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Abstract: Landslide disasters have garnered significant attention due to their extensive devastating
impact, leading to a growing emphasis on the prompt and precise identification and detection
of landslides as a prominent area of research. Previous research has primarily relied on human–
computer interactions and visual interpretation from remote sensing to identify landslides. However,
these methods are time-consuming, labor-intensive, subjective, and have a low level of accuracy
in extracting data. An essential task in deep learning, semantic segmentation, has been crucial to
automated remote sensing image recognition tasks because of its end-to-end pixel-level classification
capability. In this study, to mitigate the disadvantages of existing landslide detection methods, we
propose a multiscale attention segment network (MsASNet) that acquires different scales of remote
sensing image features, designs an encoder–decoder structure to strengthen the landslide boundary,
and combines the channel attention mechanism to strengthen the feature extraction capability. The
MsASNet model exhibited an average accuracy of 95.13% on the test set from Bijie’s landslide dataset,
a mean accuracy of 91.45% on the test set from Chongqing’s landslide dataset, and a mean accuracy
of 90.17% on the test set from Tianshui‘s landslide dataset, signifying its ability to extract landslide
information efficiently and accurately in real time. Our proposed model may be used in efforts
toward the prevention and control of geological disasters.

Keywords: deep learning; remote sensing images; landslide identification; semantic segmentation;
feature extraction

1. Introduction

A landslide is a natural phenomenon in which the soil or rock on a slope is influenced
by factors such as erosion of rivers, groundwater, rainwater soaking, earthquakes, and
artificial slope cutting, and slides downslope along a certain weak surface under gravity.
Landslides rank as the second most significant geological peril, following earthquakes.
These phenomena exhibit a global distribution and manifest with regularity on an annual
basis, resulting in substantial financial losses and a significant loss of human lives [1].
According to the 2022 Statistical Bulletin issued by the Ministry of Natural Resources of
China, 5659 geological disasters occurred in China that year, including 3919 landslides,
1366 avalanches, 202 mudslides, 153 ground collapses, 4 ground cracks, and 15 ground
subsidence events. A total of 90 people were killed, 16 went missing, 34 were injured, and
the direct economic loss was 1.50 billion yuan (https://www.mnr.gov.cn/ accessed on
6 March 2024). Landslides are the most prominent type of geological disaster in China,
and as a result of global climate change, seismic activity, and accelerated development,
landslides are becoming more frequent, and their real dangers and potential hazards are
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becoming more evident. Hence, it is important to conduct landslide detection in a timely
manner following the occurrence of a landslide to ascertain its area, scale, and distribution;
this information aids disaster mitigation and relief efforts and can further assist planning
and construction activities in affected areas.

Traditional landslide monitoring methods are primarily based on manual field surveys,
which have low efficiency and poor real-time performance. As Earth observation technology
evolves, the significance of remote sensing in identification has grown, providing early
warnings for large-scale natural disasters due to its timeliness, extensive coverage area, and
detailed information. Therefore, the rapid and accurate identification of landslide disaster
impact ranges from massive amounts of remote sensing image data is integral in guiding
disaster prevention and mitigation. Compared to traditional methods, remote sensing
technology has the advantages of large-scale synchronous observations, real-time operation,
and low cost [2], making it suitable for the rapid and continuous monitoring of slopes.
Remote sensing data that are widely used for landslide monitoring can be divided into high-
and medium-resolution remote sensing images. Among them, medium-resolution images
contain rich spectral information and are widely used in large-scale interpretation scenarios
owing to their large width and relatively low cost; however, owing to the constraints of
spatial resolution, it is difficult to accurately extract the shape, edges, number of slopes, and
other detailed information from these images. High-resolution images can provide finely
detailed information on the shape of landslides, boundaries, and other detailed information.
These advantages are in accordance with the development needs of disaster prevention
and mitigation, meaning that high-resolution images have an irreplaceable advantage in
the accurate investigation of landslides in key areas.

Spectral, textural, and geometric features that traditional classification methods rely on
comprise manually extracted low-level features, which are highly subjective, insufficiently
expressive, and difficult to apply to areas with complex backgrounds and obscure slope
features. With the rapid development of deep learning technology in the field of image
processing, semantic segmentation has gradually become the mainstream method of image
pixel-level decoding [3], the purpose of which is to annotate each pixel in the image with a
category label; this is consistent with the purpose of remote sensing pixel-level classification.
Semantic segmentation deep learning methods are end-to-end algorithms that can classify
segmented pixels by directly inputting image information as a supervised signal [4]. The
signal is capable of autonomously identifying key features for a specific task, utilizing a
robust loss function [5,6], and manual selection of segmentation parameters or combining
multidimensional features is not necessary. Despite the complexity of current deep learning
models, their internal decision-making processes remain unclear or even incomprehensible,
resembling a “black box”. The benefit of using an end-to-end learning approach is the
simplicity of achieving a universally optimal solution. Thus, in utilizing the deep learning
technique of semantic segmentation, it is possible to classify remote sensing images with
high efficiency and accuracy [7]. This technique offers efficient, instantaneous, and highly
accurate categorization outcomes for landslide detection.

Accordingly, semantic segmentation is widely used in pixel-level classification tasks
of remote sensing images, including building [8], road [9], and cropland extractions [10],
as well as surface single-element extractions and surface full-element classifications [11].
Compared with traditional machine learning methods, the main advantage of deep learning
is that it can automatically learn multilevel and multiscale features from low to high levels
through end-to-end networks [12], and its powerful feature learning capability proves its
efficacy in improving the interpretation accuracy of remote sensing images. Landslides
have different morphologies owing to the uncertainty of their occurrence time, location,
environment, and other factors; therefore, it is difficult to construct a universal landslide
recognition model. There is a need for automatic approaches that utilize deep learning
algorithms to accurately identify the site of landslides using remote sensing photos for
practical purposes. An end-to-end segmentation network known as deep residual shrinkage
U-Net (DRs-UNet) was developed by Ma and Mei to extract possible active landslides
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from Synthetic Aperture Radar Interferometry (InSAR) data. The network concept was
also used for the purpose of detecting landslides in a designated test location situated in
Zhongxinrong County, namely along the Jinsha River. The experimental findings provided
evidence of the effectiveness of the system in automatically identifying potential landslide
threats [13]. In addition, Choi et al. have developed a deep learning framework to digitalize
flow-type landslides’ kinematics using a fully convolutional neural network (FCNN).
The model outperforms traditional algorithms and can process images from consumer-
grade cameras under complex conditions [14]. Nugraha et al. proposed a framework for
improving the performance of Deep Convolutional Networks (DCN) in aerial imagery
semantic segmentation of natural disaster-affected areas. It uses U-Net and Pyramid Scene
Parsing Network models, with the Grid Search algorithm improving performance [15].

Deep learning methods autonomously extract the features of the target object through
sample training, bypassing the subjectivity of manually constructing features. Moreover,
they can form more abstract and stable features of the target object, greatly improving the
recognition accuracy. Based on this feature, researchers have begun using deep learning for
landslide recognition. Semantic segmentation, an important task in deep learning, has been
useful in automated image recognition because of its end-to-end pixel-level segmentation
capability. SegNet, proposed by Badrinarayanan [16] et al. and based on U-Net, introduces
pooled index links on top of the encoding-decoding structure to achieve efficient and
accurate target segmentation. PSPNet (Pyramid Scene Parsing Network), proposed by
Zhao et al. [17], uses the pyramid pooling structure to fuse four scale features to enable
the network to learn semantic features at different scales. Additionally, the DeeplabV3+
model proposed by Chen et al. [18] incorporates contextual information on top of PSP-Net
to improve the edge clarity of segmented targets. Because of the pixel-level classification
features of semantic segmentation, this model has a strong potential for landslide hazard
recognition based on remote sensing images, and several scholars have conducted in-depth
research in this field. Among them, Cheng et al. [19] designed a YOLO SA landslide
detection model based on high-resolution remote sensing images based on YOLOV4 and
combining Gconv, Gbneck, and an attention mechanism; however, the target detection
method cannot accurately identify the landslide boundary information, which is obviously
not conducive to post-disaster assessment and damage determination. Ullo et al. [20] used
Mask R-CNN to utilize remote sensing images to segment landslides and obtain landslide
boundary information. However, when using deep ResNet as the backbone network,
the boundaries appear to display an obvious blurring problem. Thus, to obtain clearer
landslide boundaries, Bragagnolo et al. [21] used the coding and decoding ability of U-Net
to effectively restore the boundary information. Nevertheless, the accuracy of small-scale
landslide recognition in remote sensing images is compromised by the disparity in feature
scale. Yi et al. [22] designed the LandsNet model for landslide hazard identification by
combining residual blocks, attention modules, and multi-scale fusion operation and reached
a high identification accuracy; however, the model’s complexity and computational cost
are relatively high due to the combination of excessive modules. Wan et al. [23] propose
an improved deeplabV3+ method that combines BotNet and ResNet feature maps. The
experimental results indicate that when this method performs at its peak on the validation
set, the average intersection-over-union on the test set is 82.50%. Sreelakshmi [24] has
developed an innovative deep-learning framework that uses visual saliency for automatic
landslide identification, achieving 94% accuracy, surpassing existing models, and offering a
promising tool for risk assessment and management in landslide-prone areas. Li et al. [25]
suggest integrating BotNet and ResNet feature maps to create an enhanced deeplabV3+
landslide identification technique. The modified YOLOv8 model can perform well on
the validation set, according to experimental data, and it achieves excellent accuracy.
Chen et al. [26] propose a squeeze-and-excitation network (SENet) to U-Net for accurate
landslide extraction. The model, trained using Sentinel-2A pictures, beats the U-Net and
UNet Backbone models with an F1 value of 87.94%, resulting in less false detection and
more accurate findings.
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To address the disadvantages of the existing remote sensing image-based semantic
segmentation model for landslide hazards, which include a fuzzy identification of landslide
boundary regions and differentiated feature extraction accuracy of remote sensing images,
this study proposes an MsASNet network model. The model acquires remote sensing
image features at different scales, designs an encoder–decoder structure to strengthen the
landslide boundary, and combines the channel attention mechanism to strengthen the
feature extraction capability.

2. Materials and Methods
2.1. Materials

In this study, we employed three distinct datasets to validate the performance of
the algorithm. Ablation studies were conducted using Bijie’s landslide dataset to assess
the impact of each component within the proposed network on its overall performance.
Simultaneously, comparative experiments were carried out using Chongqing’s landslide
dataset and Tianshui’s landslide dataset to further evaluate the performance of the proposed
algorithm in segmentation across diverse datasets. The utilization and spread of this
methodology have had a beneficial impact.

• Bijie’s landslide dataset.

The training dataset of landslides in Bijie City, Guizhou Province, China, used in this
experiment is an open-source dataset consisting of 770 landslide samples and 2003 non-
landslide samples obtained by Prof. Shunping Ji’s team at Wuhan University
(http://gpcv.whu.edu.cn/data/Bijie_pages.html accessed on 6 March 2024). These data are
based on historical landslide cataloged data, on-site investigations, and a combination of
TripleSat remote sensing imagery data. Moreover, the dataset includes landslide images as
well as corresponding DEM data and landslide shape masks; the RGB image has a ground
resolution of 0.8 m, while the Digital Elevation Model (DEM) has an elevation accuracy
of 2 m. The shape vector of each landslide is manually outlined using ArcGIS. The study
area is situated in the sloping region of the shift from the Tibetan Plateau to the eastern
hills, the research zone features altitudes ranging from 45 to 2900 m above sea level, a
significant elevation variance, multiple steep inclines, copious rainfall (with an annual
average of 849–1399 mm), and a delicate ecological setting. Bijie City is located on the
Yunnan–Guizhou Plateau, which is at the intersection of two or three terraces, and a large
relative difference exists in elevation within the region.

Due to the presence of images with varying dimensions in the dataset, it was im-
perative to standardize their dimensions for input into the neural network for training
purposes. For images larger than these specified dimensions, we employed a resizing
technique that maintained the aspect ratio, thereby ensuring that the image dimensions
conformed to the network’s input requirements without distortion. For images larger
than 512 × 512 pixels, the resizing process involves reducing the longer side to 512 pixels
while proportionally scaling down the shorter side. Subsequently, the resized image is
centered and zero-value pixels are utilized to fill in the remaining areas, ensuring the final
dimensions of the image are 512 × 512 pixels. Conversely, for images smaller than the
aforementioned dimensions, a padding strategy was employed wherein the original image
was centered, and zero-value pixels were appended around its periphery until the image
dimensions met the specified criteria.

• Chongqing’s landslide dataset

Comparative experiments were conducted using Google Earth satellite landslide
images from the mountainous areas of Wulong County (107◦14′~108◦05′E, 29◦02′~29◦40′N),
Chongqing City. The RGB image has a ground resolution of 1 m, while the Digital Elevation
Model (DEM) has an elevation accuracy of 5 m. The training dataset of landslides in
Wulong County used in this experiment consists of 765 landslide samples. Wulong District
is part of Chongqing Municipality and is located in the southeast of the city, in the lower
reaches of the Wujiang River and the canyon area of the Wuling and Dalou Mountains

http://gpcv.whu.edu.cn/data/Bijie_pages.html
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in the southeast of Chongqing. The chosen research site exhibits a subtropical humid
monsoon environment characterized by an average relative humidity ranging from 70% to
80% and an average annual precipitation of 1000–1350 mm. This precipitation is primarily
concentrated during the flood season spanning from May to September, often accompanied
by severe rainstorms. The region has a high topography in the eastern part and a low
topography in the western part, with the maximum altitude reaching 2786 m and the lowest
altitude reaching 52 m. The geological composition exhibits a complex and varied structure,
with a predominant topography characterized by hills and mountains. Landslide disasters
are a common occurrence due to the unique characteristics of the topography, geology, and
hydrological environment.

• Tianshui’s landslide dataset

Comparative experiments were conducted using Google Earth satellite landslide
images from the mountainous areas of Tianshui City (104◦35′~106◦44′E, 34◦05′~35◦10′N),
Gansu Province. The RGB image has a ground resolution of 1 m, while the Digital Elevation
Model (DEM) has an elevation accuracy of 5 m. The training dataset of landslides in
Tianshui City used in this experiment consists of 197 landslide samples. Tianshui City is
characterized by an extensive mountain range that stretches from the northwest to the
southeast. The mountains have varying elevations, ranging from 1000 to 2100 m above
sea level. Tianshui City has a clear separation in its geomorphology, with the eastern and
southern regions of the city being elevated as a result of the presence of ancient stratigraphic
folds. This has led to the formation of rough hilly terrain. The northern region experiences
geological subsidence and the accumulation of red and yellow soil layers, resulting in the
formation of loess deposits and loess hill landforms.

Tianshui City has a temperate monsoon climate with an average yearly temperature
of 11 ◦C and a frost-free period of about 185 days. The average annual precipitation is
574 mm, with a progressive decrease from the southeast to the northwest. Landslide
disasters primarily occur in loess hilly regions, affecting all counties and districts within
the city, especially Qinzhou District, Maiji District, Wushan County, and Qingshui County,
where they are particularly prevalent. The interface between the loess layer and the bedrock
beneath it is structurally fragile in these regions. The hills are steep, and the soil is loose
as a result of seismic waves and impacts. Additionally, the increased rainfall during the
primary flood season greatly facilitates the occurrence of landslide disasters.

The dataset was annotated by several geotechnical experts through on-site investiga-
tions and visual interpretation and then screened. The image size within this dataset ranges
from 133 × 133 to 256 × 256. The landslide sites of the three selected study areas are shown
in Figure 1. The figure represents the areas of Bijie City, Guizhou Province, Tianshui City,
Gansu Province, and the mountainous area of Wulong County, Chongqing City, including
the DEM data and the distribution of landslide sites.

As shown in Figure 2, we show some landslide images in the test set. The region
enclosed by the yellow curve represents the landslide area that has been determined
through visual interpretation or field research. During the training process, we train each
of the three datasets separately. We randomly divide each dataset into three sets: a training
set, a validation set, and a test set. The ratio of the division is 8:1:1. The three datasets are
trained independently, with each dataset having its own training set (80%), validation set
(10%), and test set (10%).
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2.2. Methods

The architecture of our model was inspired by the U-Net framework. Recognizing
the potential deformation issues that may arise from handling images with inconsistent
dimensions, we augmented the network structure with a Pyramid Visual Field Receptor
and incorporated a Composite Attention Mechanism, specifically CBAM, to enhance the
decoder’s capability of restoring low-dimensional data. A schematic of the MsASNet
architecture is shown in Figure 3, and more inner core structures of sub-modules are shown
in Figure 4.

After preprocessing, the RGB landslide data were resized to dimensions of 512 × 512
pixels prior to input into the network. Within the network architecture, the first block
is a double-convolutional block whose architecture is shown in Figure 4a. This double-
convolutional block consisted of two 3 × 3 convolutional layers with a padding size
of 1 and a stride of 1. Subsequent to each convolutional layer, a batch normalization
layer was applied followed by the Rectified Linear Unit (ReLU) activation function. This
double convolutional layer facilitated the transition of feature map dimensions from (B,
3, 512, 512) to (B, 64, 512, 512). Following this, the feature maps traversed through four
downsampling blocks. Figure 4b shows the structure of a downsampling block. At the
culmination of each downsampling block, the dimensions of the feature maps were halved
successively, resulting in dimensions of 256 × 256, 128 × 128, 64 × 64, and 32 × 32. These
blocks effectively extracted pertinent features from the feature maps, resulting in channel



Remote Sens. 2024, 16, 1712 8 of 19

dimensions of 128, 256, 512, and 512 for the respective downscaling blocks. To further
reduce the data dimensions and extract salient features, the last downsampling block was
succeeded by another double-convolutional module.
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Due to the use of max pooling for downsampling in the U-Net structure, the image
resolution is reduced during this operation, resulting in a certain degree of detail and
spatial information loss. Simultaneously, as the network layers increase, the feature maps
approach the semantic information in the image, and downsampling may lead to some
critical semantic information loss. Therefore, to mitigate the information loss caused
by downsampling, we incorporated a dynamic visual receptor based on the pyramid
pooling module, known as the Pyramid Field of View Receptor, into the U-Net modules.
The structure of the pyramid field of view receptor is shown in Figure 4c. This module
obtains features through pooling layers of different scales, and then fuses the extracted
features into a vector of fixed dimensions. Finally, it restores the feature maps to an
appropriate dimensionality, facilitating subsequent concatenation with the input perceptual
feature maps. Upon the application of the Pyramid Visual Field Receptor, the feature map
dimensions transition to (B, 1024, 32, 32).

Following the feature extraction phase, the feature maps progressed to the decod-
ing stage. During decoding, the data were transformed from a low-dimensional feature
representation back to its original data space, culminating in the generation of the final
segmentation results. To harness more informative content from low-dimensional features,
a Channel-Attention and Spatial-Attention Module (CBAM) was incorporated preceding
each upsampling module. The structure of the CBAM is shown in Figure 4d. CBAM
synergistically integrates channel and spatial attention mechanisms, thereby facilitating
adaptive adjustments to feature maps based on both channel- and spatial-wise weight
allocations. Whereas channel attention emphasizes inter-feature relationships, spatial atten-
tion prioritizes the spatial distribution of features. By learning these adaptive weights, the
CBAM effectively adapts to diverse feature distributions within the input data, thereby pro-
ficiently capturing and leveraging the critical information embedded in the input features
to enhance model performance. When integrated in tandem with the decoder module, the
CBAM serves to mitigate redundancy within the feature maps. This enables the decoder
to concentrate more acutely on salient features beneficial to the task at hand and discern
information across varied spatial scales within the feature maps.

When constructing the upsampling module, we utilized transpose convolution. Com-
pared to interpolation-based upsampling operations, transpose convolution possesses
parameterized layers, enabling it to alter the dimensions of feature maps through learned
features. This allows the model to automatically acquire upsampling patterns suited to the
task during the training process. Combining it with CBAM further enhances the upsam-
pling process for landslide segmentation tasks. Through learnable parameters, transpose
convolution can adaptively learn upsampling patterns specific to landslide segmentation.
Meanwhile, CBAM selectively amplifies important features and diminishes irrelevant in-
formation within the feature maps, thereby effectively guiding the upsampling process
and improving model performance. The structure of the upsampling module is shown in
Figure 4e.

2.3. Evaluation Techniques

Throughout this research, pixel-level precision, recall, and F1-score metrics were
adopted to quantify the congruence between the outcomes generated by the segmentation
algorithms and the corresponding ground truth. Precision, also called the check rate, is the
ratio of the correct prediction of the positive sample to the number of positive predictions,
which indicates the precision of the prediction. The percentage of accurately anticipated
positive samples to the total number of actual positive samples is known as the recall. The
F1-score can avoid errors caused by a single identification target to some degree and can
measure the model more comprehensively than existing techniques.

Specifically, within the segmented results, pixels correctly classified into the object
region were designated as True Positives (TP), whereas those erroneously categorized as
background constituted False Negatives (FN). Pixels inaccurately assigned to the object
region within the background were denoted as False Positives (FP). Consequently, we pro-
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vided a rigorous evaluation framework for assessing the segmentation performance relative
to the ground-truth precision and recall, and the F1-score metrics were mathematically
expressed in terms of TP, FN, and FP. The formulas used are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 × Precision × Recall

Precision + Recall
(3)

where TP is predicted to be a positive sample, FP is predicted to be a positive sample and a
negative sample, and FN is predicted to be a negative and positive sample.

2.4. Ablation Study

We propose a novel MsASNet tailored for landslide data segmentation that is predomi-
nantly anchored to the U-Net architecture. This framework seamlessly integrates a dynamic
visual receptor with a convolutional block attention module, endowing the network with
enhanced feature extraction capabilities, efficient information fusion, and superior image
segmentation accuracy. To delineate the specific contributions of the individual components
within the network architecture, we conducted a comprehensive dissection and subsequent
ablation experiments.

During our ablation study, we evaluated the impact of four distinct architectural config-
urations on network performance. These configurations comprised the foundational U-Net
structure, a concatenated framework integrating U-Net with a channel attention module,
an amalgamated design combining U-Net with the CBAM module, and an adaptation in
which a pyramid-scene parsing module that was embedded between the upsampling and
downsampling stages of the U-Net architecture.

In the ablation study, all experimental procedures were conducted on a desktop
workstation equipped with specific hardware configurations, including a 13th Generation
Intel (R) Core (TM) i9-13900KF CPU operating at 3.0 GHz, complemented by 32 GB of
RAM. The computational tasks were further facilitated by an NVIDIA GeForce RTX 4090
GPU processor with 24 GB of dedicated memory running on the Windows 10 professional
operating system. During the training phase, optimization was attained using a stochastic
gradient descent (SGD) algorithm employing a batch size of eight samples. The initial
learning rate was set to 0.0001, and the training regimen spanned 200 epochs.

2.5. Comparative Experiments

In this section, we describe a series of experiments conducted to benchmark the
performance of the proposed network against several classical segmentation architectures.
Specifically, these architectures encompass Fully Convolutional Networks (FCN) [27],
which are adept at processing inputs of arbitrary dimensions and generating pixel-level
label predictions for equivalent dimensions. Fully convolutional networks (FCNs) and
their variants are frequently used in CNN-based models [28]; however, these FCNs use
convolutional layers instead of the fully connected layers found in the original CNNs.
As a result, they only require convolutional (subsampling or upsampling) operations.
Compared with traditional CNNs, FCNs have the following advantages: (1) they avert the
disappearance of spatial data, (2) they drastically lower the required computing parameters,
and (3) they enhance the capability to represent. Consequently, FCNs are better suited for
segmentation tasks. However, they tend to be oblivious to the finer details of an image
because of their propensity to disregard pixel relationships [29]. This restriction may make
it more difficult for FCNs to efficiently gather global context data [30].

Several variants of FCN that attempt to address this limitation have emerged. For
example, SegNet [31] and U-Net [32] are characterized by their encoder–decoder architec-
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ture, which facilitates intricate feature reconstruction while maintaining computational
efficiency. In these architectures, the spatial dimensions of the object are gradually reduced
by the encoder, whereas its details and spatial dimensions are gradually restored by the
decoder. Using the skip connection, the decoder obtains data from the encoder portion at
the same level as the feature mapping, allowing for tighter localization [33].

The low-dose imaging and limited-angle imaging inpainting Model (LDLAIM) [34]
architecture, recognized for its depth and prowess in feature extraction, has demonstrated
superiority, particularly in image reconstruction tasks. Furthermore, we examined PSP-
Net [35], which leverages pyramid-pooling modules to capture multiscale contextual
information; this enhances its semantic segmentation capabilities across diverse receptive
fields and augments its proficiency in comprehending scene intricacies.

In addition to the aforementioned conventional segmentation algorithms, we also
compared the segmentation performance with two relatively novel landslide-specific seg-
mentation algorithms: ResU-Net-OBIA [36] and DRs-UNet [37]. The ResU-Net-OBIA
framework integrates the traditional ResU-Net with object-based image analysis based on
four simple rules. Through testing on Sentinel-2 imagery, it was found that this framework
can significantly enhance segmentation performance. DRs-UNet incorporates a residual
shrinkage building unit into the traditional U-Net network, which effectively reduces the
noise level in images using soft thresholding, thereby enhancing the network’s feature
extraction capability. Table 1 provides a more intuitive overview of these comparative
experiments, covering aspects such as number of convolutional layers, kernel size, and
activation functions.

Table 1. Comparison of parameters of different algorithms.

Number of
Convolutional Layers Kernel Size Activation Function

FCN 18 3 × 3, 1 × 1 ReLU
SegNet 26 3 × 3 ReLU

LDLAIM 23 3 × 3, 1 × 1 PReLU, ReLU
PSPNet 61 7 × 7, 3 × 3, 1 × 1 ReLU

ResU-Net-OBIA 15 3 × 3, 1 × 1 ReLU
DRs-UNet 18 3 × 3, 2 × 2, 1 × 1 Sigmoid, ReLU

3. Results
3.1. Results of the Ablation Study

Table 2 presents the quantitative analysis results derived from the four ablation experi-
ments, and red regions in Figure 5 illustrates their respective segmentation results.

Table 2. Quantitative analysis of the ablation study.

Precision Recall F1

U-Net 0.9048 0.9200 0.9046
U-Net with channel attention 0.9071 0.9214 0.9082

U-Net with CBAM 0.9142 0.9380 0.9187
U-Net with Pyramid Scene Parsing 0.9368 0.9470 0.9385

MsASNet 0.9510 0.9559 0.9516

In contrasting the outcomes of various ablation experiments, the standalone U-Net
model exhibited a competent performance in delineating landslide regions within the
remote sensing imagery. However, it demonstrated limitations in accurately segmenting
certain images, exhibiting notable discrepancies when compared with ground-truth annota-
tions. The incorporation of a channel attention module into the U-Net architecture yielded
marginal quantitative enhancements and visually surpassed the segmentation efficacy of
the basic U-Net framework. Substituting the channel attention module with the CBAM
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mechanism further augmented network performance, particularly enhancing the segmen-
tation accuracy for intricate landslide categories. Notably, embedding the pyramid-scene
parsing module between the upsampling and downsampling phases yielded substantial
performance gains, as evidenced by the enhanced segmentation accuracy in the quantitative
analyses and superior visual outcomes compared to preceding experiments. The method-
ology proposed in this study consistently outperformed prior configurations, thereby
substantiating the efficacy of leveraging the U-Net architecture augmented with pyramid-
scene parsing for efficient contextual feature extraction across multiple scales. Concurrently,
cascading the CBAM module during each upsampling stage facilitated adaptive learning,
which enabled the network to prioritize regions pivotal to semantic segmentation. This
increased both the accuracy and robustness of the segmentation process.
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3.2. Results of Comparative Experiments

To evaluate the segmentation effectiveness of MsASNet on different types of landslide
datasets, we utilized the Chongqing and Tianshui landslide datasets separately. The
Chongqing dataset was captured in the southeastern region of Chongqing City, influenced
by a subtropical moist monsoon climate, encompassing the Wujiang downstream area and
the Wuling Mountain and Dalou Mountain gorge zones in the southeast of Chongqing
City. Satellite imagery reveals dense vegetation in this area, with landslide occurrences
relatively concentrated rather than scattered across the landscape. Conversely, the region
captured in Tianshui’s dataset is the loess hill landform under the influence of temperate
monsoon climate. The landslide areas in this dataset exhibit characteristics such as large
area coverage, complex shapes, and diverse variations, posing significant challenges to the
segmentation performance of the network. Hence, we conducted comparative experiments
utilizing multiple methods for these two distinct datasets to demonstrate the superior
performance of the proposed algorithm.

• Comparative Experiments using Chongqing’s landslide dataset

Table 3 presents the quantitative analysis results derived from the four comparative
experiments using the Chongqing dataset, and the red regions in Figure 6 illustrates the
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selected segmentation results for visual comparison. Upon comprehensive evaluation of
the quantitative analyses from the test dataset and the displayed experimental outcomes,
both FCN and SegNet tended to misclassify numerous regions, erroneously segmenting
areas as landslide zones when they did not correspond to actual landslide regions. Further-
more, when segmenting expansive areas, LDLAIM demonstrated a performance that was
generally satisfactory, but not exceptional.

Table 3. Quantitative analysis of comparative experiment using Chongqing’s landslide dataset.

Precision Recall F1

FCN 0.1442 0.2863 0.2371
SegNet 0.7919 0.3094 0.4009

LDLAIM 0.6777 0.6104 0.5655
PSPNet 0.6141 0.4922 0.4702

ResU-Net-OBIA 0.6016 0.4116 0.4260
DRs-UNet 0.8445 0.8583 0.8978
MsASNet 0.9145 0.8658 0.9010
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Figure 7 illustrates the variations in loss among several segmentation algorithms dur-
ing the comparative experiment. From the graph, it is evident that the proposed MsASNet
exhibits a rapid decline in loss during the early stages of training. Approximately 70 epochs
into the training process, the loss converges to around 0.01, consistently outperforming
other comparative algorithms. This observation suggests robust training dynamics and
efficient optimization processes inherent in MsASNet.
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Furthermore, the consistent outperformance of MsASNet in terms of loss convergence
underscores its superior fitting capability on the training set compared with other methods.
The stable convergence of loss over epochs also implies that the model achieves a desirable
level of stability during training, which is crucial for ensuring reliable and consistent
performance. This stability in training dynamics contributes to the model’s generalization
ability, as it indicates that the learned representations are robust and less susceptible
to overfitting.

The observed training dynamics and stability of MsASNet not only enhance its per-
formance on the training set but also have significant implications for its generalization to
unseen data. A model that exhibits stable training dynamics is more likely to generalize
well to new, unseen samples, as it indicates that the learned features are representative of
the underlying data distribution. Therefore, the stable convergence of loss in MsASNet
during training serves as a positive indicator of its ability to generalize effectively and
perform reliably on unseen data, thus enhancing its overall utility and applicability in
practical settings.

• Comparative Experiments using Tianshui’s landslide dataset

Due to the primary segmentation target of Tianshui’s landslide dataset being loess
hilly terrain, it exhibits challenges such as large landslide areas, complex shapes of land-
slide regions, and the presence of multiple landslide areas within individual samples.
Consequently, compared to the preceding two landslide datasets, this dataset poses greater
segmentation difficulty.

Table 4 shows the quantitative analysis of different comparative experiments con-
ducted using Tianshui’s landslide dataset, and the red regions in Figure 8 illustrates the
segmentation results of various algorithms on landslide areas within loess hilly terrain.

Table 4. Quantitative analysis of the comparative experiments using Tianshui’s landslide dataset.

Precision Recall F1 GFLOPs Params (M)

FCN 0.2285 0.2976 0.3547 3.1366 11.1774
SegNet 0.8485 0.8619 0.8627 40.1311 22.3610

LDLAIM 0.8423 0.8641 0.8991 48.6439 17.2806
PSPNet 0.8631 0.9018 0.8940 44.4399 46.5823

ResU-Net-OBIA 0.7861 0.6067 0.6789 651.5271 7.8757
DRs-UNet 0.8238 0.8836 0.8796 11.1131 7.9369
MsASNet 0.9017 0.9608 0.9030 42.7559 27.5391
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In Table 4, we compared the network complexity and parameter count of our algorithm
with several others when processing the dataset. After computation, MsASNet’s floating
point operations are estimated to be approximately 42.75 G, placing it at a moderate level
among these algorithms; its parameter count is approximately 27.53 M, ranking second
only to PSPNet in parameter count. Considering other results holistically, and owing to its
large number of learnable parameters, MsASNet exhibits favorable performance in terms
of accuracy and effectively balances segmentation accuracy with network complexity.

In Figure 8, we have selected representative images from the dataset. The first two
images exhibit complex segmented areas with numerous branched landslide regions. These
regions, being relatively fine-grained in the images, are susceptible to information loss
during feature extraction, thereby presenting a greater segmentation challenge. Conversely,
the latter two images feature extensive target regions, posing significant challenges in
network architecture design under such circumstances.

By comparing the images in Figure 8, it can be observed that DRs-UNet, PSPNet,
and SegNet tend to further refine the morphology of small, branched regions during
segmentation. Conversely, LDLAIM may generate some voids within the target area when
segmenting larger landslide regions. The proposed algorithm in this study demonstrates
proficiency in addressing both scenarios, effectively preserving the shape of landslide areas.
This observation is supported by the quantitative analysis presented in Table 4.
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4. Discussion

Previous studies have explored the use of deep learning for landslide identification.
Ghorbanzadeh et al. used ResU-Net and OBIA for landslide identification in multitemporal
Sentinel-2 images, and their results showed an F1-score of 84.03% and a mIoU value of
72.49% [36]. Liu et al. [38] suggested employing ResU-Net to identify earthquake-related
landslides in the Jiuzhaigou Valley Scenic and Historic Interest Area in the Sichuan Province,
China. Their results demonstrated a 93.3% F1-score and an 87.5% mIoU value. The predic-
tion capabilities of U-Net and SegNet differ; the former converges quickly and produces
accurate predictions for small sample sets [39]. Achieving favorable prediction results
with SegNet is more likely in scenarios with a large sample size; however, importantly, the
accuracy of the labels plays a pivotal role in the overall effectiveness of SegNet [40]. The
utilization of pyramid visual field receptors in MsASNet post downsampling effectively
mitigates the semantic loss incurred during downsampling. Concurrently, the pyramid
visual field receptor facilitates feature acquisition through pooling layers at different scales,
followed by the fusion of extracted features into a fixed-dimensional vector. It is precisely
due to this dynamic feature fusion mechanism that the loss incurred during the propagation
of features across networks for images of varying sizes is minimized. In contrast, the MsAS-
Net framework proposed in this study demonstrated superior performance metrics across
the precision, recall, and F1-score evaluations, outpacing the aforementioned architectures
by significant margins. In the comparative experiments based on the Chongqing landslide
dataset, MsASNet exhibited a significant advantage over the second-ranked DRsU-Net
model, with increases of 8.3%, 0.8%, and 0.3% in precision, recall, and F1-score values,
respectively. Furthermore, when dealing with a dataset characterized by fewer samples and
greater segmentation difficulty, such as the Tianshui loess hilly landslide dataset, MsASNet
demonstrated significantly greater advantages in quantitative analysis and exhibited supe-
rior visual performance. Through data analysis, it outperformed the second-ranked PSPNet,
with increases of 4.5%, 6.5%, and 1.0% in precision, recall, and F1-score values, respectively.
Additionally, from a qualitative perspective, MsASNet’s segmentation results exhibited
closer conformity with ground truth annotations, further underscoring its efficacy and
robustness in landslide segmentation tasks. However, it is undeniable that the network still
exhibits certain shortcomings that require improvement. Upon examining segmentation
results across a broader spectrum of samples, it becomes evident that the proposed network
demonstrates room for enhancement in handling contour details, particularly in regions
with sharp ground-truth edges. Additionally, the study relies on higher-quality remote
sensing data to facilitate improved segmentation and extraction of feature areas. Especially
for the extraction of smaller potential landslides, the optical image data should have better
resolution. The conclusions drawn from this study provide research ideas for the study of
soil properties in different areas, and further exploration of the applicability of the model
to more areas is subject to further research.

5. Conclusions

In this study, to address the current dilemma in the field of geological disaster recogni-
tion based on the current excellent algorithms in the field of deep learning, we improved
the semantic segmentation network, designed a targeted landslide disaster feature ex-
traction and recognition model, MsASNet, and conducted ablation tests on the model
using Bijie’s landslide dataset from Guizhou Province. The experimental results show that
the maximum segmentation overall accuracy of MsASNet in this dataset reached 95.10%,
and the maximum F1-score reached 95.16%. In addition, we used the landslide disaster
datasets from the mountainous area of southwest Chongqing and the loess hilly landslide
disaster in Gansu Tianshui to compare other segmentation algorithms. Findings from
the experiments reveal that, compared with other segmentation algorithms, the model
accurately identified and segmented the range of landslides in the image. Quantitative
analysis results substantiate that MsASNet provided marked performance enhancement
across multiple evaluation metrics when juxtaposed against other classical networks. Upon
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comprehensive comparison of the segmentation results of MsASNet across three distinct
datasets, we observed that the algorithm tends to excessively smooth sharp edges of con-
tour delineations, particularly evident in landslide data characterized by sharply defined
edges. This phenomenon results in inaccuracies in the segmentation of landslide areas.
Consequently, in future endeavors, further optimization of the model architecture and the
development of sophisticated loss functions to facilitate training processes are warranted.
These efforts aim to enhance network adaptability to diverse landslide segmentation tasks
across varying geographic regions. However, it is undeniable that the model still exhibits
high segmentation accuracy when confronted with scenarios of limited sample quantities
and the presence of multiple complex segmentation regions within each sample. Although
MsASNet achieves higher segmentation accuracy, we observed that during training, it
consumes more GPU memory compared to several other comparative algorithms. This is
attributed to its larger model parameters, indicating that the network may face challenges
when resources are limited. Consequently, on the one hand, it is necessary to continue to
expand the data sources and scale, and to improve the accuracy of dataset annotation so
as to continue to support research on the structure of the semantic segmentation model
for landslide hazards in remotely sensed images; on the other hand, future endeavors will
require refining the network to augment its computational efficiency. There is a need to
further bolster MsASNet’s capabilities, as this improvement may ensure its efficacy in
addressing landslides across complex or variable geographical and climatic conditions.
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