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Abstract: The global expansion of photovoltaic (PV) power plants, especially in ecologically fragile
regions like the Gobi Desert, highlights the suitability of such areas for large-scale PV development.
The most direct impact of PV development in the Gobi Desert is temperature change that results
from the land-use-induced albedo changes; however, the detailed and systemic understanding of the
effects of PV expansion on land surface temperature remains limited. This study focuses on the 16
largest PV plants in the Chinese Gobi Desert, utilizing remote sensing data to assess their effects on
land surface temperature. Our result showed a cooling effect during the daytime (−0.69 ± 0.10 ◦C),
but a warming effect during the nighttime (0.23 ± 0.05 ◦C); the overall effect on the daily mean was a
cooling effect (−0.22 ± 0.05 ◦C). Seasonal variations were observed, with the most significant cooling
effect in autumn and the weakest in summer. The PV area was the most significant factor which
influenced the temperature variation across PV plants. Our findings enrich our understanding of the
environmental effects arising from the construction of PV plants and provide vital information for
the design and management of increasingly renewable electricity systems globally.

Keywords: remote sensing; diurnal variability; land surface temperature; MODIS; solar energy

1. Introduction

Greenhouse gas emissions from fossil fuels are responsible for ~75% of the global
“heat pollution” leading to rising temperatures across the globe [1]. To achieve the goal of
limiting global temperature increase, a variety of mitigation strategies are needed, including
substantial increase in the production of renewable energy. Among renewable energy
sources, PV solar energy technology is among the most promising due to its exceptional
cleanliness [2], widely available resources [3], and consistently declining costs [4]. From
2009, the global capacity for PV power generation has been expanding rapidly [5], with the
global cumulative installed capacity for PV power generation projected to grow to 4240 GW
by 2040 [5]. The growth of solar power in China outstrips that of any other country in the
world, and its total installed PV capacity increased from 100 MW in 2007 to 205,000 MW
in 2019, with a compound annual growth rate of 79.8% since 2007 [6]. As of 2021, China
accounted for 36% of the global solar capacity [7].

The rapid expansion of PV power plants has created a new type of land-use change [8]
that leads to changed local microclimates (e.g., temperature and moisture) by altering
photosynthetic active radiation and surface albedo [9–11]. These microclimatic changes
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could, in turn, induce changes in the ecosystem, for example, in the form of altered
vegetation, plant and soil biodiversity, and soil carbon cycling [12–14]. Changes to land
surface temperature (LST) are particularly important because it is related to near-surface
and underground processes that directly influence ecosystem functions [15,16] but can also
influence ecosystems indirectly via soil moisture–temperature feedbacks [17]. Countries
such as the United States, India, and China are currently experiencing or have already
undergone a booming phase in PV energy [5], which is predicted to induce environmental
impacts. Thus, a deeper understanding of the impact of large-scale PV power plants on LST
is crucial in order to assess environmental (e.g., local climate) and ecological (e.g., plant
phenology, biodiversity) impacts of large-scale PV deployment [18,19].

While some studies have shown a cooling effect of PV power plants on LST [20–23],
others have reported warming effects [12,24,25]. These inconsistent results may stem from
the fact that these local-scale studies differ in the time data collected, as well as in the
climate and ecosystem types in which the studies took place [26,27]. Furthermore, because
of a lack of long-term monitoring data, it is difficult to compare temperatures near PV
plants with pre-construction conditions [22,25,28]. Even when model-based large-scale
analyses are used, the parameters are mainly derived from individual locations and not
universal [9,29,30].

The Gobi Desert, mainly located in northern China and southern Mongolia in East
Asia, is experiencing rapid expansion of PV power plants because of its low cloud cover,
abundant solar radiation, and cheap land resources [31]. By 2019, the area covered by
PV in Northwestern China had nearly tripled compared to 2013, with PV in the Gobi
Desert accounting for 37% of that change [32,33]. At the same time, the Gobi Desert is
an ecologically fragile ecosystem characterized by high variable microclimatic conditions,
low plant cover, and low biodiversity [34,35]. However, previous studies on the influence
of PV plants in the Gobi Desert have mainly relied on field observations and model
simulations [16,36]. Remote sensing based on satellite data has been widely applied to
measure heat- and cool-island effects caused by land use changes [37,38] and offers a
potential large-scale means of quantifying the LST changes caused by PV power plants [16].
Compared to in situ field observation, remote sensing technology allows the comparison
and analysis of temperature data before and after the construction of PV power plants.
Previous studies which used remote sensing data to study the effects of PV power plants
on LST were limited to single-site [11] or covered multiple ecosystem types [39]. Therefore,
the detailed and systemic understanding of the effects of PV expansion on LST in the Gobi
Desert of China remains limited.

Here, in this study, we use satellite-derived remote sensing data of LST to quantita-
tively analyze the effects of large PV power plants on LST in the Gobi Desert in northwestern
China. We specifically ask the following questions: (1) Is there a temporal difference (i.e.,
daily or seasonally) in the impact of PV power plant construction on LST? (2) What are the
major factors influencing the impact of PV power plants on LST in the Gobi Desert?

2. Materials and Methods
2.1. Dataset Sources

Since Gobi PV plants are mainly located in northwestern China, we used the dataset
released by Xia et al. [32] (accessible at https://code.earthengine.google.com/d6f17fa4fa4
4639db580d5f8b196fa5b, accessed on 6 April 2023.) to acquire data on the PV distribution
in 2019, which consists of a 30 m resolution PV panel map of northwestern China. The
map was developed by integrating a multiresolution segmentation algorithm, the object-
based classification (ISOC) algorithm, and Landsat imagery within Google Earth Engine.
This map includes a total of 885 PV panels in northwestern China, 95 PV plants of which
occurred within the Gobi Desert.

We obtained remotely sensed LST data from the MODIS (Moderate-Resolution Imag-
ing Spectroradiometer) Terra and Aqua satellites, characterized by a spatial resolution of
1 km. The LST data obtained from MODIS are one of the most extensively used LST prod-
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ucts [40,41] and are derived from clear-sky observations with a 99% confidence level [42].
Two datasets were chosen (Terra and Aqua), which locally pass the equator at 10:30 and
22:30 local time for Terra and 1:30 and 13:30 local time for Aqua every day, ensuring
that our LST data accurately reflect the local LST of PV plants [43,44]. In this study, we
used MOD11A1.006 [43] and MYD11A1.006 [44] from the Google Earth Engine platform
(https://code.earthengine.google.com/, accessed on 24 May 2023.).

We obtained land cover data in 2018 from the 30 m Land Use and Land Cover (LULC)
dataset of China (obtained from the Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences; https://www.resdc.cn/DOI/DOI.aspx?DOIID=54, accessed
on 3 May 2023.).

We used the local climate conditions, such as annual mean temperature (MAT), annual
precipitation (MAP), solar radiation (Rs), wind speed (Ws), and water vapor pressure (Vp)
for each plant. We downloaded the 30 arc seconds (about 1 km) climate data from the
WorldClim (version 2.1) dataset [45].

2.2. Selection of PV Power Plants in Gobi Deserts

To evaluate the influence of PV power plants on temperature and other variables in
the Gobi Desert, we used the following steps: (1) We first generated a 1 km buffer zone
based on the periphery of the PV panels (grid) and merged overlapping buffer zones into
one entity, defining it as a PV power plant (area within the green boundary) (Figure 1b).
We used a 1 km buffer because the effect of PV panels on LST can extend up to 730 m [16].
In total, we calculated the area (km2) of 358 PV panels taken from 885 panels. (2) From
those 95 Gobi Desert PV plants, we selected 16 where the PV panel area is greater than
3 km2, and the plant area is greater than 20 km2 (Table S1 and Figure 1a). The 16 selected
plants contain between 31 (Hami-East plant) and 226 (Golmud plant) 1 km × 1 km LST
data grids (Figure S1). We used Google Earth satellite imagery to evaluate when the PV
plant construction at all sites was initiated and completed (Figure 1c). All the above steps
were processed using Python code [46] and Google Earth Pro [47].
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(b) Dunhuang PV power plant; (c) Google Earth satellite imagery of Dunhuang PV power plant. The
green line and blue line in (b,c) indicate in (1 km buffer) and out (15 km buffer) of the Dunhuang plant.

2.3. Quantifying the Impact of PV Plants on LST

We obtained both daytime and nighttime LST data from the 16 designated PV plants
and calculated their monthly and annual means by using the Google Earth Engine platform.
To do so, we first established a 1 km buffer based on the PV panels to represent the plant’s
area. Then, we applied a supplementary buffer of 15 km to represent the area outside of
the plant (i.e., the control) (Figure 1b,c). After that, we calculated the difference in the LST
between the inside and outside of the plant for the three years immediately prior to plant
construction and the first three years after construction to quantify the effect of PV plants
on LST [39,48]. The specific formula we used for these calculations is as follows:

∆LST = ∆LSTIn − ∆LSTOut = LSTIn(After−Before) − LSTOut(After−Before) (1)

where ∆LST represents the land surface temperature variation in the PV power plants. “In”
and “Out” refer to the LST data inside and outside the PV power plant, respectively. “After”
and “Before” correspond to the three years data after and before the construction of the PV
power plant, respectively. ∆LSTIn and ∆LSTOut represent the inside and outside change in
LST (◦C) before and after the construction of PV power plant, respectively. The detailed
procedures of this study are shown in Figure 2.
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p < 0.001 levels.

We used one-sample t-test to examine if the LST in each diurnal period significantly
differs from zero (µ = 0) across all plants. To assess the difference in LST between daytime
and nighttime periods, we employed independent two-sample t-test. Due to the non-
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normality of the autumn data, seasonal variations were tested by Kruskal–Wallis analysis
and Dunn’s test as a post hoc analysis to investigate pairwise differences among seasons.
All analyses were conducted using R statistical software version 4.2.0 [49].

2.4. Effects of Different Factors on the LST of PV Power Plant

We performed model selection to identify predictive variables largely influencing the
impact of PV power plants on LST. Candidate predictors included area (Area), annual
mean temperature (MAT), annual precipitation (MAP), solar radiation (Rs), wind speed
(Ws), and water vapor pressure (Vp) (Table S2). We constructed linear models with all
abovementioned predictors as full models for different diurnal periods. All variables in the
full model were standardized using the “standardize” function in the arm package [50].
Subsequently, we generated a subset of models based on the full models, ranked by the
Akaike information criterion corrected for small sample sizes (AICc), the difference in
AICc of the given model from the minimum-AICc model (∆AICc), and the model weights
(wAICc), using the “dredge” function in the MuMIn package [51]. The wAICc weighted
average standardized coefficients for models with ∆AICc < 4 were calculated as the effect
size of each predictive variable, using the “model.avg” function in the MuMIn package [51].
Ultimately, effect size indicates how much the dependent variable is expected to change
when the independent variable changes. The sign of the effect size shows the direction
of the influence: positive means a positive effect, and negative means a negative effect.
Statistical significance is indicated when the 95% confidence interval of the effect size does
not include zero. All analyses used R statistical software version 4.2.0 [49].

3. Results
3.1. Diurnal Fluctuations in PV Power Plants Effects on LST

We first illustrate the effect of PV power plants on LST using the Dunhuang plant
as an example (see detailed information in Supplementary Materials), showing daytime
cooling but nighttime warming effects on LST. This phenomenon was general across all PV
plants (Figure 3), which are individually shown in Figure 4. During the daytime, all plants
exhibited a cooling effect; half of the plants showed a cooling effect >1 ◦C on the annual
LST change. We found that all but two plants warmed during nighttime; the other two had
slight cooling. Out of those plants with nighttime warming, 10 of the 16 plants experienced
warming effects >0.19 ◦C. Overall, there was a significant reduction in daily mean LST
due to PV power plants of −0.23 ± 0.05 ◦C (mean ± SE) (t-test, t15 = −4.46, p < 0.001).
During the daytime, there was a significant decline in annual LST −0.69 ± 0.10 ◦C (t-test,
t15 = −7.02, p < 0.001), whereas the annual LST increased by 0.22 ± 0.05 ◦C (t-test, t15 = 4.25,
p < 0.001) during nighttime (Figure 5a).
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We explored the effects of PV power plants on monthly LST (Figure 6). We found that 

the daily mean LST changes cooled (ΔLST < 0) for all months except for June and July, 
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Figure 5. Effect of photovoltaic power plants on LST across all plants. (a) Diurnal variations in effects
(∆LST); the background violin plot characterizes the distribution of plants in each diurnal period
effect, while white dots represent the mean value. Statistical difference was tested by one-sample
t-test between each period effect and zero (µ = 0) and independent two-sample t-test between daytime
and nighttime period. ***: statistically significant at p < 0.001 levels, respectively. Seasonal variation in
effects (∆LST) separated into (b) daily mean, (c) daytime period, and (d) nighttime period. Statistical
difference was tested by Kruskal–Wallis analysis and Dunn’s test as a post hoc analysis to investigate
pairwise differences between seasons. The boxes represent the interquartile range, the lines inside the
boxes represent the medians, and the whiskers denote the lowest and highest values within 1.5 times
the interquartile range. Lowercase letters denote significant differences between seasons. Colored
dots represent each plant data.

3.2. Seasonal Fluctuations in PV Power Plants Effects on LST

We explored the effects of PV power plants on monthly LST (Figure 6). We found
that the daily mean LST changes cooled (∆LST < 0) for all months except for June and
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July, which exhibited a slight warming effect (∆LST > 0) (Figure 6a). The extent of cooling
varied across the year, ranging from the least in January to the most in October. During the
daytime, the highest cooling effect (∆LST < 0) was observed in October. Conversely, during
the nighttime, the highest warming effect (∆LST > 0) was during June.
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We also evaluated the effects of seasonal variation in PV power plants on LST using
four distinct seasons: spring (March–May), summer (June–August), autumn (September–
November), and winter (December–February). Here, we found that daily mean LST
exhibited cooling effects (∆LST < 0) with the strongest effect in autumn; only the differences
between summer and autumn are significant (Figure 5b). Daytime LST changes showed
cooling effects (∆LST < 0), especially in the spring and autumn; the significant differences
between seasons only occur between spring and summer (Figure 5c). The strongest cooling
effect was in spring and the weakest in summer, consistent with the trend seen in the daily
mean. Nighttime LST changes were consistently warming (∆LST > 0) (Figure 5d). The
warming effect was strongest in spring and weakest in winter.

3.3. Factors Influencing the PV Power Plant Effects on LST

We explored the diverse factors that influence the effects induced by PV power plants
on LST through model averaging after model selection (Figures 7 and 8). The effect on
daily mean temperature was negatively associated with area and water vapor pressure
(Figure 7a) and showed a marginally positive correlation with solar radiation (Table S3,
p = 0.068). During daytime, the PV power plant effect was significantly associated with
area, water vapor pressure, and wind speed. Specifically, there was a positive correlation
with wind speed and a negative correlation with area and water vapor pressure (Figure 7b).
During nighttime, the PV power plant effect was only marginally correlated with solar
radiation (Figure 7c, Table S3, p = 0.080).
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plants in the Gobi Desert of China. However, because the daytime cooling surpasses the 

Figure 7. Factors that influenced the effects of PV power plant on LST, include area, mean annual
temperature (MAT), mean annual precipitation (MAP), solar radiation (Rs), wind speed (Ws), and
water vapor pressure (Vp). Estimate effect sizes with 95% confidence intervals are derived from the
weighted average standardized coefficients of models with ∆AICc < 4. The relative importance of
factors on (a) daily mean, (b) daytime period, and (c) nighttime period, as estimated by linear models.
Blue lines indicate negative effects, and red lines indicate positive effects. *: statistically significant at
p < 0.05 level. Model-averaged importance of the predictors and the p-value of each factor are shown
in Figure 8 and Table S3.
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4. Discussion
4.1. PV Power Plant Effects on LST Vary between Day and Night

We found significant daytime cooling but nighttime warming effects of PV power
plants in the Gobi Desert of China. However, because the daytime cooling surpasses the
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nighttime warming, there was an overall cooling effect of PV power plants on the daily
mean LST. The daytime cooling aligns with previous findings from Dunhuang [11], but
the nighttime warming effect contradicts the result of Zhang and Xu [39] from various
ecosystems. A possible reason for this discrepancy could be that our study took place in a
certain ecosystem type, i.e., Gobi.

We attribute the daytime cooling effect of PV plants to the changes in albedo, shading,
and the conversion of solar energy by PV panels [3,12,52]. Indeed, satellite-derived LST
data are sensitive to the albedo [39]. Furthermore, our result showing a positive correlation
between plant area and the daytime cooling effect (Figure 7b) is likely because larger areas
have more shading and energy conversion.

On the other hand, the nighttime warming effect cannot be directly explained by
albedo or energy conversion because there is no sunlight and PV generation at night. We
posit that the warming results from shading by PV panels, which impedes nighttime cooling
and induces warming. PV panels provide insulation and reduce radiation fluxes [52,53],
hindering cooling. The existence of PV panels also reduces the wind speeds [30], which
also limits cooling. Furthermore, the positive correlation between the nighttime PV plant
effect and area but negative correlation with wind speed that we observed (Figure 7c)
also indicates that the nighttime warming effect is associated with a reduction in heat
dissipation. Finally, our observed positive correlation between annual precipitation and the
warming effect (Figure 7c) may be because increased soil moisture under the panels [54],
along with the higher heat capacity of water relative to the soil and gravel substrate in
Gobi, reduces temperature within the PV plants.

4.2. PV Power Plant Effects on LSTs Vary between Seasons

We identified substantial seasonal variation in the effects of PV power plants on LST.
Specifically, daytime cooling was most pronounced in spring and autumn, while night-
time warming was highest in spring. These results align with previous research [9,52]
and are most likely due to changes in the climate across seasons. The efficiency of PV
panels depends on ambient temperature [55]; it is necessary to consider the combination
of temperature and light in different seasons. Despite higher radiation in the summer,
milder spring and autumn temperatures improve PV efficiency, enhancing cooling. Like-
wise, higher humidity in the summer increases the environmental heat capacity, limiting
nighttime warming compared to the spring, when it is drier. Considering the cumulative
LST throughout the daytime and nighttime, we propose that constructing larger PV power
plants in the wetter Gobi Desert will yield a more substantial LST cooling effect. Finally,
in winter, larger solar angles lead to more panel shading, increasing cooling [52]. Colder
temperatures during the winter also restrict nighttime warming.

4.3. Implications for the Management of PV Systems in Gobi Desert

As PV power plants continue to be deployed in the Gobi Desert, significant alterations
in local microclimates are likely, with subsequent impacts on adjacent ecosystems [29,56].
Our results indicate that PV power plants reduce the local LST. Given the positive relation-
ship between LST and evapotranspiration [57], the decrease in LST may lead to a reduction
in evapotranspiration and, consequently, increases in soil humidity in the plant. At the
same time, the decrease in surface soil carbon stock with warming [58] may be mitigated
by the cooling effect of PV power plants in the Gobi Desert.

The combination of daytime cooling and nighttime warming from Gobi PV power
plants might enhance vegetation growth. Temperature [59] and water availability [60] play
crucial roles in plant growth in arid regions, where elevated daytime temperatures can
trigger heat stress, hindering root growth and plant regeneration [61,62]. As a result, the
moderation of LST of Gobi PV power plants can at least partially mitigate the extreme soil
conditions (hot in the daytime, cold at night). This can increase water and nutrient content
and utilization [63] and foster vegetation growth. However, cooling during the growing
season (spring and summer) would also affect the phenology of vegetation [64].
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Ultimately, a comprehensive understanding of the impacts of Gobi PV power plants
on LST can provide valuable insights for informed decision-making regarding power plant
siting, scale, design, and land management. Our study suggests that the cooling effects
of PV power plants are scale-dependent, with larger installations causing more cooling.
This is particularly important in the Gobi Deserts, where large-scale PV power plants are
common. The effect on LST can be adjusted through design considerations. Adjustments in
the dimensions, arrangement, elevation, orientation, and incline are all likely to amplify or
diminish the PV plant effects on LST.

4.4. Uncertainties of Impact Analysis of PV on LST in Our Study

Our study makes two key contributions. First, by examining the 16 largest Gobi Desert
PV plants in China, we advance understanding of extensive PV plant impacts on LST.
Second, our expanded geographic scope across the Chinese Gobi Desert and our use of
temporally matching conditions three years before and after installation and across day
and night, where each PV plant has more than 1600 MOD/MYD daytime and nighttime
data (Table S4), provides greater generality. In addition, the view zenith angle (VZA) could
result in some uncertainties to MODIS LST data [65]. However, since our study mainly
examines LST changes before and after PV plant construction and between internal and
external areas, VZA-induced errors in these conditions will be resolved by comparing
before and after construction and internal and external areas (Figure S4).

Nonetheless, our study has clear limitations. MODIS data do encompass inherent
noise [66,67] and offer discrete point data at specific temporal intervals. In addition, there is
inherent uncertainty in pinpointing and identifying PV power plant locations. Considering
the swift expansion of PV power plants worldwide, we advocate that future research
should prioritize the investigation of the environmental ramifications of these facilities
across wider geographic extents and a diverse array of ecosystem types.

5. Conclusions

Utilizing satellite remote sensing data, we assessed alterations in the LST of the
16 largest PV power plants within China’s Gobi Desert. Our findings reveal that the daily
mean LST attributed to PV power plants manifests as an overall cooling effect, albeit with
both diurnal and seasonal fluctuations. That is, there is a cooling effect during the daytime
of −0.69 ± 0.10 ◦C and a warming effect during the nighttime of 0.22 ± 0.05 ◦C. The most
pronounced cooling effect is during autumn, whereas the most substantial warming effect
is during spring. Further analysis demonstrates that the cooling effect is predominantly
associated with the area and water vapor pressure. Our methodology can be extended
to examine the environmental repercussions of PV power plants across geographical
regions, encompass diverse ecosystem types, and employ a broader spectrum of indicators.
Such expansion will enrich our comprehension of the environmental effects arising from
the construction of PV power plants, offering valuable insights for fostering sustainable
development and strategic planning in the realm of clean energy.
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on land surface temperature; Figure S4: Elimination of view zenith angle error; Table S1: Detailed
information of photovoltaic power plants in the Gobi Desert of China; Table S2: Potential impact
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