With the rapid development of urbanization, the urban heat island effect has a sig-
nificant impact on the ecological environment of cities and surrounding areas. The urban
heat island effect refers to the phenomenon where cities experience higher temperatures
compared to their surrounding rural areas. This temperature difference is primarily caused
by human activities and urban infrastructure, such as buildings, pavement, and transporta-
tion systems, which absorb and retain heat more effectively than natural landscapes. As
cities continue to grow and urbanize at a rapid pace, the urban heat island effect becomes
more pronounced. The phenomenon can lead to various environmental and ecological
consequences. For instance, it can affect the local climate, air quality, energy consump-
tion, and even human health. Therefore, understanding and mitigating the urban heat
island effect are crucial for creating sustainable and livable cities, which heavily rely on
high-spatiotemporal-resolution surface temperature monitoring data.

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is a region in China
undergoing rapid urbanization. Within the GBA, the cities of Dongguan and Shenzhen,
serving as key urban centers, have witnessed significant transformations in land use
and urban growth due to the country’s swift economic development. Extensive areas of
wasteland and woodland have been converted into urban areas, leading to a rapid change
in the spatial pattern of land surface temperature.

For the purpose of this study, a specific portion of the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA) was selected as this study area, covering approximately 1843 km2

(between 113◦49′13′ ′ E–114◦16′10′ ′ E and 22◦37′17′ ′ N–22◦59′48′ ′ N), as depicted in Figure 1.
This selected area features a complex topography and encompasses a wide range of land
cover types, providing a comprehensive scenario to assess the capability of the spatiotem-
poral fusion model (STFM) in handling rapid land cover changes.

2.2. Dataset

The MODIS Terra daytime LST products were employed to downscale from 1000 m
to 30 m, in comparison with the Landsat7 LST products. The MODIS Terra satellite was
selected due to its close overpass time with Landsat7 . In this study, the small difference
in Land Surface Temperature (LST) between these two satellites on the same date was
regarded as a system error and can be ignored regarding the huge LST difference among
different dates. MODIS LST products (MOD11A1.006) and Landsat7 ETM + LST products
(Landsat7 ETM Plus Collection 2 Level-2) were obtained from the USGS Earth Explorer
(https://earthexplorer.usgs.gov (accessed on 12 April 2022)). The ETM + LST has a spatial
resolution of 30 m after USGS processing and a revisit frequency of 16 days. MODIS LST
products have a spatial resolution of 1000 m and a return frequency of 1 d. Because of the
failure of ETM + SLC after 31 May 2003, and the perennial cloudy and rainy conditions
in the study area, this study selected data with a cloud cover threshold of less than 1%

https://earthexplorer.usgs.gov


Remote Sens. 2024, 16, 322 5 of 28

from September 2000 to May 2003 and collected eight valid Landsat7 LST and MODIS LST
image pairs. The details are presented in Table 1.
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Table 1. List of Landsat7 LST and MODIS LST products used in the study area.

Date Landsat7 LST and MODIS LST Data Names Spatial Resolution (m)

14 September 2000
LE71220442000258SGS00 30
MOD11A1.A2000258.h28v06.061 1000

1 November 2000
LE71220442000306SGS00 30
MOD11A1.A2000306.h28v06.061 1000

17 September 2001
LE71220442001260SGS00 30
MOD11A1.A2001260.h28v06.061 1000

20 November 2001
LE71220442001324SGS00 30
MOD11A1.A2001324.h28v06.061 1000

22 December 2001
LE71220442001356BKT00 30
MOD11A1.A2001356.h28v06.061 1000

7 January 2002
LE71220442002007SGS00 30
MOD11A1.A2002007.h28v06.061 1000

7 November 2002
LE71220442002311EDC00 30
MOD11A1.A2002311.h28v06.061 1000

10 January 2003
LE71220442003010EDC00 30
MOD11A1.A2003010.h28v06.061 1000

3. Methodology
3.1. The Original U-STFM

In this study, we chose the U-STFM as our baseline model. The U-STFM model was
first introduced by Huang and Zhang for surface reflectance data in 2014. This model is a
typical unmixing-based STFM model that contains both the linear unmixing and weighting
functions. A detailed explanation of U-STFM can be found in the original paper [41]. We
provide a brief introduction to U-STFM here.
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In U-STFM, to predict more detailed information for each MODIS pixel, a nonlinear
unmixing process is used, which assumes that the coarse MODIS LST signal can be mixed
with the average LST signal of each HCR. The mixing process is described in Equation (1).

Mt(i, j) = f
(

MM30
t (i, j)

)
(1)

where Mt(i, j) is the LST of the MODIS pixel (i, j) on date t; MM30
t (i, j) represents the ideal

super-resolution MODIS pixels with the same configuration as the MODIS sensor but its
spatial resolution is 30 m. f (·) is the nonlinear mixing function.

The change ratio between the
[
tpre, tk

]
and

[
tk, tpost

]
periods can be calculated from

both Landsat and MODIS images, where tpre is the start date, tk is the targeted date, tpost
is the end date. The fundamental assumption of U-STFM is that the change ratios from
Landsat and super-resolution MODIS are identical. Therefore, the change ratio in a Landsat
pixel (i, j) can be defined as

aL
k (i, j) =

LSTpost(i, j)− LST(i, j)
LST(i, j)− LSTpre(i, j)

(2)

where LSTpost(i, j) is the Landsat LST on the end date tpost; Lk(i, j) is the Landsat LST on
the targeted date tk; and LSTpre(i, j) is the Landsat LST on the start date tpre. The aL

k (i, j)
cannot be solved directly, because the Lk(i, j) is unknown.

Similarly, the change ratio of super-resolution MODIS images can be defined as:

aM30
k (i, j) =

∆MM30
ke (i, j)

∆MM30
0k (i, j)

= aL
k (i, j) (3)

combining Equations (2) and (3), the Lk(i, j) on the targeted date can be calculated by the
theoretical weighting function as:

LSTk(i, j) =
LSTpost(i, j) + aM30

k (i, j)LSTpre(i, j)
1 + aM30

k (i, j)
(4)

the key to solving Equation (4) is to calculate aM30
k by unmixing the coarse resolution

aMODIS
k :

aM30
k (i, j) = f−1(αMODIS(i, j)) (5)

where f−1(·) is the unmixing function and aM30
k (i, j) is the time change ratio on the 30 m

scale. In practice, to ensure that we can obtain a stable solution, we reduce the number of
dependent variables aM30

k (i, j) in Equation (5) by replacing it with the average time change
ratio on the 30 m scale for HCRs aHCR

landsat(i, j).

3.2. Problems with the Original U-STFM

In this study, our primary focus is addressing two key issues associated with the
original U-STFM. The first problem pertains to the linear instability of the original un-
mixing function, while the second problem relates to the error sensitivity of the original
weighting function.

The unmixing function plays a crucial role in spatial and temporal data fusion models.
The original unmixing function is based on the linear unmixing theory, which assumes
that the energy of the coarse pixel can be expressed as a linear combination of the fine-
resolution pixels, weighted by their coverage fractions. As depicted in Figure 1, the linear
unmixing function allows us to determine the temporal change ratio at the HCR level
(αHCR

Landsat) by assigning multiple change ratios at the MODIS level (αMODIS) and utilizing
the coverage fraction matrix. This function can be solved when the number of αMODIS
images exceeds the number of unknown αHCR

Landsat values. Typically, this condition is satisfied
due to the significantly larger number of MODIS pixels in this study area compared to the
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number of HCRs. However, as illustrated in Figure 2, when the number of HCRs increases,
the coverage fraction matrix (highlighted in red) becomes sparse, leading to increased
instability in the linear system.
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the case when HCRs are only covered by one MODISpixel as the result of making the coverage faction
matrix sparser.

The fine-resolution image was predicted by synthesizing the fine images prior to and
following the target date (LSTper, LSTpost) with the LST change ratio at the HCR level (α).
However, as depicted in Figure 3, the issue with this weighting function is that the LST
prediction error exhibits varying sensitivity when α contains an error. More specifically,
when α falls within the red region, even a slight change can result in a substantial difference
in the LST prediction. The error tolerance within this region was comparatively small.
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3.3. The Nonlinear U-STFM

The nonlinear U-STFM inherits the scale invariance of the U-STFM model, which
is an unmixing-based STFM model assuming that the thermal signal change ratios in
both MODIS and Landsat time series are identical. Therefore, the change ratio captured
in the MODIS time series can be applied to the Landsat series under the assumption of
scale invariance.

The fundamental concept behind this study is that both the instability of the unmix-
ing function and the high sensitivity of the original weighting function to errors can be
addressed through data-driven nonlinear modeling. Firstly, the employment of a nonlinear
model ensures improved stability, regardless of the sparsity of the coefficient matrix in the
original linear unmixing system. Furthermore, the nonlinear projection between fine and
coarse thermal signals is more representative of reality, as hot or cold spots can nonlinearly
dominate the thermal signals in coarse pixels. Secondly, by considering the actual data
distribution in the feature space, the sensitivity of the weighting function to errors can
be mitigated. Consequently, a data-driven, nonlinear model offers a viable solution to
this problem.
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Following this idea, we designed two multilayer perceptrons (DyNet and RatioNet)
that form data-driven nonlinear projections in both the unmixing and weighting processes.
As depicted in Figure 4, the prediction of the 30 m-level Land Surface Temperature (LST)
on the target date involves organizing the MODIS LST data from the previous, target,
and subsequent dates into three date pairs. Subsequently, the LST differences among the
different dates in the MODIS LST dataset can be calculated. Additionally, the change ratio
of MODIS for each pixel can be computed and serves as the input for the DyNet model.
The output of DyNet provides the change ratio for each HCR, which in turn serves as the
input for RatioNet to obtain the final prediction of LST on the target date.
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In contrast to the original U-STFM, the nonlinear U-STFM is a data-driven model
trained using appropriate datasets. The workflow of this study is shown in Figure 5. There
are four main steps. Step 1: identify the homogeneous change regions (HCRs). The HCRs
were identified as regions that have a similar LST change trend and can share a similar
changing ratio for the next step. The time-series high-resolution Landsat data were used
to build up the feature space to identify the HCRs and build the datasets for training.
Step 2: Train the DyNet and RatioNet. The main task of this step was to train the model to
capture the nonlinear relationship of the change ratio between MODIS and sub-pixel HCRs.
After training, the nonlinear U-STFM model was used to predict a higher-resolution LST
product based on time-series MODIS and Landsat data. In the fourth step, we evaluated
the performance of the nonlinear model by comparing it with the original U-STFM and
two commonly used downscaling models, STARFM and ESTARFM.
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Under unified solar radiation and evaporation conditions, similar surface materials
or land cover types showed similar thermal patterns over time. Regions showing similar
change patterns were identified as homogeneous change regions. Each HCR shares a similar
change rate and can be used as an indicator for the unmixing process. In the U-STFM model,
the HCRs were defined by the segmentation process. Considering the model generalization
across time, we defined the HCRs based on the clustering method. Specifically, we used
k-means clustering to define the HCRs for prediction. Different numbers of classes were
compared in this study.

3.3.1. The Nonlinear Unmixing Model (DyNet)

Considering the radiation effect of thermal signals, the traditional linear unmixing
model used in U-STFM is not suitable because hot spots (HCRs) may contribute more to the
MODIS signal depending on its temperature. The relationship between HCRs and MODIS
signals appears to be nonlinear.

To overcome the unstable problem of the unmixing function, a dynamic multilayer per-
ceptron (DyNet) were introduced to capture this nonlinear relationship based on historical
datasets. The workflow is illustrated in Figure 6.

The training dataset for DyNet was calculated using historical Landsat and MODIS
LST products. The input of the DyNet is the time change ratio of the MODIS LST αMODIS
from three dates

[
tpre, tk, tpost

]
, where tpre, tk and tpost represent the previous date, the target

date, and the post date, representatively. The output of the DyNet is the time change ratio
at the HCR level αHCR

Landsat, which is the mean value of the αLandsat at the 30 m level. The
calculations for αMODIS and αLandsat follow Equation (2).

DyNet has two dynamic layers as the input and output layers and five hidden layers
with 128 neurons in each layer. All seven layers are fully connected to capture the nonlinear
relationship. The whole structure can be interpreted as unmixing αHCR

Landsat(1 . . . H) with a
group of MODIS pixels (2000 in this study), where the H represents the number of HCRs
defined by a cluster or segmentation algorithm. The training process of DyNet is based on
a minibatch stochastic gradient descent. As shown in Figure 7, the neurons in the input
layers represent the MODIS pixels in total for solving the nonlinear unmixing problem. For
example, if 2000 MODIS pixels were selected for unmixing, there would be 2000 neurons.
There is no specific requirement for the number of input layers in DyNet, as these MODIS
pixels can cover all homogeneous change regions (HCRs). To avoid potential “ill-pose
problems,” it is recommended to have a sufficiently large number of MODIS pixels to
ensure coverage of all HCRs. This number serves as a hyperparameter of the model. We
randomly selected half of the available MODIS pixels (2000) based on the total count of
4000+ MODIS pixels in the area to ensure coverage of all HCRs. The neurons in the output
layer represent the change ratio of HCRs. Since each batch encompasses only specific
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MODIS pixels and HCRs, the input and output layers are activated solely by the MODIS
pixels and HCRs within that particular batch. Neurons that are not part of the current batch
act as dropouts. Consequently, the input and output layers dynamically change during
the training process. As each batch gives the partial prediction of αHCR

Landsat(1 . . . H), the final
prediction is obtained by combining multiple predictions from each batch using median
calculation for each HCR. The median value is utilized to mitigate the impact of outlier
predictions, as they have a greater influence on the mean value. The mean square error
(MSE) was utilized as a loss function for training purposes. In the case of applying the
model from one region to another, if the same cluster or segmentation rule is employed
across regions, the model can be reused without the need for retraining.
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3.3.2. The Nonlinear Weighting Model (RatioNet)

A multilayer perceptron model trained using real data can effectively capture the
data distribution and construct a latent feature space that enables accurate predictions
based on feature similarity. This model addresses the error-sensitivity issue present in
the original weighting function of U-STFM. The establishment of a stable feature space
is a crucial prerequisite for training artificial models. However, the original weighting
function exhibits two divergent graphs depending on the magnitude of LST at tpre (LSTpre)
and LST at tpost (LSTpost). To train the RatioNet, the data must undergo a transformation
process involving three steps, enabling the conversion of these divergent graphs into a
stable feature space. Further details can be found in Figure 8.
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Step 1: Move the graph up by defining α = α1 − 1. By defining a new variable α1, the
graph of the relationship between α1 becomes symmetric along the x-axis. The weighting
function becomes:

LST = LSTpre +
LSTpost − LSTpre

α1
, where α1 = α + 1 (6)

Step 2: Flip the graph over the X-axis by defining α2.

α2 =

{
−α1, when LSTpost − LSTpre < 0
α1, when LSTpost − LSTpre ≥ 0

(7)

after step 2, the weighting function becomes:

LST = LSTpre +

∣∣LSTpost − LSTpre
∣∣

α2
(8)

Step 3: The effect of different magnitudes of LSTper was removed by changing the
target variable from LST to ∆LST.

∆LST =

∣∣LSTpost − LSTpre
∣∣

α2
, LST = ∆LST + LSTpre (9)
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after data transformation, the input of RatioNet had two components: (1) the absolute
difference of LST at LST at te and t0.

∣∣LSTpost − LSTpre
∣∣; and (2) the transformed change

ratio for each HCR α2(H). The structure and training process of RatioNet are shown in
Figure 9.
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3.3.3. Predicting Daily Higher Resolution LST with the Nonlinear U-STFM

In the prediction stage, multiple three-date pairs [t0, tk, te] were organized from the
time-series MODIS LST products for the target date tk. In each pair, the MODIS time
change ratio aMODIS

k (i, j) was calculated as the DyNet input. The DyNet predicted the
aHCR

k (i, j) as its output. Then, aHCR
k (i, j) was transformed to aHCR

2 (i, j) based on the data
transformation method mentioned in Section 3.3.2 as the input for RatioNet. RatioNet
provided the prediction of the ∆LST and the final LST at fine resolution was then calculated
based on LST = ∆LST + LSTper. Based on this process, each three-date pair can provide
a prediction of LST on the target date. The median value calculated at the pixel level
provided the final LST prediction. The prediction process are shown in Figure 10.
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3.4. Evaluation

In this study, the effectiveness of the model in forecasting the land surface temperature
was assessed using both qualitative and quantitative assessment measures. Landsat LST
data at a spatial resolution of 30 m were used as the ground truth for each forecast. There
were a total of six trustworthy dates spread over eight dates. Various three-date combination
groups were assessed each day; for instance, there were 12 three-date groups available on
20 November 2001. By contrasting and examining the visualization impacts of the expected
and actual LST pictures, a qualitative assessment of model fusion was conducted. For a
quantitative evaluation, the peak signal-to-noise ratio (PSNR), correlation coefficient (CC),
root mean square error (RMSE), and mean absolute error (MAE) were utilized. The PSNR
is an image quality evaluation indicator for full-reference images. The effective range of
the CC value is between the intervals (−1, 1); a value closer to 1 suggests a better fusion
outcome. A better prediction was correlated with a greater PSNR and lower RMSE and
MAE values. All quantitative evaluation indicators were calculated using the function in
the scikit-learn module. The PSNR, CC, RMSE, and MAE were defined as follows:

RMSE =
2

√
∑M

i=1 ∑N
j=1(L(i, j)− P(i, j))2

M × N
(10)

PSNR = 10 × log10
( MAX2

I
MSE

)
(11)

CC =
∑M

i=1 ∑N
j=i (L(i, j)− µL)(P(i, j)− µP)√

∑M
i=1 ∑N

j=i (L(i, j)− µL)
2(P(i, j)− µP)

2
(12)
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RMSE =
√

MSE (13)

MAE =
∑M

i=1 ∑N
j=1|L(i, j)− P(i, j)|

M × N
(14)

where L(i, j) and P(i, j) represent the actual observed Landsat pixel (i, j) and the predicted
image pixel (i, j), respectively; M and N represent the height and width of the image,
respectively; MAX I represents the maximum value of the image color; µL and µP represent
the average value of the observed image and the predicted image, respectively.

4. Results
4.1. DyNet and RatioNet Training Processes

Both DyNet and RatioNet can be easily trained using a minibatch stochastic gradient
descent algorithm. Figure 11 shows the loss changes over 500 epochs during the training
process. For DyNet, the test loss value flattened after 100 epochs, and no sign of overfitting
occurred. The testing loss was higher than the training loss, indicating the difficulty of the
fundamental unmixing process. This may be related to the batch size of the training. DyNet
uses two dynamic layers (Figure 6) to predict the change ratio for each HCR, and a large
batch size is recommended. The mean value for each batch was calculated as the loss. A
larger batch size will involve more MODIS pixels to form the unmixing process, and the loss
value will be closer to the ground-true loss calculated using the entire validation dataset.
The loss plot of RatioNet is smooth, indicating that the learning process of the network
is easier after changing the feature space based on the data transformation described in
Section 3.3.2.
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4.2. LST Prediction on a Cloud Day

The cloud effect was the major source of noise in the LST product. The cloud tem-
perature was significantly lower than the land surface temperature. In our dataset, the
data for 1 November 2000, were partially covered by clouds. Therefore, we evaluated the
performance of the model to predict the LST on a date that contains noise (a cloud, in
this case).

Figure 12 illustrates the predicted change ratio for each homogeneous change region
(HCR) using the DyNet model. A total of six groups of three-date combinations were
considered to predict the Land Surface Temperature (LST) on 1 November 2000. The figure
showcases the consistent performance of the DyNet model across different target dates
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while maintaining uniform parameters. It is important to note that the actual range of the
change ratio for each HCR can encompass any number, as there is no specific range defined
as the ground truth. During the prediction process, the entire image was clipped to a size
of 256 × 256 pixels, serving as input to the model. Each batch provided predictions for the
change ratio of the HCRs covered within that specific batch. Consequently, the boxplot
represents multiple predictions for each HCR, and the median value of these predictions
was utilized as the final change ratio. The root mean square error (RMSE) was calculated to
assess the difference between the predicted and ground-truth values of the change ratio.
Considering the variability of the change ratio across different target dates, the overall
performance of the DyNet model is considered satisfactory.
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Figure 12. The change ratio prediction for each HCR by DyNet: The red cross mark represents the
ground truth, and the median value of the multiple predictions by the different beaches was used as
the final prediction of the change ratio of each HCR.

Table 2 and Figure 13 present the final predictions for each three-date group regarding
the LST on 1 November 2000. The prediction error can be primarily attributed to two factors.
Firstly, it stems from the accuracy of the DyNet model in predicting the change ratio for
each HCR. For instance, in the case of 20000914-20001101-20010917, the root mean square
error (RMSE) for the DyNet prediction reached its highest value at 1.579. Consequently,
the final RMSE for the LST prediction for this particular date triplet amounted to 3.875.
Secondly, the prediction error is influenced by the baseline length, which represents the
difference in LST between the previous and subsequent dates. As depicted in Figure 3,
a smaller baseline size compresses the data space closer to the LSTpre value, resulting
in a larger prediction error for the RatioNet model. For example, consider the case of
20000914-20001101-20021107. The RMSE for the DyNet prediction was relatively small, at
0.864. However, the baseline length for this case was 3.015, indicating a higher degree of
prediction uncertainty for RatioNet.
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Table 2. The prediction of LST at 30 m level based on the nonlinear U-STFM (DyNet+RatioNet) for
each date pair.

PNSR SSIM CC RMSE MAE Mean Baseline Length (SD)

20000914-20001101-20010917 40.276 0.985 0.611 3.875 3.178 6.156 (1.673)
20000914-20001101-20011120 46.198 0.995 0.801 1.960 1.205 7.690 (1.920)
20000914-20001101-20011222 47.443 0.997 0.851 1.698 0.959 17.586 (2.244)
20000914-20001101-20020107 46.584 0.996 0.809 1.874 1.144 10.242 (2.850)
20000914-20001101-20021107 40.137 0.980 0.573 3.937 3.055 3.015 (1.660)
20000914-20001101-20030110 47.139 0.997 0.839 1.758 1.014 13.851 (2.336)

Pixel median value combination 47.241 0.997 0.844 1.738 1.004
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Fortunately, the errors accumulated by DyNet and RatioNet due to a short baseline
can be mitigated through the pixel-level median combination. Figure 13 demonstrates
that the 1:1 plot of the median combination effectively filters out inaccurate predictions,
resulting in improved accuracy.
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The actual land surface temperature observed by Landsat on 1 November 2000, was
partially affected by clouds, as indicated by the red circle in Figure 14c. However, this
partial cloud signal was not captured by the MODIS data shown in Figure 14a, resulting in
the absence of cloud indications in the prediction made by the nonlinear U-STFM model
depicted in Figure 14b. Because the LST values for the cloud-covered area were filled based
on the change ratio within the same HCRs that were uncovered by the cloud, the impact of
the cloud effect can also be observed in both the 1:1 plot (Figure 14d) and the RMSE image
(Figure 14d).
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Figure 14. The final prediction (1 November 2000) based on combining multiple date triplets. (a) the
original MODIS LST on 1 November 2000; (b) the prediction of our model; (c) the Landsat LST; (d) the
1:1 plot between our model prediction and the Landsat LST; (e) the RMSE map between our model
prediction and the Landsat LST. (1)–(3) are subareas shown in Figure 15.
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To assess the model’s ability to detect subtle signals, hot and cold spots were chosen
as reference points. Figure 15 demonstrates that the model successfully captured the hot
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spots, represented by the red spots in regions 1 and 2. Additionally, the model accurately
identified the presence of solar panels on the cold roof in Region 3.

4.3. The LST Prediction after Land Cover Change

In Section 4.2, our focus is primarily on showcasing the prediction performance in
scenarios where cloud effects are present on the target date. In this section, we aim to assess
how the model performs when there are land surface temperature changes prior to the
target date. To simulate these LST changes, we utilize cloud cover as a proxy for land cover
changes in this section.

The LST observed by Landsat on 1 November 2000, exhibited partial cloud coverage.
We made the assumption that these areas covered by clouds represented changes in land
cover. To assess the impact of these changes on subsequent model predictions, we con-
ducted tests. In this section, we designated the LST prediction for 17 September 2001, as
the target date to investigate how the observations from 1 November 2000, influenced the
prediction for 17 September 2001.

Figure 16 shows the prediction results for 17 September 2001. As shown in the RMSE
map (Figure 16e), the LST change that occurred in 1 November 2000, was captured by the
model and reflected in the prediction in 17 September 2001. If the data for 1 November
2000, were removed, the prediction showed no sign of change (Figure 17). The RMSE was
much higher when we removed 1 November 2000 from the time series. This is because for
the prediction of 17 September 2001, in our case, by removing 1 November 2000, 50% of the
date triplets for the final median value combination were removed, which also increased
model uncertainty.
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Figure 17. Comparison of the prediction for 17 September 2001, with or without data for 1 November
2000. Partial cloud coverage marked by the red circle.

4.4. Model Generalization for Multiple Date Prediction

The model’s ability to generalize across different time periods was also evaluated. In
contrast to the original U-STFM approach, which developed separate unmixing models for
each target date, the nonlinear U-STFM employed a consistent unmixing model irrespective
of the date. Figure 18 illustrates a 1:1 plot of the predictions across multiple dates. The
overall root mean square error (RMSE) for these six days of LST prediction remains below
2.1 k, indicating the successful generalization of the uniform unmixing model (DyNet) and
weighting model (RatioNet) across various dates.
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4.5. The Performance of the Model under Different HCR Levels

As mentioned previously, one of the challenges addressed by the nonlinear U-STFM
model is the limitation of the linear unmixing function when dealing with a large number
of HCRs. To evaluate the model’s performance under different HCR levels (HCR-45,
HCR-145, and HCR-245), we compared it with the original U-STFM utilizing a linear
unmixing function.

Figures 19 and 20 present the model comparisons for 1 November 2000, and 17
September 2001, respectively. The 1:1 plot illustrates the results of the median value
combination for both the U-STFM and nonlinear U-STFM models. The boxplot showcases
the range of root mean square error (RMSE) values for three different data triplets.
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Figure 19. Comparison with U-STFM on 1 November 2000 with multiple HCR setups; (a) the results
under 45 HCRs group; (b) the result under 145 HCRs group; (c) the result under 245 HCRs group;
(d) the RMSE boxplot under 45, 145 and 245 HCRs group.
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Figure 20. Comparison with U-STFM on 17 September 2001, with multiple HCR setups. (a) the
results under 45 HCRs group; (b) the result under 145 HCRs group; (c) the result under 245 HCRs
group; (d) the RMSE boxplot under 45, 145 and 245 HCRs group.
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On 1 November 2000 (Figure 19), a noticeable decrease in the RMSE boxplot was
observed as the number of HCRs increased when using the nonlinear U-STFM model.
However, the original U-STFM model did not exhibit a similar decrease.

Similarly, for 17 September 2001, the RMSE also decreased as the number of HCRs
increased. However, the original U-STFM model displayed underestimation with a
high RMSE.

4.6. RatioNet Performance

RatioNet aims to mitigate the noise effect by leveraging data distribution and sample
similarity instead of relying on the theoretical weighting equation. To assess the perfor-
mance of RatioNet, Gaussian random noise was introduced to decrease the signal-to-noise
ratio (SNR) in the DyNet predictions, specifically the change ratio predictions for each
HCR. We conducted a comparison between two setups: one using the DyNet model with
the theoretical weighting equation, and the other utilizing DyNet with RatioNet.

The 1:1 plot represents the outcome of the median value combination for both models.
The advantage of RatioNet is not particularly significant under SNR50 and SNR30, as the
median value combination itself serves as a noise filter, enhancing prediction accuracy even
under low noise levels. However, as the SNR decreases further, the model incorporating
RatioNet demonstrates superior performance (Figure 21).
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The boxplot illustrates the performance of RatioNet without the median combination
process. It clearly demonstrates that RatioNet can substantially reduce the root mean square error
(RMSE) for every prediction across each date triplet, especially when the SNR is low (Figure 22).

4.7. Compare with the STARFM, ESTARFM, and the Original U-STFM

In comparison to STARFM, ESTARFM, and the original U-STFM, the nonlinear U-
STFM demonstrated superior performance, exhibiting higher peak signal-to-noise ratio
(PNSR) values and lower root mean square error (RMSE) values. Detailed results can
be found in Table 3. The RMSE map, represented in Figure 23, reveals that no specific
land cover type exhibits significantly higher RMSE values. This indicates that the model
does not exhibit bias towards particular land cover types. Moreover, Figure 23 illustrates
that the nonlinear U-STFM has the capability to automatically fill in cloud gaps resulting
from missing MODIS data on the target date. This is achieved by employing a clustering
algorithm to define HCRs. Additionally, the change ratio under the cloud area can be
estimated using other MODIS pixels belonging to the same HCRs category.
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Table 3. Comparison of the nonlinear U-STFM with the STARFM, ESTARFM, and the original
U-STFM, the bold value represents the best-performing model in each group.

Date Models PNSR SSIM CC RMSE MAE

1 November 2000

U-STFM 46.970 0.996 0.939 1.797 1.020
STARFM 46.441 0.995 0.927 1.905 1.053
ESTARFM 46.913 0.996 0.934 1.805 1.038
The nonlinear U-STFM (DyNet) 47.211 0.996 0.935 1.744 0.987
The nonlinear U-STFM (DyNet+RatioNet) 47.241 0.997 0.844 1.738 1.004

17 September 2001

U-STFM 38.787 0.991 0.936 4.610 4.243
STARFM 38.919 0.993 0.939 4.530 4.103
ESTARFM 38.218 0.994 0.931 4.911 4.601
The nonlinear U-STFM (DyNet) 42.807 0.979 0.895 2.896 2.210
The nonlinear U-STFM (DyNet+RatioNet) 45.895 0.992 0.863 2.029 1.348

20 November 2001

U-STFM 51.105 0.996 0.942 1.114 0.844
STARFM 50.976 0.996 0.926 1.130 0.815
ESTARFM 51.498 0.996 0.936 1.064 0.754
The nonlinear U-STFM (DyNet) 52.128 0.997 0.924 0.990 0.758
The nonlinear U-STFM (DyNet+RatioNet) 52.567 0.997 0.947 0.941 0.713

22 December 2001

U-STFM 46.829 0.992 0.839 1.822 1.372
STARFM 49.592 0.995 0.894 1.326 0.941
ESTARFM 50.456 0.996 0.897 1.200 0.790
The nonlinear U-STFM (DyNet) 49.582 0.993 0.755 1.327 1.002
The nonlinear U-STFM (DyNet+RatioNet) 50.665 0.996 0.905 1.172 0.858

7 January 2002

U-STFM 50.709 0.997 1.000 1.166 0.858
STARFM 49.472 0.996 1.000 1.344 0.954
ESTARFM 50.420 0.997 1.000 1.205 0.864
The nonlinear U-STFM (DyNet) 50.796 0.996 0.905 1.154 0.840
The nonlinear U-STFM (DyNet+RatioNet) 50.501 0.997 0.816 1.194 0.875

7 November 2002

U-STFM 49.200 0.994 0.931 1.387 1.023
STARFM 49.699 0.995 0.928 1.310 0.945
ESTARFM 48.969 0.996 0.914 1.424 1.083
The nonlinear U-STFM (DyNet) 50.788 0.995 0.923 1.155 0.847
The nonlinear U-STFM (DyNet+RatioNet) 51.021 0.996 0.923 1.125 0.822
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17 September 2001, may be attributed to the cloud effect on 1 November 2000. Since half 
of the three-date pairs used for predicting 17 September 2001 contain images from 1 No-
vember 2000, it strongly influences the weighting function of STARFM, ESTARFM, and 
U-STFM. Another contributing factor could be the processing unit employed by each 
model. STARFM and ESTARFM operate at the pixel level, considering surrounding simi-
lar pixels. In contrast, U-STFM utilizes a larger processing unit defined by a segmentation 
algorithm, resulting in local regions. The nonlinear U-STFM has the largest processing 
unit, defined by clusters, which helps reduce prediction uncertainty. 
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on 17 September 2001, may be attributed to the cloud effect on 1 November 2000. Since
half of the three-date pairs used for predicting 17 September 2001 contain images from
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1 November 2000, it strongly influences the weighting function of STARFM, ESTARFM,
and U-STFM. Another contributing factor could be the processing unit employed by each
model. STARFM and ESTARFM operate at the pixel level, considering surrounding similar
pixels. In contrast, U-STFM utilizes a larger processing unit defined by a segmentation
algorithm, resulting in local regions. The nonlinear U-STFM has the largest processing unit,
defined by clusters, which helps reduce prediction uncertainty.

5. Discussion
5.1. Truncation Error between the Change Ratio at the HCR and the Pixel Levels

The essential element of the U-STFM is the change ratio, which ideally should ac-
curately predict the change ratio at the pixel level. This would enable precise prediction
of high-resolution land surface temperature (LST) on the target date based on the LST
values before and after that specific date. However, predicting the change ratio at the pixel
level is inherently challenging due to the ill-posed nature of the problem. The number of
unknown 30 m spatial resolution Landsat pixels is consistently greater than the number
of known MODIS pixels. To address this challenge, endmember extraction methods are
employed to reduce the number of unknowns. By reducing the number of endmembers
to be determined to a quantity lower than the number of known MODIS pixels, the value
of each endmember can be predicted using the unmixing function. In the U-STFM model,
these endmembers are referred to as High Change Ratio (HCR) endmembers for spectral
unmixing. However, it is important to note that the change ratio of each HCR does not
necessarily match the change ratio of the pixels within that HCR. As a result, a truncation
error exists between these different levels of analysis.

Figure 24 illustrates the truncation error observed between the change ratios at the
High Change Ratio (HCR) and pixel levels. A narrow distribution, characterized by a mean
value close to zero and a smaller difference range, indicates that the predicted change ratio
in HCRs can effectively represent the change ratio of the majority of pixels within that
HCR. The ideal scenario would exhibit a distribution with a mean of zero and a range of
zero, indicating that the change ratio predictions of HCRs are identical to the actual change
ratios of pixels within those HCRs.
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Examining Figure 24, we can observe that the mean value of the truncation error across
different date pairs (various rows) and varying numbers of HCRs (different columns) is
consistently close to zero. This suggests that the DyNet model’s prediction of the change
ratio in HCRs is unbiased. Moreover, as we compare different HCR numbers (such as
HCR-45, HCR-145, and HCR-245), we observe that the mean value of the distribution
decreases as the number of HCRs increases. This indicates that smaller HCRs provide a
higher level of representation for the actual change ratio at the pixel level. Consequently, to
further minimize truncation errors, future research may require a more accurate endmember
extraction method.

5.2. Baseline Length Effect

The uncertainty in predicting the weighting function was influenced by a factor,
namely the similarity between the land surface temperatures of LSTpre and LSTpost. In
this study, we refer to this similarity as the “Baseline length,” adopting the definition
used in the field of Interferometric Synthetic Aperture Radar (InSAR). A shorter baseline
length resulted in greater uncertainty in the weighting function. Figure 25 demonstrates
that a short baseline length pushes the graph of the weighting function closer to the
progressive line.

Remote Sens. 2024, 16, x FOR PEER REVIEW 27 of 30 
 

 

 
Figure 25. The theoretical graph of the weighting function. 

At the pixel level, when considering the scenario of 𝐿𝑆𝑇௣௢௦௧ − 𝐿𝑆𝑇௣௥௘ ൐ 0 , if the 
change ratio (α) is smaller than −1, even a slight change in α can lead to a significant 
change in LST prediction. Consequently, in such cases, the change ratio becomes unrelia-
ble for predicting LST. 

An actual example showcasing the effect of a short baseline length is the prediction 
for the period between 20000914-20001101-20021107. Upon examining Table 2 and Figure 
13, it is evident that the mean baseline length between LST on 20000914 and 20021107 is 
3.015, with a standard deviation of 1.660. This indicates a high degree of similarity in LST 
between these two dates. In this particular scenario, despite the DyNet model’s prediction 
error being only 0.864 (as depicted in Figure 12), the weighting function failed to provide 
accurate predictions (RMSE: 3.937). The issue of a short baseline length essentially stems 
from the theoretical limitations of the chosen weighting function in the U-STFM. As ana-
lyzed earlier, to achieve higher accuracy in the final LST prediction, it is crucial to select 
divergent LST pairs with longer baseline lengths.  

For this reason, in this study, we have observed that the time range between the pre-
date and post-date is often over one year. This can be attributed to factors such as cloud 
cover and the inherent limitations of the weight function. When the range between the 
dates of the previous and post LST is smaller, there is a higher likelihood of obtaining 
similar LST values for each pixel. In such cases, the final prediction may have increased 
uncertainty. Consequently, this model is not suitable for predicting when the observation 
date ranges from previous to post is too close, as it can result in a small baseline problem. 

6. Conclusions 
Land surface temperature (LST) plays a crucial role in various geographic physical 

process simulation models. In recent years, the combination of high-spatial and temporal-
resolution LST data from multiple satellite platforms have garnered significant attention. 
To achieve this objective, spatiotemporal image fusion models have emerged as promising 
downscaling methods. Previous research has demonstrated the effectiveness of unmixing-
based fusion models like U-STFM in capturing land cover changes by extracting features 
from time series data. These models have achieved notable success in applications such as 
downscaling land surface reflectance and ocean color products. However, challenges per-
sist in enhancing the accuracy of the original linear unmixing function and theoretical 
weighting function for small unmixing endmembers, particularly when dealing with 
rapid changes in LST and anti-noise capability in the downscaling process. 

To address these challenges, we introduce an updated version of U-STFM called the 
nonlinear U-STFM, which incorporates a deep learning model. The original unmixing and 
weighting functions are replaced with two deep learning components: DyNet and Ra-
tioNet. Dynamic layers and feature space transformation techniques are employed to fa-
cilitate the training of these networks, even with a relatively small dataset. 

For our study, we selected a portion of the Guangdong-Hong Kong-Macao Greater 
Bay Area (GBA) covering an area of approximately 1843 km2 as the study area. Landsat-7 

Figure 25. The theoretical graph of the weighting function.

At the pixel level, when considering the scenario of LSTpost − LSTpre > 0, if the
change ratio (α) is smaller than −1, even a slight change in α can lead to a significant
change in LST prediction. Consequently, in such cases, the change ratio becomes unreliable
for predicting LST.

An actual example showcasing the effect of a short baseline length is the prediction for
the period between 20000914-20001101-20021107. Upon examining Table 2 and Figure 13, it
is evident that the mean baseline length between LST on 20000914 and 20021107 is 3.015,
with a standard deviation of 1.660. This indicates a high degree of similarity in LST between
these two dates. In this particular scenario, despite the DyNet model’s prediction error
being only 0.864 (as depicted in Figure 12), the weighting function failed to provide accurate
predictions (RMSE: 3.937). The issue of a short baseline length essentially stems from the
theoretical limitations of the chosen weighting function in the U-STFM. As analyzed earlier,
to achieve higher accuracy in the final LST prediction, it is crucial to select divergent LST
pairs with longer baseline lengths.

For this reason, in this study, we have observed that the time range between the
pre-date and post-date is often over one year. This can be attributed to factors such as
cloud cover and the inherent limitations of the weight function. When the range between
the dates of the previous and post LST is smaller, there is a higher likelihood of obtaining
similar LST values for each pixel. In such cases, the final prediction may have increased
uncertainty. Consequently, this model is not suitable for predicting when the observation
date ranges from previous to post is too close, as it can result in a small baseline problem.

6. Conclusions

Land surface temperature (LST) plays a crucial role in various geographic physical
process simulation models. In recent years, the combination of high-spatial and temporal-
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resolution LST data from multiple satellite platforms have garnered significant attention.
To achieve this objective, spatiotemporal image fusion models have emerged as promising
downscaling methods. Previous research has demonstrated the effectiveness of unmixing-
based fusion models like U-STFM in capturing land cover changes by extracting features
from time series data. These models have achieved notable success in applications such
as downscaling land surface reflectance and ocean color products. However, challenges
persist in enhancing the accuracy of the original linear unmixing function and theoretical
weighting function for small unmixing endmembers, particularly when dealing with rapid
changes in LST and anti-noise capability in the downscaling process.

To address these challenges, we introduce an updated version of U-STFM called the
nonlinear U-STFM, which incorporates a deep learning model. The original unmixing and
weighting functions are replaced with two deep learning components: DyNet and RatioNet.
Dynamic layers and feature space transformation techniques are employed to facilitate the
training of these networks, even with a relatively small dataset.

For our study, we selected a portion of the Guangdong-Hong Kong-Macao Greater
Bay Area (GBA) covering an area of approximately 1843 km2 as the study area. Landsat-7
and Landsat LST 30 m products were utilized to downscale daily MODIS data from 1000 m
to 30 m resolution.

Following the training process, the results demonstrate that the uniform unmixing
network (DyNet) effectively unmixes MODIS pixels across different target times (as shown
in Figure 12) and reduces the root mean square error (RMSE) as the number of High Change
Ratio (HCR) endmembers increases (as depicted in Figures 19 and 20). The new weighting
network (RatioNet) successfully lowers the RMSE in the presence of noise during the
unmixing process (Figures 21 and 22). Compared to the theoretical weighting function,
RatioNet enhances the model’s robustness by incorporating more features from real data
distribution and sample similarities. We also evaluated the overall performance of the
nonlinear U-STFM for cloud-affected dates and LST changes. In our control experiment, the
new model outperformed classical approaches like STARFM, ESTARFM, and the original
U-STFM, achieving the highest accuracy (as shown in Table 3).

Unlike most end-to-end deep learning networks that combine feature extraction and
modeling as a black box, the model developed in this study integrates the network with the
original STFM model, allowing for easy interpretation. Additionally, a pretrained network
can enhance prediction speed, making it suitable for online real-time applications. To
expand on this research, it would be beneficial to train the newly developed model using
different sources of data (such as Landsat 8 and 9) from multiple regions and subsequently
assess its ability to generalize on a global scale.
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