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Abstract: This work presents a novel RGB-D dynamic Simultaneous Localisation and Mapping
(SLAM) method that improves the precision, stability, and efficiency of localisation while relying on
lightweight deep learning in a dynamic environment compared to the traditional static feature-based
visual SLAM algorithm. Based on ORB-SLAM3, the GCNv2-tiny network instead of the ORB method,
improves the reliability of feature extraction and matching and the accuracy of position estimation;
then, the semantic segmentation thread employs the lightweight YOLOv5s object detection algorithm
based on the GSConv network combined with a depth image to determine potentially dynamic
regions of the image. Finally, to guarantee that the static feature points are used for position estimation,
dynamic probability is employed to determine the true dynamic feature points based on the optical
flow, semantic labels, and the state in last frame. We have performed experiments on the TUM
datasets to verify the feasibility of the algorithm. Compared with the classical dynamic visual SLAM
algorithm, the experimental results demonstrate that the absolute trajectory error is greatly reduced
in dynamic environments, and that the computing efficiency is improved by 31.54% compared with
the real-time dynamic visual SLAM algorithm with close accuracy, demonstrating the superiority of
DLD-SLAM in accuracy, stability, and efficiency.

Keywords: visual SLAM; dynamic environments; GCNv2-tiny feature points; lightweight object
detection; LK optical flow

1. Introduction

Visual Simultaneous Localisation and Mapping (VSLAM) is capable of accurately sens-
ing the environment and obtaining the position of the robot. The extensive implementation
of VSLAM in autonomous vehicles, perception, and robot technology can be attributed to
its cost-effectiveness, improved accuracy, and lack of reliance on specialised sensors [1]. In
recent years, there have been notable advancements in VSLAM algorithms. Examples of
these advancements include ORB-SLAM2 [2], ORB-SLAM3 [3], VINS-Mono [4], SVO [5],
and others. The above open source SLAM algorithms have primarily been designed for
static environments. However, in dynamic environments, especially when the texture
of moving objects is obvious or occupies a large portion of the image, the accuracy and
robustness of the system decrease dramatically. The aforementioned issues have garnered
interest towards the integration of VSLAM with deep learning technology. As environ-
ments with dynamic objects are frequently present in people’s practical application, it is of
great practical significance to further develop VSLAM algorithms with stronger robustness,
adaptability, and practicality in dynamic environments.

In recent years, the emergence of deep learning technology has brought new opportu-
nities for the improvement of VSLAM. Compared with the traditional SLAM algorithms
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based on geometry and feature points, the incorporation of deep learning and VSLAM
can augment their capacity to address some difficulties and challenges in SLAM prob-
lems [6]. There are various factors that may seriously impact the accuracy and reliability of
feature detection. The feature extraction and matching segment at the front end of most
SLAM algorithms is unable to extract reliable and consistent features in complex dynamic
environments, which can lead to problems such as lost feature tracking and positioning
failure. Deep learning methods, such as DeepFeat [7] and LIFT [8], have the ability to
acquire highly discriminative feature points from large amounts of data. These networks
can extract feature points that contain more geometric and semantic information, thus
enhancing the accuracy and robustness of the SLAM system.

Deep learning techniques have demonstrated substantial advancements in the fields of
target detection and semantic segmentation, among others. Deep learning techniques have
been able to achieve high-precision target detection that can identify and locate multiple tar-
gets in complex scenes [9]. Therefore, deep learning techniques can be used to preliminarily
segment the position and semantic information of objects in the dynamic environment
and identify potential dynamic objects, with different techniques detecting objects with
different accuracies. Target detection can generally obtain the detection frame of an object,
while semantic segmentation and instance segmentation can be used to mask the region
of an object, and instance segmentation can distinguish different individuals of the same
category. As the accuracy increases, the deep learning network becomes more complex,
which can impact the real-time performance of the system when applied to the SLAM
system. Therefore, the operational efficiency of the algorithm can be maintained at the
expense of target detection accuracy, and at the same time, the geometric information can
be used to accurately identify the region of dynamic objects and improve detection accuracy.
It is also feasible to improve the efficiency of the algorithm and reduce the unnecessary
computational burden by lightweighting the neural network. After detecting possible
dynamic objects using deep learning techniques, dynamic feature points can be identified
and rejected by geometric methods such as optical flow and motion consistency estimation.

This paper proposes the DLD-SLAM algorithm to solve the positioning problem in
dynamic environments. Based on the below work, our algorithm runs much more efficiently
than open source algorithms with the same accuracy. The main work is as follows:

1. On the basis of the ORB-SLAM3 algorithm, the GCNv2 tiny network replaces the
conventional ORB method to achieve the extraction and matching of feature points,
which improves the efficiency and robustness of the system.

2. The lightweight GSConv [10] module is applied to the YOLOv5s network model,
which reduces the count of parameters in the network to improve the computational
efficiency of the target detection algorithm. Then, the target detection algorithm
combines with the depth information of the RGB-D camera to obtain the mask of
potential dynamic targets, which helps identify areas where dynamic feature points
are located.

3. A novel method for rejecting dynamic feature points was designed based on the
dynamic feature point rejection strategy. We propose the concept of dynamic prob-
ability based on LK (Lucas–Kanade) optical flow, semantic labels, and the state in
the last frame which is added to the tracking thread. Using this method, the real
dynamic feature points are rejected, and the static feature points are retained for
position estimation. This method can effectively solve the problem of interference
with positioning by dynamic objects.

4. Experiments are carried out for the above design: Firstly, feature point detection and
matching are verified to prove the accuracy and robustness of the system; Then, the
training accuracy and detection results of the lightweight target detection network
are analysed. Finally, the performance of position estimation in the dynamic environ-
ment is verified by the TUM dataset, which has been demonstrated to improve the
efficiency of our algorithm and the effectiveness of our approach when dealing with
dynamic objects.
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2. Related Work
2.1. Visual SLAM Based on Deep Learning

Current research has shown the potential of deep learning in several segments of
Simultaneous Localisation and Mapping (SLAM), including front-end feature extraction,
loop detection, and mapping. The following is a detailed review of the integration of visual
SLAM with deep learning.

Traditional front-end feature extraction methods such as Scale-invariant Feature Trans-
form (SIFT) and Speeded-Up Robust Features (SURF) have been widely used in SLAM
systems. However, these methods are not stable enough to meet the application require-
ments in some complex scenes. In recent years, feature extraction methods based on deep
learning have gradually emerged. These methods extract feature points and descriptors
from images using convolutional neural network (CNN). MagicPoint [11] is an end-to-
end position estimation network based on deep learning, but it is only applicable when
partially regular graphics and poor migration capability are acceptable. D2-Net [12] is a
robust CNN-based feature extraction method. It is able to extract stable feature points and
descriptors in different scenarios by designing a CNN architecture based on local stability
and repeatability evaluation. R2D2 [13] is proposed based on the D2-Net network. The
R2D2 algorithm trains both keypoints and descriptors, using part of the detection network
to compute an accuracy score for the feature points. SuperPoint [14] is a lightweight feature
extraction method that employs an end-to-end training approach using a convolutional
neural network for feature point detection and description. This method has low com-
putational complexity while maintaining high performance. GCNv2 [15] is a proposed
algorithm based on the GCN network, which obtains binarised feature points and descrip-
tors through neural networks. Experimental results demonstrate that the above method is
more accurate and stable than traditional feature extraction methods.

Traditional mapping methods frequently rely on point clouds, yet these methods
are difficult to handle for complex scenes. There has been a growing popularity in the
utilisation of deep learning-based methodologies for mapping in recent years. VINet [16]
employs convolutional neural networks to extract the features of keyframes in an image
sequence. Then, it obtains a global map using a convolutional neural network-based
triangulation method.

A number of approaches have also emerged to improve the performance of SLAM
algorithms by improving deep learning networks. Zhang, R [17] used ShuffleNetV2 to
improve the YOLOv5 network. Meanwhile, to achieve semantic extraction in the environ-
ment, the segmentation head of the pyramid scene analysis network is added to the head
of the YOLOv5 network, giving the improved YOLOv5 network both target detection and
semantic segmentation capabilities. The use of YOLOv5 has also emerged as an approach
to the problem of mapping in dynamic scenes [18].

In addition to the above methods, deep learning can be applied to different parts of
the SLAM system. These studies demonstrate that the integration of deep learning and
VSLAM enhanced system performance and offers a diverse array of practical applications.

2.2. Dynamic Visual SLAM

Dynamic visual SLAM can be mainly classified into geometry-based and deep learning-
based approaches.

Among the geometry-based methods, Kim [19] modelled the background in the
environment to eliminate the influence of moving targets and constructed a pixel-level
background likelihood function based on the difference method between depth images.
The image sequence can effectively separate the moving targets from the background
region. It can be embedded into the DVO-SLAM system [20] to achieve real-time results.
Fan [21] solved the problem of dense distribution and the high number of iterations of
the standard RANSAC algorithm when selecting the inner points, as well as the polar
constraints, to effectively filter out the dynamic points in the image. PFD-SLAM [22]
uses a grid-based motion statistics method to ensure accurate matching with RANSAC.
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It computes homography transformations to extract dynamic regions and uses particle
filtering to accurately determine dynamic regions.

Among the deep learning-based approaches, DS-SLAM [23] is based on the ORB-
SLAM2 algorithm. SegNet [24], a semantic segment network, combines with optical flow to
construct semantic octree graph maps, which reduces the impact of dynamic objects. Detect-
SLAM [25] uses SSD networks [26] to achieve semantic segmentation on keyframes and
uses SSD networks on a GPU to solve the time efficiency problem. RDS-SLAM [27] adds a
semantic thread to ORB-SLAM3, which also performs semantic segmentation on keyframes
and updates the motion probability of feature points based on the segmentation results.
DynaSLAM [28] is a visual SLAM system with dynamic object recognition and repair that
uses Mask-RCNN [29] to detect and eliminate a priori dynamic objects and combines multi-
view geometric constraints to locate undetected dynamic objects. However, the system
cannot operate in real time due to the operational efficiency of this instance segmentation
network. DP-SLAM [30] solves the problem of the inaccurate detection of dynamic points
appearing at the boundary edges of the segmentation by determining the probability of
moving points based on the previous frames and Bayes’ law. YOLO-SLAM [31] extends
ORB-SLAM2 with semantic segmentation and dynamic feature selection threads. The
segmentation thread uses YOLOv3 to select known dynamic objects. The dynamic feature
selection thread uses geometric-depth RANSAC to distinguish between dynamic and static
feature points.

Compared with geometry-based dynamic visual SLAM systems, deep learning-based
systems have higher accuracy and stability and can be applied to more complex environ-
ments. However, due to the deep learning network, it tends to reduce the efficiency of the
system. Therefore, there is still ample opportunity for further research in the field of deep
learning-based SLAM. To compensate for these shortcomings, deep learning combined with
geometrically constrained SLAM methods has emerged [32,33]. To solve these problems,
we propose a dynamic SLAM system, DLD-SLAM, based on feature point extraction by
GCNv2-tiny, lightweight YOLOv5s, and a dynamic feature point rejection strategy.

3. Methods

DLD-SLAM is improved based on ORB-SLAM3 for RGB-D cameras, as shown in the
flow chart in Figure 1. In addition to the original three threads of tracking, local mapping,
and loop closing, a semantic segmentation thread is designed to identify dynamic regions.

As depicted in Figure 1, the RGB images and depth images are obtained from the
RGB-D camera. The RGB images are simultaneously passed into the semantic segmentation
thread for target detection and the tracking thread for feature extraction, while the depth
images are only passed into the semantic segmentation thread to achieve the mask of
dynamic objects in combination with target detection. In the semantic segmentation thread,
target detection is performed using the GS-YOLOv5s algorithm. It preliminarily determines
the potential dynamic elements by obtaining the semantic information and combining
the depth images to obtain the mask of the dynamic elements. Different from traditional
semantic segmentation, it refers to the depth information and can achieve the same effect
as the semantic segmentation mask without using complex neural networks. GS-YOLOv5s
is the target detection method as it performs lightweight processing. It improves the
algorithm’s efficiency without affecting its performance.

In the tracking thread, the feature points are extracted and matched using the GCNv2-
tiny network. This method can be a good solution to the problem of difficulty with
feature point extraction in dynamic environments and the difficulty of matching with large
viewpoint changes. Furthermore, the dynamic feature point rejection strategy is designed,
and potential dynamic objects are judged to determine whether they are real dynamic
elements or not, and the dynamic feature points are rejected. The static feature points
are retained for position estimation as well as for back-end optimisation, loop closure,
and mapping. Using the strategies described above, we improve the system’s accuracy,
robustness, and efficiency.
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Figure 1. Overview of DLD-SLAM. The algorithmic framework contains four threads: semantic
segmentation, tracking, local mapping and loop closing. Section 3.1 is shown in blue; Sections 3.2
and 3.3 are shown in green; and Section 3.4 is shown in orange to express the process of dynamic
feature points rejected.

3.1. Feature Extraction and Matching Based on GCNv2-tiny Network

The feature points in the ORB-SLAM3 system are ORB (oriented FAST and rotated
BRIEF) feature points. The method of extracting feature points in each frame is as follows:
Firstly, an image pyramid of decreasing resolution is constructed by down-sampling. Then,
each layer of the image is divided into a 30 × 30 pixel grid, and the feature points are
extracted and homogenised in the grid. Finally, the extraction of ORB feature points is re-
peated for each layer of the image. This method leads to an increase in computation, which
reduces the real-time performance of the system. To improve the real-time performance
of the system, we employ the GCNv2-tiny network to extract image feature points and
descriptors, which replaces the original ORB feature points and is ported to ORB-SLAM3.
Figure 2 depicts the process of extracting feature points using the GCNv2-tiny network.

As depicted in Figure 2, firstly, the original input image is segmented into a 16 × 16 pixel
grid for separate prediction, which ensures that the feature points are evenly distributed
throughout the image. The GCNv2-tiny network shares the convolutional network from
conv1 to conv4 to encode image features. Compared to the GCNv2 network, the GCNv2-
tiny network halves the number of convolution channels in conv3 and after conv3 while
maintaining the same convolution kernel size and step size. This compresses the parameters
to reduce the amount of computation, which helps to improve real-time performance.
Subsequently, the convF convolutional network is employed for decoding. The sub-pixel
convolution is employed to obtain both the position data of the feature points and the
probability distribution graph showing the confidence degree. The decoding process
employs a convolutional network known as convD. The corresponding descriptors are
obtained using the bilinear interpolation method. Finally, the feature points are acquired
using the procedure of Non-maximum Suppression (NMS) followed by the identification
of corresponding descriptors through indexing.
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The GCNv2-tiny network predicts both keypoints and descriptors. The network
outputs a probability graph of the keypoint confidence degree and a dense feature graph
of descriptors. The probability graph of feature points is binary and the points only take
values between 0 and 1. This process becomes a classification problem, which gives better
training results. Moreover, this is the same as the feature extraction in ORB-SLAM3, so it
can be well ported to ORB-SLAM3. The size of a binary feature vector is set to 256 so that
the descriptor has the same bit width as the ORB features and so that the descriptor can be
directly embedded into the existing ORB-based visual SLAM. The purpose of the network
training aims to match the positions of the points with the value of 1 in the probability
graph of the feature points in the final output as closely as possible to the corresponding
real feature points in the training dataset. At the same time, a binary activation layer is
added at the end of the network to obtain binary descriptors.

By introducing the attention mechanism into the feature encoding stage, more specific
feature points can be obtained, which can improve the robustness of feature matching.
The GCNv2-tiny network was trained using the SUN3D [34] dataset, which provides
information about the camera’s motion position. The network uses sample data as well
as a loss function, and it contains not only the true positions of the feature points but also
the true feature matching relationships obtained from the real position. And the position
information in the dataset is the main training base. Therefore, the feature point matching is
more stable when the larger view changes, which is also beneficial to the position estimation
based on feature points.

The feature point extraction and matching used in this paper are conducive to im-
proving the real-time performance of the system, and the extracted feature points are more
suitable for high-precision position estimation. This algorithm is more stable when dealing
with large perspective changes and dynamic object disruptions.

3.2. Lightweight YOLOv5 Target Detection Algorithm

YOLO [35] is a one-stage target detection algorithm that has a simple structure and
superior performance in both detection speed and detection accuracy. YOLOv5 can be
divided into several different architectures depending on the number of convolutional ker-
nels in the network. YOLOv5 contains five architectures: YOLOv5x, YOLOv5l, YOLOv5m,
YOLOv5n, and YOLOv5s. The number of floating point operations and the value of model
parameters decrease for these five models in the given order. In this paper, we choose
YOLOv5s, which has a smaller number of model floating-point operations and model
parametric quantities, because this architecture satisfies the system’s detection accuracy
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with less computation required as well as a faster rate of model training. Based on the
YOLOv5s algorithm, it is lightweighted in this paper.

The YOLOv5s model is mainly composed of Backbone, Neck, and Head, which
includes a large number of convolutional neural network (Conv), spatial pyramid pooling
fast (SPPF), and CSP [36] modules. The role of Neck is to perform multi-scale feature
fusion processing on the feature graph and then to pass the feature graph to the prediction
layer, which requires a large number of parameters and computations. In order to reduce
the computational effort of the model and build a lightweight network, the convolution
network GSConv is added to the CSP2_x module, which is mainly used in the Neck
stage. GSConv replaces the standard convolution network with depthwise convolution
(DWConv), which reduces the number of parameters and computation by about half
compared to the standard convolution. The network improves the efficiency of training
and running the model while maintaining a comparable level of performance.

The original input image should be transformed into a multi-layer feature map in
Backbone and subjected to feature extraction. Different layers of features are fused together
in the Neck module using up-sampling and down-sampling operations. This produces
feature graphs with multi-scale information. During these operations, each spatial com-
pression and channel expansion of the feature graph results in the loss of some detection
information. Dense convolutional maximises the retention of hidden connections between
each channel. Then, a smaller channel is placed in the centre of the GSConv model. This
reduces the amount of additive computation while ensuring that effective detection infor-
mation is delivered. However, due to the deeper layers of the GSConv network model, the
deeper network increases the resistance of the data flow. It is therefore not suitable for use
in all stages of YOLOv5s.

In Neck, the processed feature graphs are maximised in the channel dimension and
minimised in the width and height dimensions. This is a better fit to the structure of the
GSConv model as it does not require any transformation to be performed. There is an
improvement in performance without a reduction in the efficiency of network inference
due to the deepening of the layers. Therefore, a better choice is to use GSConv only at the
Neck stage. As shown in Figure 3, the GSConv network is used in the CSP2_x module in
the YOLOv5s network, and the GSbottleneck module is added based on GSConv. Based on
this, the Neck module is reconstructed, keeping the original structure of the Backbone and
Head modules unchanged. In Neck, the multi-scale fusion feature graphs processed by
GSConv are less redundant and do not need to be compressed. In addition, the attention
module is more effective.
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3.3. Dynamic Object Detection Based on Target Detection and Depth Image

The target detection algorithm used in this work is GS-YOLOv5s. This algorithm can
only initially determine the potential dynamic objects by semantic labels and represent the
dynamic objects with a rectangular detection box. However, if the coverage area of the
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detection box is large while the proportion of the area occupied by the dynamic objects
in that detection box is small, it will result in the rejection of too many static points in the
background. This will lead to insufficient static feature points for position estimation and
affect the positioning accuracy of the system. Therefore, we adopt the method of combining
target detection and depth information to further accurately determine the area of dynamic
elements in the image. This is similar to obtaining a mask by semantic segmentation and
maximises the retention of static feature points.

Most dynamic objects have some depth difference from the background. In addition,
dynamic objects tend to occupy the centre of the detection frame. The four corners of the
detection frame basically correspond to the static background points. Figure 4 demonstrates
the positional relationships of dynamic objects in space and the meaning of every element.

dmax = max(dtl , dtr, dbl , dbr), (1)

where dtl , dtr, dbl , and dbr represent the depth values corresponding to the four corner
points of this detection frame. The depth of a pixel is assumed to be represented by d. The
maximum background depth of a dynamic object is dmax. The reason for not selecting the
minimum depth is to avoid feature points near or in front of the dynamic element causing
the dynamic mask detection to fail.

d = dc + ϵ, dmax − dc > ϵ, (2)

where dc represents the depth value corresponding to the centre of the detection frame.
The values of dc and dmax is used to determine the threshold d that distinguishes the
foreground dynamic feature points from the background static feature points. d represents
the mask depth threshold. The value of ϵ is a pre-determined distance based on empirical
values of the frequently occurring positions of dynamic objects in the scene.
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Figure 4. This shows the principle of semantic segmentation. (a) Background represents the static
objects in the background: A is the static background closer to the corresponding dynamic object
in the detection box, and B is the static background further away from the corresponding dynamic
element in the detection frame. Different classes of feature points are represented by different colours.
(b) Description of distance of various elements in Figure (a) in the camera coordinate system along
the z-axis.



Remote Sens. 2024, 16, 246 9 of 23

The process of obtaining the mask of dynamic objects is as follows: Firstly, we set
the depth value of a depth image, but not the target detection frame, to 0. We then set a
mask region with the size of the detection frame area where the depth value is d. And
the threshold value ϵ is to ensure that the depth position of the mask region is between
the dynamic object and the background. Then, the pixel depth value in the detection box
is compared to d. If it is less than d, the feature is considered to be in a dynamic region.
Otherwise, it is considered a static region, and the depth value is set to 0. The result is a
mask that serves the same purpose as semantic segmentation for a more accurate rejection
of dynamic feature points.

As shown in Figure 5, combining the target detection results with the depth informa-
tion from the RGB-D camera can obtain results comparable to that of semantic segmentation.
Due to the complexity of the semantic segmentation neural network, it will be more com-
putationally intensive, leading to an increase in running time. This may affect the real-time
performance of the system. However, our method solves the above problems while ensur-
ing the accuracy of the system.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 24 
 

 

objects in the foreground from static backgrounds by setting the value of 𝜖 in the detection 
box. 

 
Figure 5. The result of semantic segmentation based on our method. The red represents the target 
detection box; the green represents static feature points in the keyframe. The depth value of white 
area is 1, while that of the black area is 0. 

3.4. Dynamic Feature Point Rejection Strategy Based on Optical Flow 
Target detection using the GS-YOLOv5s algorithm is combined with RGB-D depth 

images to obtain candidate masks of dynamic objects, which are sorted by semantic labels. 
The real static, potential, or real dynamic objects are then further sorted by dynamic 
probability based on the optical flow and semantic information, and then the feature 
points within the dynamic object mask are removed. In real environments, there are 
different kinds of objects; some objects have the ability to move autonomously, such as 
people, animals, etc., and they are usually in a state of motion, which is called dynamic 
objects, while objects such as tables, sofas, etc., usually do not move and are therefore 
called static objects. The potential dynamic objects are mainly objects that have a greater 
probability of being moved, such as books and chairs. This method will reduce the false 
rejection rate and improve the accuracy of the system in dynamic environments. 

The optical flow can compare the motion of pixel points in adjacent frames. When 
processing the dynamic objects in a keyframe, the pixel points on the same dynamic object 
have the same motion trajectory. Therefore, the motion information of the whole dynamic 
object can be obtained by judging the motion of one pixel point in the dynamic object. In 
our method, the LK (Lucas–Kanade) optical flow method [37] is used. The LK optical flow 
method is a method based on the local lightness change of the image. The LK optical flow 
belongs to the sparse optical flow, which can ensure the performance effect while the 
computational amount is small. 

In real scenes, the motion state of objects often changes. To address these problems, 
we design the dynamic probability and update the probability with subsequent data, 
which can more accurately distinguish between dynamic and static regions. In order to 
make the recognition of dynamic features robust, the dynamic probability is based on the 
semantic information, the relative velocity constraints are based on the optical flow, and 
there are three ways to update the feature point state in the last frame. The dynamic 
probability of the feature point update formula is as follows: 𝑃 (𝑋 ) = 𝛼 𝑆 (𝑋 ) + 𝛼 𝑀 (𝑋 ) + 𝛼 𝐾 (𝑋 ) (3)

where 𝑋  represents a feature point on the j-th frame. 𝑃 (𝑋 ) represents the probability 
that the feature point 𝑋   in the current frame is a dynamic feature point. 𝑆 (𝑋 ) 

Figure 5. The result of semantic segmentation based on our method. The red represents the target
detection box; the green represents static feature points in the keyframe. The depth value of white
area is 1, while that of the black area is 0.

The method is used to obtain a semantic segmentation mask with the contour of the
target object and to avoid culling dynamic feature points by over-culling static feature points
in the detection box. Although there are open source semantic segmentation algorithms
with this capability, they often do not run in real time. Our approach, by combining a target
detection algorithm with depth information, makes full use of the sensor information and
also improves the running efficiency of the algorithm.

In a word, the depth information is used to determine the depth in space of all
objects in the detection box. The depth of the dynamic objects, dc, and the depth of
the static background, dmax, are determined. The position of the mask is determined
between the depth values dc and dmax. It can obtain the mask of the object, which separates
dynamic objects in the foreground from static backgrounds by setting the value of ϵ in the
detection box.

3.4. Dynamic Feature Point Rejection Strategy Based on Optical Flow

Target detection using the GS-YOLOv5s algorithm is combined with RGB-D depth
images to obtain candidate masks of dynamic objects, which are sorted by semantic labels.
The real static, potential, or real dynamic objects are then further sorted by dynamic
probability based on the optical flow and semantic information, and then the feature points
within the dynamic object mask are removed. In real environments, there are different
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kinds of objects; some objects have the ability to move autonomously, such as people,
animals, etc., and they are usually in a state of motion, which is called dynamic objects,
while objects such as tables, sofas, etc., usually do not move and are therefore called static
objects. The potential dynamic objects are mainly objects that have a greater probability of
being moved, such as books and chairs. This method will reduce the false rejection rate
and improve the accuracy of the system in dynamic environments.

The optical flow can compare the motion of pixel points in adjacent frames. When
processing the dynamic objects in a keyframe, the pixel points on the same dynamic object
have the same motion trajectory. Therefore, the motion information of the whole dynamic
object can be obtained by judging the motion of one pixel point in the dynamic object.
In our method, the LK (Lucas–Kanade) optical flow method [37] is used. The LK optical
flow method is a method based on the local lightness change of the image. The LK optical
flow belongs to the sparse optical flow, which can ensure the performance effect while the
computational amount is small.

In real scenes, the motion state of objects often changes. To address these problems,
we design the dynamic probability and update the probability with subsequent data, which
can more accurately distinguish between dynamic and static regions. In order to make the
recognition of dynamic features robust, the dynamic probability is based on the semantic
information, the relative velocity constraints are based on the optical flow, and there are
three ways to update the feature point state in the last frame. The dynamic probability of
the feature point update formula is as follows:

Pj(Xi) = α1Sj(Xi) + α2Mj(Xi) + α3Kj−1(Xi) (3)

where Xi represents a feature point on the j-th frame. Pj(Xi) represents the probability that
the feature point Xi in the current frame is a dynamic feature point. Sj(Xi) represents the
feature points classified by the semantic information which are located in the static, potential
dynamic, and dynamic object masks. Mj(Xi) represents the result of the verification
using the optical flow method. The result that satisfies the threshold takes the value of 1;
otherwise, it is 0. Kj−1(Xi) represents the result of the verification of the feature point that
matches the feature point Xi in the last frame and takes the value of 1 if it has been judged
to be a dynamic feature point in the last frame; Otherwise, it takes the value of 0. The value
is also set to 0 if the matching feature point is not searched. The values of α are weighting
factors and satisfy the constraint that α1 + α2 + α3 = 1 where the values of α1, α2, α3 can be
adjusted according to the specific environment.

The feature points within the mask are identified by the dynamic feature points
waiting to be determined. It is assumed that the set P contains all feature points in the
mask. Set D is the set of dynamic feature points, and it set the value of Sj(Xi) to 1; set H is
the set of feature points within the potential dynamic object mask, and it sets the value of
Sj(Xi) to 0.5; and set S is the set of static feature points, and it sets the value of Sj(Xi) to 1.
Furthermore, set P can be expressed as P = D ∪ H ∪ S.

The results of Mj(Xi) are based on the optical flow method. Each feature point has
coordinate and velocity information, which are calculated using the feature extraction
algorithm and the optical flow method. In a real scene, the motion of dynamic objects will
generate optical flow, and the background will also generate optical flow with the motion
of the camera. Therefore, the average motion velocity of all static feature points in the set S
needs to be calculated first for the accurate rejection of dynamic feature points. The motion
velocity of static feature points is calculated as follows:[

U
V

]
=

1
N ∑n

k=1

[
uk
vk

]
, (4)

where U and V are the average motion velocity of the static feature point along the X-
and Y-axis.
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The motion velocity of the static feature points is used to identify all feature points in
the potential dynamic object masks within set P. The equation for determining the results
of Mj(Xi) can be expressed as√

(uk − U)2 + (vk − V)2 > t, k = 1, 2, · · · n, (5)

where t is a self-adaptive threshold.
If the motion velocity of the feature point is beyond this threshold, the value of Mj(Xi)

is considered to be 1, otherwise the value is 0.
Finally, we determine whether a feature point located in a mask is truly dynamic by

the probability Pj(Xi). The feature point which is determined to be a dynamic feature point
will be rejected and will not be involved in the position estimation. The method used to
reject dynamic feature points is shown in Algorithm 1.

Algorithm 1: Dynamic feature points rejection algorithm.

Input: Current frame’s feature points Xi in the semantic segmentation mask, Xi ∈ P;
Output: The set Sreal including all current frame’s static feature point;
1 Obtain all feature points in the semantic segmentation mask belong to the set P;
2 Classify feature points in the set P according to the mask’s semantic labels, Xdm

i ∈ D, Xhm
i ∈ H,

and Xsm
i ∈ S, and assign semantic labels to every feature point, Sj

(
Xdm

i

)
=1, Sj

(
Xhm

i

)
=0.5, and

Sj
(
Xsm

i
)
=0;

3 for each feature point pi ∈ P do

4 Calculate the mean motion velocity
[

U
V

]
= 1

N ∑n
k=1

[
uk
vk

]
of all the feature points, X

sj

i ,

and calculate the velocity, V(pi)=
√
(ui − U)2 + (vi − V)2;

5 if V(pi) > t then
6 Mj(pi)=1;
7 else Mj(pi)=0;
8 end if
9 Follow the method in step 5~8, judge the state of pi in last frame, and obtain the value of

Kj−1(pi);
10 Calculate the dynamic probability of pi, Pj(pi) = α1Sj(pi) + α2 Mj(pi) + α3Kj−1(pi);
11 if Pj(pi) < ε then
12 Save the feature points pi to the set Sreal ;
13 else reject the feature point pi;
14 end if
15 end for

In step 2, Xdm
i represents the i-th feature point in the m-th dynamic detection box,

Xhm
i represents the i-th feature point in the m-th potential dynamic detection box, and Xsm

i
represents the i-th feature point in the m-th static detection box.

4. Experimental Results

This section presents experimental details to validate the proposed DLD-SLAM system.
In order to evaluate and analyse the proposed DLD-SLAM system, the experiments are
performed on a laptop with the following specifications: Intel Core i9-13800H processor,
16 GB RAM, NVIDIA GEFORCE GTX-4600, and 8 GB graphics memory which installed
on Lenovo ThinkBook 16 computer. And the operation system is Ubuntu 20.04. The
proposed DLD-SLAM algorithm is compared and studied in regards to three aspects:
feature extraction and matching, target detection algorithm, and the positioning accuracy
of the system. Through the experimental comparison, we demonstrate the superiority of
the proposed method.
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4.1. Feature Extraction and Matching

In order to verify the feature point extraction and matching effect of the GCNv2-tiny
network, we selected the v_bird sequences in the HPatches dataset for the experiments
comparing the matching effect of the GCNv2-tiny feature points and ORB feature points.
The HPatches dataset is mostly used in the evaluation of image matching and description
tasks of transformations of scale, view angle, luminance, etc. And each sequence has the
exact corresponding feature points and the truth of the transform parameters. It can be used
for the validation of the effectiveness of feature point extraction and matching methods.

The v_bird sequence within the HPatches dataset has some images from different
viewpoints of the same scene. Figure 6 illustrates the impact of GCNv2-tiny and ORB
feature extraction and matching across various viewing angles. When the viewing angle
is not changed much, ORB has a good matching effect, but when the viewing angle is
changed a lot, ORB has almost no matching effect. The GCNv2-tiny model demonstrates
a robust capacity for matching. Regardless of variations in the viewing angle, the feature
points can be matched. The results are presented in Table 1.
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Figure 6. This figure shows the performance of feature point extraction and matching. From top to
bottom, the scenes shows the different perspectives (1~4). (a) The results of the GCNv2-tiny method;
(b) the results of the ORB method.

In Table 1, correct matches refer to the initial matches after the RANSAC algorithm
has removed the false matches. The rate represents the proportion of correct matches to
the number of initial matches. For small changes in perspective, the GCNv2-tiny feature
point shows a significantly higher correct match rate over ORB. It can be concluded that
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the GCNv2-tiny feature points are more adaptable and robust in complex scenes with large
perspective changes.

Table 1. The results of feature point extraction and matching by different viewing angles by two
methods.

Method Perspective Initial Matching Correct Matching Rate (%)

ORB

1 329 46 13.98
2 374 97 25.94
3 261 17 6.51
4 302 5 1.66

GCNv2-tiny

1 341 124 36.36
2 563 386 68.56
3 367 89 24.25
4 435 92 21.15

The results of each method in this paper are bolded.

4.2. Target Detection Network Training and Performance

To verify the performance of the GS-YOLOv5s dynamic target recognition algorithm
in this paper, the COCO dataset is used for training and validation. The training model
for GS-YOLOv5s is performed first. The parameters of the experiment are set as follows:
the network training batch size is 128, the initial learning rate is 0.01, the weight decay
coefficient is 0.0005, and the total number of training rounds is 200. During the training
process, the dataset is divided into three parts: the training set, the validation set, and the
test set. The role of the training set is to train the model to obtain the parameters to make
the model fit the data, the role of the validation set is to evaluate the performance of the
model and select the best hyperparameters to avoid overfitting the model; and the role
of the test set is to test the model’s ability to generalise and to evaluate its performance
on an unknown dataset. Figure 7 illustrates the progression of loss values throughout the
training process. The accuracy of target detection and classification increases as the loss
value decreases, approaching the true value.

As seen from Figure 7, as the number of training rounds increases, the loss decreases
and tends to stabilise, and the model gradually converges. The target detection effect of the
GS-YOLOv5s model in this paper is comparable than that of YOLOv5s. Combined with the
loss curves of the validation set, it can be seen that the model does not show any overfitting
phenomenon when applied to the validation set. The model is trained to learn effective
features and does not rely too much on the training data.

From Figure 8, the fluctuations in precision and recall gradually decrease and become
stable as the number of training rounds increases. And the precision of the YOLOv5s
model fluctuates more during the training process. This indicates that its training effect
is not as good as the GS-YOLOv5s model in this paper. However, it can be seen from its
precision curve that its prediction effect is slightly higher than that of the model in this
paper. The corresponding mAP performance indices are presented in Table 2 and were
used to evaluate the training results.

Table 2. The comparison of the two models in performance parameters.

YOLOv5s GS-YOLOv5s Promotion Rate (%)

mAP_0.5 94.291 93.473 −0.87
mAP_0.5:0.95 75.689 79.418 4.93

FPS 112 135 20.54
Params (M) 15.2 12.7 16.45
FLOPs (ms) 15.6 13.2 15.38

The results of method in this paper are bolded.
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Figure 8. Plot of changes in performance metrics for GS-YOLOv5s model. The changes in precision,
recall, and mAP of GS-YOLOv5s model during the training process. The variable mAP_0.5 refers to
a mAP with IoU threshold larger than 0.5; mAP_0.5:0.95 denotes the average mAP at different IoU
thresholds (from 0.5 to 0.95, with a step size of 0.05).
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Table 2 presents a comparison between the two models in terms of performance
parameters. The variable mAP is used to measure the prediction accuracy, and a higher
the value represents a better performance. FPS is used to measure the running efficiency; a
larger value represents a faster rate. Params is used to measure the model size; the smaller
the value, the lighter the model. FLOPs is used to measure the speed of the algorithm;
a smaller value represents a faster speed. It can be seen that GS-YOLOv5s is slightly
inferior to the original algorithm in accuracy, but the running efficiency is significantly
improved over the original algorithm. The proposed methodology demonstrates a 20.54%
enhancement in speed, while accompanied by a 0.87% decrease in accuracy. Therefore, the
algorithm proposed in this paper improves the running speed by reducing the accuracy
slightly to enhance the real-time performance of the system.

The experimental results of the comparison are depicted in Figure 9. The majority of
objects within the environment can be effectively detected, although the level of accuracy
in detection is not as high as that achieved by YOLOv5s. The classification results are also
slightly worse than those of the original algorithm. However, the target detection algorithm
in this paper is used to further identify the dynamic objects and does not require strict
semantic information for classification. The method employed in this study demonstrates a
high level of accuracy in target detection, thereby satisfying the system’s requirements.
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Figure 9. The comparison of the detection results of the two algorithms on the test samples. The left
and right side show the comparison of target detection results between YOLOv5s and GS-YOLOv5s.
In the last figure, the top is YOLOv5s’s results, and the bottom is GS-YOLOv5s’s.

From Figure 10, the mask of dynamic target objects is obtained. In Figure 10a,b, we
mark the defects of the detection results by the yellow frame. In Figure 10a, this result is
due to the fact that the dynamic object is too close to the neighbouring background, and
the depth values of both are close enough to cause the distinction to fail. In Figure 10b, this
result is due to the fact that the dynamic object is close to the camera. In the results of all
frames, the defects are very rare, and they tend to take up a tiny area of the mask, which
will not affect the performance of the system.
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4.3. Trajectory Accuracy Verification Experiment in the Dynamic Environment
4.3.1. Trajectory Accuracy

The main metrics used to evaluate trajectories in Visual SLAM are absolute trajectory
error (ATE) and Relative Pose Error (RPE). The ATE metric is used to measure the difference
between the camera pose estimated by the algorithm and the true camera pose and is used
to calculate the global consistency of the trajectory. The ATE metric is used to measure
drift in the visual odometer system. And the smaller the ATE evaluation metric, the
higher the accuracy. It is assumed that the visual odometry estimate of the position is
denoted as P1, P2, · · · Pn ∈ SE(3). SE(3) is the three-dimensional Euclidean transformation
consisting of rotations and shifts. The true bit positions of the camera are denoted as
Q1, Q2, · · · Qn ∈ SE(3). These positions represent the camera’s position relative to the
world coordinate system at different times or in different frames. The definition of the ATE
formulation is given below.

The absolute trajectory error at frame i is defined as

Fi = Q−1
i SPi, (6)

The root mean square error (RMSE) formula for ATE is defined as

RMSE(F1:n) =

√
1
m ∑m

i=1 ∥ trans(Fi) ∥2, (7)

where the trans(.) denotes the translational component of the relative trajectory error.
This work focuses on evaluating the trajectory accuracy using ATE.
The TUM_RGBD dataset, an open source dataset provided by the Technical University

of Munich in Germany, is used to validate the robustness of the algorithm and the position-
ing accuracy in dynamic environments. The dataset comprises a total of 39 image sequences
depicting various indoor environments. The contents of the dataset encompass both RGB
images and depth images. The sitting and walking sequences are dynamic environments.
Specifically, the sitting sequence includes two people positioned in front of a table engaging
in small-amplitude movements. On the other hand, the walking sequence involves two
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people performing larger-amplitude movements as they move around a table. Furthermore,
these two dynamic subsequences can be associated with four distinct categories of camera
motion. There are four different camera movements that can be observed: (1) halfsphere:
the camera moves along the hemisphere with a diameter of 1 m; (2) xyz: the camera moves
along the x, y, and z axes; (3) rpy: the camera rotates along the roll, pitch, and yaw axes;
and (4) static: the camera is stationary.

The fr3-walking-xyz, fr3-walking-rpy, fr3-walking-halfsphere, and fr3-walking-static
dataset sequences from the highly dynamic environment in the TUM dataset are chosen
as the test data. And we compare DLD-SLAM with ORB-SLAM3 to demonstrate the
effectiveness of dealing with dynamic interference. Furthermore, the EVO evaluation
tool is employed to measure the absolute trajectory error, which quantifies the difference
between the estimates provided by the SLAM system and the actual values obtained from
the dataset. Figure 10 displays the ATE of the ORB-SLAM3 and DLD-SLAM methods. The
red line indicates the distance between the true value and the estimated value, commonly
referred to as the absolute trajectory error (ATE). The results of localisation in the TUM
dataset are depicted in Figures 11 and 12.
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Figure 11. The ATE of the fr3_walking_xyz, fr3_walking_rpy, fr3_walking_halfsphere, and
fr3_walking_static sequences from left to right. (a–d) are the ATE plots of the ORB-SLAM3 algorithm.
(e–h) are the ATE plots of DLD-SLAM.

It is evident that DLD-SLAM has a substantial impact on enhancing the precision of
localisation in visual SLAM systems operating within dynamic indoor environments.

The experimental findings, as presented in Table 3, indicate that DLD-SLAM demon-
strates significantly enhanced accuracy in comparison to ORB-SLAM3; the ATE is greatly
reduced. The RMSE is reduced by 97.29%, 94.71%, 96.89%, and 98.61% for the fr3-walking-
xyz, fr3-walking-rpy, fr3-walking-halfsphere, and fr3-walking-static sequences. And the
robustness of the camera’s various irregular movements performs better when dealing
with different sequences.
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Figure 12. Taking the fr3_walking_xyz sequence as an example, (a,c) show the estimated versus true
values of ORB-SLAM3 and DLD-SLAM on the trajectory as well as the error along the x, y, and z axis
directions, and (b,d) show the ATE of DLD-SLAM with both the change in position and the change
in time.

Table 3. The ATE of ORB-SLAM3 and DLD-SLAM on the TUM dataset (m). RMSE is the root mean
square error, Mean is the mean, Median is the median, and S.D. is the standard deviation.

Sequence
ORB-SLAM3 DLD-SLAM Promotion Rate

of RMSE (%)RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3-w-xyz 0.6847 0.6097 0.6306 0.3116 0.0185 0.0163 0.0147 0.0088 97.29
fr3-w-rpy 0.8003 0.6846 0.6584 0.4145 0.0424 0.0307 0.0229 0.0293 94.71

fr3-w-halfsphere 0.7057 0.6481 0.6041 0.2792 0.0219 0.0186 0.0156 0.0118 96.89
fr3-w-halfsphere 0.4028 0.368 0.3017 0.1638 0.0056 0.0049 0.0043 0.0028 98.61

The results of method in this paper are bolded.

Table 4 presents the absolute trajectory error RMSE of ORB-SLAM3, DS-SLAM, Detect-
SLAM, DynaSLAM, and DLD-SLAM. DS-SLAM and Detect-SLAM are similar to DLD-
SLAM in that they all use different networks for the semantic segmentation of the dynamic
objects and then determine the real dynamic targets for dynamic feature point rejection.
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Their positioning accuracy is not much different from this paper’s method, and the ATE
of DLD-SLAM can be reduced by about 30% at most. In terms of positioning accuracy,
DynaSLAM’s exceeds DLD-SLAM’s. DynaSLAM achieves higher accuracy by leveraging
the MASK-RCNN network for dynamic target segmentation and incorporating geometric
constraints. Nevertheless, the real-time performance of the MASK-RCNN network is
limited by its extended duration.

Table 4. The absolute trajectory RMSE of each traditional algorithm (unit: m).

Sequence ORB-SLAM3 DS-SLAM Detect-SLAM DynaSLAM DLD-SLAM

fr3-w-xyz 0.6847 0.0257 0.0254 0.0156 0.0185
fr3-w-rpy 0.8003 0.4453 0.4559 0.0358 0.0424

fr3-w-halfsphere 0.7057 0.0346 0.2021 0.0179 0.0219
fr3-w-static 0.4028 0.0072 0.0069 0.0011 0.0056

The results of method in this paper are bolded.

The method presented in this paper demonstrates enhanced capabilities in addressing
localisation challenges in the presence of dynamic interference. The results indicate a
notable enhancement in both the accuracy and robustness of the localisation. Moreover, it
improves the localisation accuracy of real-time algorithms compared to classical dynamic
visual SLAM. Although the localisation accuracy is slightly lower than that of DynaSLAM,
DLD-SLAM makes up for the shortcomings of DynaSLAM in operational efficiency.

4.3.2. The Efficiency of the Algorithm

Figure 13 depicts a box plot of the duration taken by this algorithm to process each
frame of the fr3_walking_xyz sequence. After removing abnormal values, the time taken to
process each frame is between 62 and 68 ms, with a mean value of 65.8188 ms.
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Table 5 provides a comparative analysis of the running efficiency of DLD-SLAM and
various traditional algorithms in the processing of the fr3-walking-xyz sequence. The time
required by each algorithm to process each frame is recorded. One of the considered meth-
ods, ORB-SLAM3, does not address the localisation challenge in dynamic environments
and includes processes for detecting and rejecting dynamic feature points; consequently,
the running time is reduced. DS-SLAM and Detect-SLAM are both examples of dynamic
feature point rejection methods, which are employed in the research paper being discussed.
However, the method in this paper replaces traditional ORB feature point extraction and
matching with a more efficient and stable deep learning method in the front-end session.
The integration of a lightweight network and RGB-D depth information is used in dynamic
feature point detection and rejection, resulting in enhanced operational efficiency and
real-time performance. DynaSLAM cannot run in real-time due to the use of the MASK-
RCNN network for segmentation. Therefore, DLD-SLAM demonstrates great superiority
in running efficiency in the dynamic visual SLAM algorithm.

Table 5. The comparison of average time of fr3_walking_xyz sequence processed by various tradi-
tional algorithms.

Method
Time Consumption (Unit: ms)

Front End Per Frame

ORB-SLAM3 - 46.81
DynaSLAM 310.87 376.36
DS-SLAM 42.61 78.46

Detect-SLAM 57.74 96.14
DLD-SLAM 31.32 65.82

The results of method in this paper are bolded.

5. Discussion

The performance of localisation. The results presented in Figure 6 and Table 1
demonstrate that the DLD-SLAM system successfully extracts a sufficient number of feature
points during the feature extraction and matching process. Furthermore, these feature
points are matched with greater resilience compared to the conventional ORB features.
Figures 7 and 8 demonstrate that our improved target detection method, GS-YOLOv5s,
can be effectively trained and predicted. The target detection results depicted in Figure 9
demonstrate that they satisfy the algorithm’s requirements and effectively identify the area
where dynamic feature points with semantic labels are situated, when combined with the
depth image. Figures 11 and 12, and Table 3 embody the accuracy comparison between
DLD-SLAM and ORB-SLAM3 in processing the dynamic sequences of the TUM dataset. It
can be seen that the method of this paper can effectively solve the localisation problem of
the system in a dynamic environment. By integrating target detection and depth image,
the approach successfully acquires object mask and semantic information. Additionally,
the adoption of a dynamic feature point rejection strategy further enhances the method’s
effectiveness. This method has also proved to be feasible. Table 4 presents a comparative
analysis of the positioning accuracy achieved by DLD-SLAM and traditional dynamic
SLAM methods; DS-SLAM and Detect-SLAM are the same type of dynamic visual SLAM
that can be operated in real-time as this paper, and the accuracy of DLD-SLAM is more
superior. This paper presents several contributions that enhance the accuracy of feature
point extraction and matching methods. Additionally, it introduces a dynamic feature point
rejection method and strategy. The accuracy performance of DynaSLAM surpasses that
of other systems; however, its network model lacks the capability to operate in real time.
Table 4 illustrates the method’s superior performance in terms of localisation.

The time consumption. Table 2 presents the observed decrease in network parameters
of GS-YOLOv5s in comparison to YOLOv5s, along with the corresponding enhancement in
running speed. This demonstrates the efficacy of our approach in relation to its compact
model size and rapid processing capabilities. Figure 13 demonstrates the running time
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of DLD-SLAM, including the time consumed per front end and the time consumed per
frame. Table 5 embodies the running efficiency comparison between DLD-SLAM and
other classical algorithms. The running times per frame of DS-SLAM, Detect-SLAM, and
DLD-SLAM are similar in removing the front end time. They differ mainly in the front end
time consumed per frame. This reflects our contribution to facilitating the processing of
the YOLOv5s algorithm and obtaining semantic segmentation masks by combining them
with depth images to improve the running efficiency of the algorithm. DynaSLAM requires
more time and does not reach an adequate real-time running performance. In comparison,
it is proved that the method in this paper effectively improves the real-time operation of
the algorithm.

6. Conclusions

In this paper, a deep learning-based RGB-D visual SLAM algorithm is proposed,
which can be applied to dynamic environments and has improved running efficiency. The
GCNv2-tiny deep learning method is employed in the tracking thread of ORB-SLAM3,
replacing the conventional pyramid-based ORB feature point extraction and matching
technique. This method can not only extract enough and uniformly distributed feature
points but also has better performance in terms of running efficiency as well as robustness.
And the semantic segmentation thread for dynamic targets is added to the original three
threads. In this thread, the YOLOv5s target detection network is enhanced through the
incorporation of GSConv convolution, which improves the CSP2_x module, resulting in
a reduction in the parameters of the deep learning network. In order to meet the system
detection accuracy at the same time and improve efficiency, the target detection algorithm
needs to be more lightweight. The dynamic targets derived from the target detection
process are subsequently integrated with the RGB-D depth data in order to acquire the
semantic mask. This approach has the ability to minimise the excessive elimination of
static feature points within the detection frame so as to avoid insufficient feature points for
position estimation. After determining the mask of the potential dynamic target, this paper
adopts the LK optical flow method to judge the relative motion of the feature points in the
detection frame by comparing it with the velocity threshold. And the dynamic probability
is determined by combining the last frame state of the feature point and the semantic labels.
The identification of real dynamic objects is based on the potential dynamic targets. Within
the mask region, the dynamic feature points are excluded to ensure that only static feature
points are considered for position estimation and optimisation.

The verification of the method’s feasibility and performance is conducted on various
sequences from the TUM dataset. In this paper, the algorithm is also evaluated against
the ORB-SLAM3, DS-SLAM, Detect-SLAM, and DynaSLAM algorithms in terms of both
positioning accuracy and running efficiency. The research results demonstrate a substantial
decrease in the absolute trajectory error within dynamic environments. The accuracy of the
system increases by approximately 95% when compared to ORB-SLAM3. In comparison to
real-time dynamic visual SLAM with its high accuracy, there has been a notable increase
of 31.54% in terms of running efficiency. The comprehensive performance of our method
demonstrates its superiority. The efficacy of DLD-SLAM in enhancing positioning accuracy,
operational efficiency, and robustness in dynamic environments has been substantiated.

In the future, improvements will be made in the following aspects: Sensors such
as IMU and LIDAR will be implemented. By broadening the scope of application, it
is possible to enhance the accuracy and robustness of the system. The enhancement
of running efficiency in deep learning networks can be accomplished by implementing
lightweighting techniques such as model pruning. Moreover, it is reasonable to improve
system performance by using faster and more accurate target detection methods, such as
YOLOv7 and so on. Additionally, taking advantage of semantic information can facilitate
the construction of a comprehensive semantic map, which can improve the representation
of information in a more complete scene.
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