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Abstract: Earth observations from remotely sensed data have a substantial impact on natural hazard
surveillance, specifically for earthquakes. The rapid emergence of diverse earthquake precursors has
led to the exploration of different methodologies and datasets from various satellites to understand
and address the complex nature of earthquake precursors. This study presents a novel technique to
detect the ionospheric and atmospheric precursors using machine learning (ML). We examine the mul-
tiple precursors of different spatiotemporal nature from satellites in the ionosphere and atmosphere
related to the Turkey earthquake on 6 February 2023 (Mw 7.8), in the form of total electron content
(TEC), land surface temperature (LST), sea surface temperature (SST), air pressure (AP), relative
humidity (RH), outgoing longwave radiation (OLR), and air temperature (AT). As a confutation
analysis, we also statistically observe datasets of atmospheric parameters for the years 2021 and 2022
in the same epicentral region and time period as the 2023 Turkey earthquake. Moreover, the aim of
this study is to find a synchronized and co-located window of possible earthquake anomalies by
providing more evidence with standard deviation (STDEV) and nonlinear autoregressive network
with exogenous inputs (NARX) models. It is noteworthy that both the statistical and ML methods
demonstrate abnormal fluctuations as precursors within 6 to 7 days before the impending earthquake
over the epicenter. Furthermore, the geomagnetic anomalies in the ionosphere are detected on the
ninth day after the earthquake (Kp > 4; Dst < −70 nT; ap > 50 nT). This study indicates the relevance
of using multiple earthquake precursors in a synchronized window from ML methods to support the
lithosphere–atmosphere–ionosphere coupling (LAIC) phenomenon.

Keywords: atmospheric precursors; GNSS TEC; LAIC; machine learning; remote sensing

1. Introduction

Earthquakes take place as a result of tectonic stress accumulation, and these tectonic
stresses result in the brittle failure of the lithospheric layers. Earthquakes occur because of
tectonic stress changes inside the Earth’s lithosphere at various hypo-central depths: low,
intermediate, and deep extents [1,2]. The application of global navigation satellite system
(GNSS) and remote sensing (RS) satellites has provided great insights into the monitoring
of a possible earthquake precursor at different altitudes over the seismic zone before the
occurrence of future main shocks [3–5]. Previous reports have used remotely sensed data to
investigate possible seismic anomalies by studying the various aspects of earthquake energy
evaluations from epicentral regions using satellite observations with different spatiotempo-
ral datasets before and after the earthquake day [6–9]. Moreover, in various investigations,
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the GNSS and other RS satellites have found irregularities before large-magnitude and
shallow-depth earthquakes above the epicenter during the seismogenic preparation period,
enabling a comprehensive definition of seismic precursors [10–13]. Previous findings have
relied on different RS data to observe the evolution of the earthquake energy in a close
environment with the coupling phenomenon of the lithosphere, atmosphere, and iono-
sphere. For high-magnitude global earthquakes, these short-term irregularities can be seen
5–10 days prior to and 10 days after the main earthquake. However, there is still no clear
demarcation of seismic precursors with remotely sensed data to clearly depict the location
and occurrence of an earthquake event on a specific day. The seismic-induced anomalies
exhibit positive and negative deviations beyond the prescribed bounds in various data of
the lithosphere, atmosphere, and ionosphere [14,15]. The lithosphere experiences numerous
geophysical changes as the earthquake’s energy first interacts with this layer, generating
possible precursors around the epicentral region of the earthquake [16]. During the seismic
preparation phase, earthquake precursors may be monitored with many satellites at an
altitude above the epicentral area, measuring the data of LST, SST, and other geophysical
changes [17]. The atmospheric precursors from satellite data can also be observed in the
form of ozone (O3), nitrogen dioxide (NO2), OLR, RH, AT, and AP associated with the main
shock, which cause the composition of the lower atmosphere to vary and can further drift
to the upper ionosphere [18–20]. Moreover, acoustic waves and atmospheric gravity waves
(AGW) are produced by ground motion deformation and gas emissions [21–23]. Atmo-
spheric ULF/ELF and VLF/LF (lower ionospheric perturbation) are considered earthquake
precursors and viable options for short-term earthquake prediction [24]. Furthermore,
earthquake anomalies can travel up to the ionosphere and the resulting precursors can be
studied using the data of the GNSS for TEC, electron density, electric field variations, and
other indices from satellite data [25,26]. The LAIC model explains exactly how earthquake
anomalies can travel through several pathways in the atmosphere, followed by their travel
to the upper ionosphere [27,28]. The precursors in the ionosphere and atmosphere can
be merged in association with future earthquakes as induced by positive holes (p-holes)
around the main shock regions during the preparation period [29]. In addition to p-holes,
radon emission can generate seismic irregularities by air ionization in the atmosphere and
be emitted to the upper atmosphere and ionosphere [30]. Furthermore, air anomalies may
be caused by the emission of gases like radon, caused by tectonic stress changes and the
deformation of rocks [31,32].

The intensity of atmospheric and ionospheric anomalies can vary in response to the
depth, magnitude, and geophysical position of the earthquake [33]. The appearance of
particular characteristics in earthquake anomalies can occur within days, hours, or even
minutes before the main shock [34,35].

Earthquake anomalies have been investigated in many ways, using various statistical
and mathematical techniques to establish a LAIC coupling hypothesis [36,37]. For example,
Tronin [1] observed the anomalies 4–20 days prior to the earthquake in the form of LST
increments. Furthermore, Hafeez et al. [38] observed the anomalous window for LST
increments between 5 and 7 days prior to and 2 to 4 days after the earthquake. In association
with other atmospheric anomalies from satellite data, a major increment in OLR was
observed on the 13th day before the 2008 Wenchuan, China, earthquake [39]. Venkatanathan
et al. [18] also identified OLR abnormalities in a statistical analysis of 10 earthquakes in India
and its neighboring countries in 2012. Furthermore, Shah et al. [33] observed a synchronized
pattern of LAIC through the coupling of variations in OLR and other satellites and ground
datasets within 5–10 days prior to an earthquake. The atmospheric anomalies occurred due
to tectonic movement around the epicenter to generate the ionization and thermodynamic
processes, followed by irregularities in AT, RH, and AP changes. Khan et al. [40] observed
a chain of significant increments in AT and a decrease in RH in 8 days before the 2021
Haiti earthquake. Additionally, Draz et al. [10] analyzed the atmospheric precursors in
SST, AT, OLR, and RH within the anomalous window of 5–7 days before the 2021 Japan
earthquake. Both positive and negative variations are observed in various variables, such
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as SST, TEC, and other atmospheric constituents, to form a mutual coupling system [41].
However, a significant research gap remains regarding the development of precise and
reliable early warning systems, particularly in identifying specific precursors or patterns
to accurately forecast the timing, location, and magnitude of earthquakes. Additionally,
the integration of various data sources and their training by machine learning models for
improved accuracy can be a significant area of advancement in this field.

In this study, we used various methods in the form of statistical and machine learning
procedures to investigate the precursors of the Mw 7.8 Turkey earthquake event on TEC
from GNSS satellites and atmospheric variables like RH, OLR, AP, SST, LST, and AT.
Previous studies of this event [9,13] have only focused on ionospheric anomalies, but this
work identifies synchronized and co-located ionospheric as well as atmospheric variations
on the same day associated with the earthquake. Similarly, we study the significant pre-
and/or post-seismic anomalies with reliable evidence from different remotely sensed
datasets. The paper is organized as follows. Section 2 describes the area of study. Moreover,
the data and methods are explained in Section 3. Section 4 describes the results and Section 5
presents the discussion. The conclusions are summarized in Section 6.

2. Area of Study

An earthquake of Mw 7.8 struck Southern Turkey on 6 February 2023 at 01:17:34 UTC
(LT = UTC + 03:00 = 04:17:34). The epicenter was located at the geographical location
of 37.2◦N and 37.1◦E at a shallow depth of 10 km (Figure 1). The earthquake data are
provided by the United States Geological Survey (USGS) via https://www.usgs.gov/
programs/earthquake-hazards (accessed on 15 May 2023). This earthquake caused massive
destruction to property and more than 70,000 people were exposed to destructive landslides.
Furthermore, this earthquake was caused by a shallow strike–slip fault. More tectonic and
technical information about this earthquake can be found on the USGS website.
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Figure 1. The location of the 2023 Mw 7.8 Turkey earthquake, indicated by a black filled star. The red
filled stars indicated the GNSS stations and the black filled circle indicates the SVTL station outside
the preparation zone. The red dashed circle represents the earthquake-impacted region.

3. Data and Methods
3.1. Data

For this study, we analyzed various atmospheric and ionospheric parameters over
30 days (19 days prior to and 10 days after of the earthquake) to identify a synchronized
and co-located precursory pattern. For this purpose, the atmospheric anomalies averaged
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over epicenter in the region of 28◦N to 44◦N in latitude and 27◦E to 48◦E in longitude for
the year 2023 were observed in time series for anomalies. We also observed the datasets
of atmospheric parameters for the same region and same time period as the Turkey earth-
quake for the previous 5 years (2018–2022) as a confutation analysis. Similarly, the OLR,
RH, AP, and AT datasets for the Turkey earthquake were acquired from NOAA PSL,
via https://psl.noaa.gov/ (last accessed on 20 May 2023). The OLR, RH, AP, and AT
data were retrieved in a daily temporal resolution with spatial coverage of 2.5◦ × 2.5◦ in
latitude × longitude, respectively.

The daily SST data for this study were retrieved from the Japan Aerospace Exploration
Agency (JAXA) via the webpage https://global.jaxa.jp/projects/sat/gcom_w/ (accessed
on 10 June 2023). Moreover, the SST data had global coverage and a spatial resolution of
15 km along the swath. On the other hand, the LST data from MODIS correlated consider-
ably with in situ surface temperature observations [33,38]. In this study, the daily LST data
from the MODIS (Terra) satellite were obtained from https://modis.gsfc.nasa.gov/data/
(retrieved on 12 June 2023). Moreover, the MODIS data had a diurnal pattern in 36 spectral
bands for the whole globe, with a swath width of 2330 km.

Furthermore, the GNSS TEC is widely utilized to study ionospheric anomalies asso-
ciated with earthquakes across the globe [4,10,42], and the geomagnetic indices showed
storm time variations, derived from the NASA OMNIWeb via https://omniweb.gsfc.
nasa.gov/form/dx1.html (retrieved on 15 June 2023). The ionospheric anomalies were
studied from the TEC of three IGS stations, with two stations, TUBI and RAMO, located
inside the main shock area and the third station, SVTL, located beyond the main shock
preparation area (Table 1). We retrieved the TEC of the SVTL station to validate and
separate the ionospheric variations due to geomagnetic storms and monitor the real
earthquake-induced ionospheric deviations. The TEC data from all three GNSS stations
were obtained via http://www.ionolab.org/ (accessed on 15 June 2023). Additionally, the
ionospheric precursors for the Turkey earthquake were analyzed from the vertical TEC
(VTEC). The VTEC is calculated using the slant TEC (STEC) and is measured in TEC units
(1 TECU = 1016 el/m2) [43].

STECh
a =

−
(

f 2
1 f 2

2
)

40.3
(

f 2
1 − f 2

2
) (

Ph
(4, a) − c.DCBa − c.DCBh

)
(1)

VTEC = STEC × cos
[

arcsin
(

Rsinz
R + H

) ]
(2)

Table 1. List of GNSS stations.

No. Station Name
Distance from
Epicenter (km)

Coordinates
Country

Latitude Longitude

1 TUBI 764 40.7◦N 29.4◦E Turkey

2 RAMO 776 30.5◦N 34.7◦E Israel

3 SVTL 2640 60.5◦N 29.7◦E Russia

In Equation (1), ( f 2
1 , f 2

2 ) are the dual frequencies, Ph
(4, a) is the variation among the

smoothed coded measurements, and DCBh and DCBa are the differential code biases.
Similarly, c represents the speed of light. Furthermore, R is the radius of the Earth, z is
the zenith angle, and H represents the ionospheric pierce point height (for this study, we
considered it as 320 km).

3.2. Methods

The synchronized and co-located atmospheric and ionospheric anomalies using both
the statistical and ML methods were studied using the standard deviation (STDEV) method.
Moreover, the NARX method was used to confirm the anomalies associated with the main

https://psl.noaa.gov/
https://global.jaxa.jp/projects/sat/gcom_w/
https://modis.gsfc.nasa.gov/data/
https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
http://www.ionolab.org/
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shock as an ML procedure. Multiple parameters were analyzed over the epicenter within
the Dobrovolsky region [44], where the impacted area in kms can be determined using the
below equation.

R = 100.43Mw (3)

In the above equation, R is the earthquake stress radius in kms and Mw is the magni-
tude of the forthcoming earthquake. The stress radius of the Turkey (Mw 7.8) earthquake
was approximately 2259 km, as calculated by the Dobrovolsky formula.

3.2.1. Statistical Method

We examined any variation in the multiple datasets associated with the seismic event
beyond the upper and lower confidence limits by calculating the mean (M) and standard
deviation (STDEV) for the data retrieved over the epicentral zone of the Dobrovolsky
region. We also applied the statistical method to the atmospheric parameters for the years
2021 and 2022 to check and validate the variations from the 2023 Turkey earthquake-
induced anomalies. For the time series analysis of multiple earthquake precursors, we
implemented a threshold limit of two standard deviations (2 × STDEV), which has already
been employed in previous studies to determine earthquake precursors from satellite
data [10,26,32]. This bounds method can clearly distinguish a substantial and co-located
anomaly from the other unclear anomalies. The confidence limits are calculated by the
below equations.

UB = M + 2 × STDEV (4)

LB = M − 2 × STDEV (5)

The above equations can confirm the earthquake-induced anomalies beyond the upper
and below the lower bound as abnormal seismic precursors. Furthermore, the deviation
from either above or below the confidence bound is plotted as the deviation.

3.2.2. NARX

The NARX method is widely employed to detect the specific nature of deviations
related to seismic events during the preparation period [38,40,45]. The expression below is
the NARX model equation.

y(t) = f
(
y(t − 1), y(t − 2), . . . , y

(
t − ny

)
, x(t − 1), x(t − 2), . . . , x(t − nx)

)
(6)

The network algorithm and training prediction error for a nonlinear function f can be
obtained by the output, hidden layer count, input delays, activation functions, associated
neurons, and learning technique. To start the prediction process, N observations, y1, y2,
. . ., yN , are selected as a training set, while the remaining ones, yN+1, yN+2, . . ., yN+m, are
selected as a test set. The inputs are the mean value, respective time, observed values, and
the deviation of the observed values from the confidence limits. The daily predicted values
are obtained as the output layer. The suggested network’s training model can be seen in
Figure 2 below.

y4 = f (y1, y2, y3, t1, t2, t3) (7)

y5 = f (y2, y3, y4, t2, t3, t4) (8)

yN = f (yN−3, yN−2, yN−1, tN−3, tN−2, tN−1) (9)

The prediction error (PE) is reduced by finding the optimum weights in the prediction
performance. The PE equation is shown below.

PE = ∑N
k−0(ŷ(t − k) − y(t − k)). (10)
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where ŷ is the network’s output. The testing patterns are given in the below equations.

yN+4 = f (yN+1, yN+2, yN+3, tN+1, tN+2, tN+3) (11)

yN+5 = f (yN+2, yN+3, yN+4, tN+2, tN+3, tN+4) (12)

yN+m = f (yN+m−3, yN+m−2, yN+m−1, tN+m−3, tN+m−2, tN+m−1) (13)

Subsequently, the deviations are computed by analyzing the variations among the
NARX-estimated and the observed values of the pre-defined confidence limits [38,46].
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4. Results

We implemented the statistical and machine learning approaches to examine precur-
sory values in various atmospheric and ionospheric datasets for possible seismic precursors
related to the Turkey earthquake. The deviations were thoroughly examined and discussed
in detail. The deviations in the daily OLR values over the preparation zone of the Turkey
earthquake are shown in Figure 3. We found no possible variations in the time series data
of the OLR for the years 2021 and 2022 (Figure 3a,b). However, a positive anomaly of
4.6 W/m2 was observed on the 6th day prior to the earthquake in the year 2023 (Figure 3d).
To quantify the atmospheric variations, we examined the variations in the daily RH values
over the epicentral region of the Turkey earthquake (Figure 4). The RH values for the
years 2021 and 2022 over the same region and same time period as the Turkey earthquake
showed no possible RH anomalies (Figure 4a,b). On the other hand, we found a negative
deviation of 0.5% on the 7th day prior to the main shock in the earthquake preparation
period (Figure 4d). The anomalous trend in RH remained for 2 days and a significant
deviation of −4.1% occurred on the 6th day prior to the main shock.

Moreover, we analyzed the variations in the daily AP values over the epicentral
region of the Turkey earthquake (Figure 5). The observed values for the years 2021 and
2022 showed no clear deviations for the AP dataset as compared to the year 2023 for the
earthquake (Figure 5a,b). For the earthquake year in 2023, we found a negative anomaly
of 0.51 kPa on the 6th day prior to the earthquake (Figure 5d). Furthermore, the NARX-
estimated OLR values displayed clear variations on the 6th and 7th days prior to the seismic
event (Figure 6a). The deviations on the 6th and 7th days were 7.1 W/m2 and 19.5 W/m2

from the NARX-predicted values, respectively (Figure 6b).
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Furthermore, the variations in the NARX-estimated RH values displayed prominent
negative deviations within 6–7 days before the main seismic event (Figure 6c). We detected
deviations of −7% and −12% from the NARX-predicted values on the 6th and 7th day,
respectively (Figure 6d). Furthermore, the NARX-estimated AP values displayed clear
deviations on the 6th day prior to the seismic event (Figure 6e). The observed deviation on
the 6th day was −1.75 kPa from the NARX-predicted value (Figure 6f).

In this study, we also analyzed the deviations in the daily AT values from satellites
over the epicentral region of the Turkey earthquake (Figure 7). We observed no possible
AT anomalies over the same region as the Turkey earthquake for the years 2021 and 2022
(Figure 7a,b). However, a positive anomaly of 3.26 K could be seen on the 6th day prior to
the earthquake day (Figure 7d).
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To further provide stringent proof of the atmospheric precursors, we examined the
daily SST values from remotely sensed satellite for the years 2021, 2022, and the earthquake
year of 2023 (Figure 8). The variations in the daily SST values over the impacted area of
the Turkey earthquake showed no abnormal time series data of SST for the years 2021 and
2022 (Figure 8a,b). Moreover, the time series data showed an obvious negative anomaly
of 1.6 K on the 7th day prior to the 2023 earthquake (Figure 8d). On the other hand, the
analyses of the daily LST values over the impacted zone of the Turkey earthquake are
shown in Figure 9. The LST data of the years 2021 and 2022 showed no deviation over
the epicentral region for the same time period (Figure 9a,b). However, we observed a
clear positive anomaly of 0.8 K on the 7th day prior to the earthquake (Figure 9d). The
anomalous trend remained for 2 days and showed a deviation of 2.1 K on the 6th day prior
to the main shock.
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Furthermore, the variations in the NARX-estimated AT values displayed clear anoma-
lies within a 6–7 day window prior to the seismic event (Figure 10a). We observed clear
deviations of 2.3 K and 6.7 K from the NARX-predicted values on the 6th and 7th day,
respectively (Figure 10b). Additionally, the NARX-estimated SST values displayed clear de-
viations on the 7th day prior to the seismic event (Figure 10c). We detected a clear variation
of −6.7 K from the NARX-predicted value (Figure 10d). We observed clear variations in the
NARX-estimated LST data as positive variations within 6–7 days prior to the main event
(Figure 10e); specifically, we detected variations of 5.7 and 7.1 K from the NARX-estimated
values (Figure 10f).
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Figure 10. The variations between the calculated and NARX-estimated datasets of atmospheric
variables: (a) calculated AT values and NARX-estimated AT values, (b) deviations of NARX-estimated
AT data from calculated AT data, (c) calculated SST data and NARX-estimated SST data, (d) deviations
of NARX-estimated SST data from observed SST data, (e) observed LST data and NARX-estimated
LST data, (f) deviations of NARX-estimated LST data from calculated LST data. The black dashed
line depicts the main event.

In this study, the TEC values retrieved from the two GNSS stations (TUBI and RAMO)
within the preparation area of the Mw 7.8 Turkey event displayed clear seismic variations.
Furthermore, the GNSS TEC data from the IGS station (SVTL) outside the earthquake-
impacted area were utilized for the confirmation of either the earthquake- or geomagnetic
storm-induced anomalies. We observed positive variations 7 and 6 days prior to the major
event in both the TUBI and RAMO stations’ values, in the absence of active storm conditions
(Figure 11). The TEC retrieved from the TUBI station displayed positive anomalies of 7.6
and 3.9 TECU on the 7th and 6th day prior to the earthquake, respectively (Figure 11d).
Moreover, the RAMO station’s values displayed positive anomalies of 9.5 and 5.4 TECU
on the 7th and 6th day prior to the earthquake, respectively (Figure 11e). However, the
STVL station showed no TEC deviation during the quiet storm days. On the other hand,
positive TEC deviations were observed on the 9th day after the seismic event in the data of
the SVTL station, as shown in Figure 11f. Additionally, positive VTEC variations occurred
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in all three IGS stations (TUBI, RAMO, and SVTL) on the 9th day after the earthquake,
associated with active geomagnetic storm days.

The NARX-estimated VTEC also displayed clear variations for all three IGS stations
during storm days (Figure 12d). Moreover, the NARX-estimated values displayed clear
variations in VTEC values at 6–7 days prior to the major event in two GNSS stations (TUBI
and RAMO) (Figure 12). In this study, various atmospheric and ionospheric parameters
showed deviations in both the statistical and ML methods for the 2023 Turkey earthquake.
All observed ionospheric and atmospheric deviations are listed in Tables 2 and 3.
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Table 2. List of deviations detected using the statistical method.

Variable Anomalous Days Deviation from Bounds

OLR −6 4.6 W/m2

RH −7, −6 −0.5, −4.1%

AP −6 −0.51 kPa

AT −6 3.26 K

SST −7 −1.6 K

LST −7, −6 0.8, 2.1 K

TEC (TUBI) −7, −6, 9 7.6, 3.9, 4.8 TECU

TEC (RAMO) −7, −6, 9 9.5, 5.4, 2.7 TECU

TEC (SVTL) 9 5.8 TECU
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(b) variations in RAMO VTEC values and NARX-estimated VTEC values, (c) variations in SVTL
VTEC values and NARX-estimated VTEC values, (d) deviations of NARX-estimated VTEC values
from TUBI, RAMO, and SVTL VTEC values. The black dashed line is for the main event.

Table 3. List of anomalies detected with the NARX method.

Variable Anomalous Days Variation from NARX-Estimated Value

OLR −7, −6 7.1, 19.5 W/m2

RH −7, −6 −7, −12%

AP −6 −1.75 kPa

AT −7, −6 2.3, 6.7 K

SST −7 −6.7 K

LST −7, −6 5.7, 7.1 K

TEC (TUBI) −7, −6, 9 9.1, 7.7, 16.2 TECU

TEC (RAMO) −7, −6, 9 12.5, 9.8, 8.2 TECU

TEC (SVTL) 9 15.5 TECU

5. Discussion

In this study, we observed the possible earthquake precursors to obtain an LAIC
hypothesis by integrating multiple satellite variables for the Mw 7.8 Turkey earthquake
using various methods. The earthquake developed precursory indications of deviation in
different variables in the atmosphere and ionosphere in the Dobrovolsky region within
a 6–7 day window before the earthquake. One can see the anomalous behavior of these
parameters over the epicenter of the 2023 Turkey earthquake in our analyses.

We detected an immense increment in OLR over the epicenter for the Turkey earth-
quake (Figure 3c). We observed these variations due to massive energy release during the
major event, as was suggested for the earthquake energy outflow into the atmosphere in
previous reports [47]. The OLR is considered to be an essential parameter in forecasting
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the future main shocks because it reflects the earthquake energy in the atmosphere [48].
Furthermore, we noticed a considerable drop in RH in our investigation (Figure 4c), which
was due to air ionization and thermal energy absorption, which changed the humidity and
air temperature in the atmosphere (increasing the AT and reducing the RH), as suggested
by Shah et al. [49]. An abrupt decrease in AP was observed, as shown in Figure 5c, as
the AP fluctuated with the appearance of the seismic waves and reached a peak with the
appearance of Rayleigh waves at the lithosphere–atmosphere interface as a response to
the main shock pressure [50]. Furthermore, it created seismic waves that were pushed
by the ground motion over the epicenter towards the atmosphere [50]. We also observed
prominent positive fluctuations in AT as a result of the abrupt release of seismic energy
prior to the main shock (Figure 7c). Previous reports have found that lower RH is associ-
ated with higher AT as a possible sign of seismic precursors [51]. On the other hand, air
ionization alters RH, AT, and the surface temperature by increasing the outgoing infrared
radiation [52]. The air ionization responses among the different atmospheric layers were
altered due to massive stresses from the epicenter of the future earthquake [53]. Similarly,
the gases released from the Earth’s crust resulted in OLR deviations, followed by fluc-
tuations in RH, AP, and AT, as well as air ionization [10,33,40]. The p-holes induced by
the earthquake within the preparation zone can also alter the air ionization [54], and this
increased the electrical conductivity in our case study. The deviations in OLR, RH, AP, and
AT were also analyzed as indicators of future seismic events [55]. The use of statistical
and machine learning methodologies to analyze the daily OLR, RH, AP, and AT in this
study is a new approach to identifying variations associated with the main shock. These
analyses confirmed the changes within the preparation zone of the 2023 Turkey earthquake
as anomalous behavior beyond the bounds. We also observed a massive decrease in SST
within the impacted area of the Turkey earthquake (Figure 8c). The SST measurements
revealed significant evidence of disruption around the earthquake, which supported the
investigation of additional atmospheric anomalies. The findings of this study, in the form
of multiple precursory variations, are consistent with previous investigations [56]. We also
observed a substantial enhancement in the LST over the epicenter of the Turkey earthquake
(Figure 9c). This is likely due to radon and greenhouse gas emissions at the epicentral
depth of strong earthquakes [33]. These gases flow to the ground and are mixed with
atmospheric constituents to further affect the lower atmosphere and travel up to generate
abnormalities in the ionosphere [16]. Moreover, electric charges can cause fluctuations in
LST due to p-hole emission from the rocks under stress [57]. In this work, the anomalies on
the 6th and 7th days prior to the main event were synchronized and co-located above the
epicenter from the satellite data (Table 2). Furthermore, we also observed positive VTEC
anomalies for three IGS stations operating inside, namely TUBI and RAMO, and outside,
namely SVTL, the earthquake-impacted area during quiet as well as active storm days
(Figure 11). The findings of VTEC anomalies in this work are consistent with the previously
observed ionospheric variations from GNSS and other satellites [33,42]. It is possible that
radon emission during the earthquake preparation phase causes these ionospheric VTEC
anomalies [16]. On the other hand, the energetic alpha particles charged by the earth-
quake may raise the air conductivity via the radioactive decay of radon [58]. Furthermore,
the LAIC phenomena described by numerical models of ionospheric ionization by the
upward electric field over the epicenter support the findings of this work [59–61]. They
also show the plasma flow from the epicenter as a source of increase and/or decrease
in the ionospheric aspects above the epicenter. The multiple analyses performed for the
LAIC hypothesis development found legitimate atmospheric and ionospheric anomalies
associated with earthquakes [62–66]. The incorporation of machine learning also improved
the credibility of the precursors to some extent by removing the biases in the data [67–71].
On the other hand, the need to integrate more data and their possible relations has still
not been addressed, as in previous reports [72–75]. In this study, we observed substantial
positive and negative deviations in multiple ionospheric and atmospheric parameters
related to the Mw 7.8 Turkey earthquake; however, it is critical to note that high-resolution
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datasets and additional research are required to increase the quality of our results and to
construct a more complete prediction model. Moreover, advanced ML approaches and the
observation and analysis of multiple atmospheric and ionospheric precursors are required
for precise estimations of the seismic precursors.

6. Conclusions

In this study, we found a synchronized and co-located pattern in various earthquake
precursors related to the Mw 7.8 Turkey earthquake, from multiple atmospheric and GNSS
observables, using statistical and ML techniques. We also studied the time series data
of the atmospheric parameters for the years 2021 and 2022 as a confutation analysis. We
found no deviations in the statistical analysis of the atmospheric parameters of past years.
Moreover, the positive variations in OLR, AT, and LST and negative deviations in RH,
AP, and SST indicated the integrated atmospheric correlations with the seismic event.
Similarly, positive GNSS TEC anomalies were observed for both the TUBI and RAMO
stations, and no anomalies were observed for the STVL station during the quite storm
days. Under active geomagnetic conditions, the VTEC of all three GNSS stations showed
positive anomalies in both the statistical and ML methods. The statistical and machine
learning approaches used to study multiple parameters inside the earthquake zone showed
significant precursors within a 6–7 day window prior to the Turkey earthquake. Although
these anomalies indicate probable precursor behaviors with the current satellite data, we
still need a more thorough understanding of the forecasting of earthquakes with more high-
resolution data. To increase the earthquake forecasting accuracy with clear insights into
lithosphere–atmosphere–ionosphere interactions, future research should focus on acquiring
finer-grained data, analyzing new variables, and establishing advanced prediction models.
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