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Abstract: This paper investigates remote sensing data recognition and classification with multimodal
data fusion. Aiming at the problems of low recognition and classification accuracy and the difficulty
in integrating multimodal features in existing methods, a multimodal remote sensing data recognition
and classification model based on a heatmap and Hirschfeld–Gebelein–Rényi (HGR) correlation
pooling fusion operation is proposed. A novel HGR correlation pooling fusion algorithm is developed
by combining a feature fusion method and an HGR maximum correlation algorithm. This method
enables the restoration of the original signal without changing the value of transmitted information
by performing reverse operations on the sample data. This enhances feature learning for images and
improves performance in specific tasks of interpretation by efficiently using multi-modal information
with varying degrees of relevance. Ship recognition experiments conducted on the QXS-SROPT
dataset demonstrate that the proposed method surpasses existing remote sensing data recognition
methods. Furthermore, land cover classification experiments conducted on the Houston 2013 and
MUUFL datasets confirm the generalizability of the proposed method. The experimental results fully
validate the effectiveness and significant superiority of the proposed method in the recognition and
classification of multimodal remote sensing data.

Keywords: remote sensing; multimodal fusion; HGR maximal correlation; ship recognition; land
cover classification

1. Introduction

In practical applications, there are certain limitations in the information content, res-
olution, and spectrum of single-mode scenes, making it difficult to meet the application
requirements [1–3]. Multimodal image fusion has become an attractive research direction.
Recently, with the in-depth research of fusion algorithms, multimodal recognition technol-
ogy has made rapid progress [4–6]. The multimodal multi-tasking basic model has been
widely studied in the field of computer vision. It combines image data with text or speech
data as multimodal input and sets different pre-training tasks for different modal branches
to enable the model to learn and understand the information between modalities. Multi-
modal fusion can improve the recognition rate and has better robustness and stability [7],
further promoting the development of multimodal image fusion technology. At present,
image fusion has been widely used in remote sensing image fusion [8], visible and infrared
image fusion [9] multi-focus image fusion [10], multi-exposure image fusion [11], medical
imaging fusion [12], etc.

In recent years, marine ship detection has been extensively used in many fields such
as fishery management and navigation supervision. Determining how to achieve accurate
detection through multimodal fusion of marine ships has great strategic significance in both
civil and military fields. Thus, Cao et al. [13] proposed a ship recognition method based on
morphological watershed image segmentation and Zemyk moments for ship extraction
and recognition in video surveillance frame images. Wang et al. [14] developed a SAR
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ship recognition method based on multi-scale feature attention and an adaptive weighted
classifier. Zhang et al. [15] presented a fine-grained ship image recognition network based
on the bilinear convolutional neural network (BCNN). Han et al. [16] proposed a new
efficient information reuse network (EIRNet), and based on EIRNet, they designed a dense
feature fusion network (DFF-Net), which reduces information redundancy and further
improves the recognition accuracy of remote sensing ships. Liu, Chen, and Wang [17] fused
optical images with SAR images, utilized feature point matching, contour extraction, and
brightness saliency to detect ship components, and identified ship target types based on
component information voting results. It is challenging to realize information separation
under maximum use of information without compromising image quality.

Meanwhile, in the past decade, the application of remote sensing based on deep
learning has made significant advancements in object detection, scene classification, land
use segmentation, and recognition. This is mainly because deep neural networks can effec-
tively map remote sensing observations into the needed geographic knowledge through
their strong feature extraction and representation capabilities [18–20]. Existing remote
sensing interpretation methods mainly adopt manual visual interpretation and semi-
automatic techniques based on accumulated expert knowledge, showing high accuracy
and reliability. Artificial intelligence technology represented by deep learning is widely
used in remote sensing image interpretation [21] and has greatly improved the efficiency
of remote sensing data interpretation. For instance, entropy decomposition was utilized
to identify crops from synthetic aperture radar (SAR) images [22]. Similarly, normative
forests were used to classify hyperspectral images [23]. Jafarzadeh et al. [24] employed
several tree-based classifiers’ bagging and boosting sets to classify SAR, hyperspectral,
and multispectral images.

Compared to single sensors, multi-sensor or remote sensing data provides different
descriptions of ground objects, thereby providing richer information for various application
tasks. In the field of remote sensing, modality can usually be regarded as the imaging
results of the same scene and target under different sensors, and using multimodal data
for prediction and estimation is a research hotspot in this field. Given this, an integration
method using intensity tone saturation (IHS) transform and wavelet was adopted to fuse
SAR images with medium-resolution multispectral images (MSIs) [25]. Cao et al. [26]
proposed a method for monitoring mangrove species using rotating forest fusion HSI and
LiDAR images. Hu et al. [27] developed a fusion method for PolSAR and HSI data, which
extracts features from the two patterns at the target level and then fuses them for land cover
classification. Li et al. [28] introduced an asymmetric feature fusion idea for hyperspectral
and SAR images. This idea can be extended to the fields of hyperspectral and LiDAR
images. Although the above studies have realized the fusion of multiple remote sensing
data, designing the loss function specifically needs further investigation. Multimodal data
fusion [29,30] is one of the most promising research directions for deep learning in remote
sensing, particularly when SAR and optical data are combined because they have highly
different geometrical and radiometric properties [31,32].

Meanwhile, the Hirschfeld–Gebelein–Rényi (HGR) maximum correlation [33] has been
widely used as an information metric for studying inference and learning problems [34].
In the field of multimodal fusion based on HGR correlation, Liang et al. [35] introduced
the HGR maximum correlation terms into the loss function for person recognition in multi-
modal data. Wang et al. [36] proposed Soft-HGR, a novel framework to extract informative
features from multiple data modalities. Ma et al. [37] developed an efficient data augmen-
tation framework by designing a multimodal conditional generative adversarial network
(GAN) for audiovisual emotion recognition. However, the values of the transmitted data
are changed in the data fusion process.

Inspired by previous studies, the issues of remote sensing data recognition and classi-
fication with multimodal data fusion are studied. The main innovations of this article are
stated as follows:
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(1) An HGR correlation pooling fusion algorithm is developed by integrating a feature
fusion method with an HGR correlation algorithm. This framework adheres to the
principle of relevance correlation and segregates information based on its intrinsic rele-
vance into distinct classification channels. It enables the derivation of loss functions for
positive, zero, and negative samples. Then, a tailored overall loss function is designed
for the model, which significantly enhances feature learning in multimodal images.

(2) A multimodal remote sensing data recognition and classification model is proposed,
which can achieve information separation under maximum utilization. The model
enhances the precision and accuracy of target recognition and classification while
preserving image information integrity and image quality.

(3) The HGR pooling specifically addresses multimodal pairs (vectors) and intervenes
in the information transmission process without changing the value of the trans-
mitted information. It enables inversion operations on positive, zero, and negative
sample data in the original signal of the framework, thereby supporting traceability
for the restoration of the original signal. This advancement greatly improves the
interpretability of the data.

2. Related Work

To date, multimodal data fusion has been widely used in remote sensing [2,38]. In most
cases, multimodal data recognition systems are much more accurate than the corresponding
optimal single-modal data recognition systems [39]. According to the fusion level, the
fusion strategies between various modalities can be mainly divided into data-level fusion,
feature-level fusion, and decision-level fusion [40]. Data-level fusion is aimed at the data
without special processing for each mode. The original data of each mode is combined
without pretreatment to obtain the data after the mode function. Finally, the fusion data are
taken as the input of the identification network for training or identification. Feature-level
fusion concatenates the features of each modality into a large feature vector, which is then
fed into a classifier for classification and recognition. Decision-level fusion determines the
weights and fusion strategies of each modality based on their credibility after obtaining the
prediction probability through a classifier, and then it obtains the fused classification results.

The complexity of the above three fusion strategies decreases in sequence, and their
dependence on the rest of the system processes increases in sequence. Usually, multi-
modal fusion strategies are selected based on specific situations. With the improvement
in hardware computing power and the increasing demand for applications, the studies of
data recognition, which contains massive data information and has mature data collection
methods, are constantly enriched.

In order to ascertain the degree of correlation and to identify the most informative
features, the Hirschfeld–Gebelein–Rényi (HGR) maximal correlation is employed as a
normalized measure of the dependence between two random variables. This has been
widely applied as an information metric to study inference and learning problems. In [33],
the sample complexity of estimating the HGR maximal correlation functions comes from the
alternating conditional expectation algorithm using training samples from large datasets.
By using the HGR maximal correlation in [37], the high dependence between the different
modalities in the generated multimodal data is modeled. In this way, it exploits different
modalities in the generated data to approximate the real data. Although these studies
have yielded promising outcomes, it is difficult to achieve accurate detection through
multimodal fusion of marine ships, and the interrelationships between modules have not
been fully elucidated.

Feature-level fusion can preserve more data information. It first extracts features from
the image and then performs fusion. Pedergnana et al. [41] used optical and LiDAR data
by extracting extended attribute contours of the two modalities and connecting them with
the original modalities. Then, a two-layer DBN network structure was proposed, which
first learns the features of the two modalities separately and then connects the features of
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the two modalities to learn the second layer. Finally, a support vector machine (SVM) is
utilized to evaluate and classify the connected features [42].

However, feature-level fusion requires high computing power and is prone to the
curse of dimensionality, and the application of decision-level fusion is also common. To
address these issues, a SAR and infrared fusion scheme based on decision-level fusion was
introduced [43]. This scheme uses a dual-weighting strategy to measure the confidence of
offline sensors and the reliability of online sensors. The structural complexity of decision-
level fusion is relatively low and does not require strict temporal synchronization, which
performs well in some application scenarios.

3. Methodology

In this section, the details of the proposed CNN-based special HGR correlation pooling
fusion framework for multimodal data are introduced. The framework can preserve
adequate multimodal information and extract the correlation between modal 1 and modal
2 data so that discriminative information can be learned more directly.

3.1. Problem Definition

Given paired observations from multimodal data {(x(i), y(i))|x(i) ∈ Rn1, y(i) ∈ Rn2, i = 1,
. . ., N}, let x and y represent the modal 1 image and modal 2 image with dimensionalities
Rn1 and Rn2, respectively. The ith components x(i) ∈ x, y(i) ∈ y match each other and come
from the same region, while the ith component x(i) ∈x and the jth component y(j) ∈ y do not
match each other and come from different regions.

3.2. Model Overview

In this paper, to solve the problems of low recognition and classification accuracy
and difficulty in effectively integrating multimodal features, an HGR maximal correlation
pooling fusion framework is proposed for recognition and classification in multimodal
remote sensing data. The overall structure of the framework is shown in Figure 1. In the
subsequent subsections, the model will be discussed in detail.

For multimodal image pairs, the framework has two separate feature extraction net-
works. To reduce the dimensionality of features, following the feature extraction backbone,
a 1 × 1 convolution layer is used, and the modal 1 feature map and modal 2 feature map
are obtained separately. Then, a special HGR maximal correlation pooling layer is em-
ployed. The HGR pooling handles multimodal pairs (vectors) and only intervenes in the
information transmission without changing the value of the transmitted information. The
principle is to filter the values of information with different relevant characteristics and
transmit them to the corresponding subsequent classification channels. The feature data
are processed to obtain positive sample data, zero sample data, and negative sample data
for modal 1 and modal 2 features, respectively. Then, the three types of sample data from
modal 1 and modal 2 are input into the ResNet50 [44] network to extract feature vectors,
and feature level fusion is performed on the corresponding feature vectors to obtain fused
positive samples, fused zero samples, and fused negative samples.

Finally, the positive, zero, and negative samples of modal 1/modal 2 images are
fused respectively using the recognition and classification network, thereby accomplishing
multimodal recognition tasks.
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Figure 1. The overall framework of the proposed multimodal data fusion model.

3.3. Heatmap and HGR Correlation Pooling

The input set of multimodal images needs to be pre-aligned to generate heatmaps.
X denotes the input data of modal 1 pixel matrix of size n × n, and Y denotes the input
data of modal 2 pixel matrix of size n × n. The statistical matrices of modal 1 and modal 2
images are illustrated by empirical distributions and defined as follows:

For each pixel of modal 1 and modal 2 images:

X(ps, x) = (#o f ′′p′′s in x) = ∑n
i=1 1{xi = ps} (1)

Y(po, y) = (#o f ′′p′′o in y) = ∑n
i=1 1{yi = po} (2)

where ps and po represent the pixel position in each modal 1 and modal 2 image, respectively,
and # represents the number of pixels in modal 1 and modal 2 images. The expressions
appear to be defining functions X(ps,x) and Y(po,y), which count the occurrences of specific
pixel positions ps and po in two different modal images, respectively.

According to the definition of X and Y, the statistical matrix calculation process is
as follows:

Ds = Fs(X, Y) (3)

where Fs(·) is the statistical matrix calculation function and Ds is the statistical matrix. The
calculation of the statistical matrix process is shown in Figure 2.
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Then, the pixel-level maximal nonlinear cross-correlation between sets is given by:

ρ(x, y) = max
E[ f (x)] = 0, E[g(y)] = 0
Var{ f (x)] = 1, Var[g(y)] = 1

E[ f (x)g(y)] (4)

H = f (x) ∗ g(y) (5)

where f (x) represents modal 1 in each pixel position, g(y) represents modal 2 in each pixel
position, and H represent the nonlinear correlation between the pixel points in modal 1 and
modal 2 images.

According to the obtained statistical matrix, the HGR cross-correlation is calculated
as follows:

FHGR(Ds) = [ f (x), g(y)]T (6)

where FHGR(·) is the HGR cross-correlation calculation function, and f (x) and g(y) are
projection vectors. Based on the obtained projection vector, the heatmap pixel matrix is
calculated as follows:

DHM = f (Xij)− g(Yij), i, j ∈ {1, 2, · · · , n} (7)

where DHM is a heatmap pixel matrix of size n × n. The heatmap calculation process is
shown in Figure 3.

Based on the heatmap pixel matrix obtained above, the average pooling is calculated
as follows:

B = AP(DHM) (8)

where AP(·) is the average pooling function, and B is the HGR region cross-correlation
matrix of size (n − 2)× (n − 2). Furthermore, the calculation of cross-correlation positive,
zero, and negative sample matrices can be expressed as:

B+ =

{
Bkl , Bkl ≥ 0.4
0, Bkl < 0.4

(9)

B0 =

{
Bkl , |Bkl | < 0.4
0, |Bkl | ≥ 0.4

(10)

B− =

{
Bkl , Bkl ≤ 0.4
0, Bkl > 0.4

(11)
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where k, l ∈ {1, 2, · · · , n − 2}, and B+, B0, and B− represent positive, zero, and negative
cross-correlation sample matrices, respectively. The calculation of the HGR cross-correlation
sample matrix is shown in Figure 4.
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Meanwhile, A is defined as the image pixel position matrix, and
max
⊗ is defined as the

matrix maximum pooling dot product operation. Based on the cross-correlation positive,
zero, and negative sample matrix obtained by the above calculation, the maximum pooling
calculation process is given by: 

R+ = A
max
⊗ B+

R0 = A
max
⊗ B0

R− = A
max
⊗ B−

(12)

where R+, R0, and R− are HGR cross-correlation positive, zero, and negative sample
matrix maximum pooling results, respectively. The HGR cross-correlation pooling process
is shown in Figure 5.
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Finally, for the special HGR maximum correlation pooling layer, the key point is to ob-
tain the transfer position based on the generated correlation matrix and transfer the values
corresponding to the intermediate matrix in the pooling process. Due to dimensionality
reduction, instead of relying on the common maximum value, only one value is passed on
for 3 × 3, and correlation is used for transfer.

As shown in Figure 6, the corresponding modal 1/modal 2 features are transmitted
through the special HGR pooling layer, which intervenes in the information transmission
based on the HGR maximum correlation matrix instead of normal pooling methods without
changing the value of the transmitted information. Meanwhile, the modal 1/modal 2
feature maps are divided into positive samples, zero samples, and negative samples for
modal 1 and modal 2 data, respectively.
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3.4. Learning Objective

The cross-entropy loss and the Soft-HGR loss with modified weights are taken as
the loss for the whole network. Thus, the learning objective of the framework can be
represented as:

L = Lce + αLSo f t−HGR (13)

where Lce represents the cross-entropy loss and Lsoft-HGR denotes the Soft-HGR loss. α is
the penalty parameter to balance the cross-entropy loss Lce and the Soft-HGR loss Lsoft-HGR,
which are designer-defined parameters ranging from 0 to 1.

The cross-entropy loss Lce is used to measure the difference between the predicted
result ŷi and the ground-truth label yi, and can be expressed as follows:

Lce = − 1
n

n

∑
i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)] (14)

The Soft-HGR loss Lsoft-HGR [36] is utilized to maximize the correlation between multi-
modal images, and can be represented as follows:

LSo f t−HGR = α1Lpositive + α2Lzero + (1 − α1 − α2)Lnegative (15)

where α1 and α2 are weighting factors, which are designer-defined parameters ranging
from 0 to 1. Lpositive, Lzero, and Lnegative represent the loss for positive samples, zero samples,
and negative samples, and their definitions are given below:
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Lpositive = − ∑
s.t.,E(fP) = 0, cov(fP) = I
E(gP) = 0, cov(gP) = I

E
(

fT
P(X)gP(Y)

)
− 1

2
tr(cov(fP(X))cov(gP(Y))) (16)

Lzero = − ∑
s.t.,E(fZ) = 0, cov(fZ) = I
E(gZ) = 0, cov(gZ) = I

E
(

fT
Z(X)gZ(Y)

)
− 1

2
tr(cov(fZ(X))cov(gZ(Y))) (17)

Lnegative = − ∑
s.t.,E(fN) = 0, cov(fN) = I
E(gN) = 0, cov(gN) = I

E
(

fT
N(X)gN(Y)

)
− 1

2
tr(cov(fN(X))cov(gN(Y))) (18)

where fp(X) and gp(Y) represent a pair of positive samples. Similarly, fZ(X) and gZ(Y)
represent a pair of zero samples, and fN(X) and gN(Y) represent a pair of negative samples.
As a supplement, the expectations and covariance are approximated through the sample
mean and sample covariance.

4. Experiments and Analysis
4.1. Dataset

The ship recognition experiments were conducted on the QXS-SROPT dataset, and the
land cover classification experiments were conducted on the Houston 2013 and MUUFL
datasets to verify the effectiveness of the proposed model and test the improvement in
remote sensing data recognition and classification when maximizing the utilization of
multimodal information.

QXS-SAROPT [45] contains 20,000 pairs of optical and SAR images collected from
Google Earth remote sensing optical images and GaoFen-3 high-resolution spotlight images.
The size of each image is 256 × 256 to fit the neural network with a resolution of 1 m. This
dataset covers San Diego, Shanghai, and Qingdao.

The HSI-LiDAR Houston2013 dataset [46], provided for IEEE GRSS DFC2013, consists
of imagery collected by the ITRES CASI-1500 imaging sensor. This imagery encompasses
the University of Houston campus and its adjacent rural areas in Texas, USA. This dataset
is widely used for land cover classification.

The HSI-LiDAR MUUFL dataset was constructed over the campus of the University
of Southern Mississippi using the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor [47,48]. This dataset contains HSI and LiDAR data and is widely used for land
cover classification.

4.2. Data Preprocessing and Experimental Setup

Since the image pairs in the QXS-SROPT dataset do not contain labels and are not
aligned, in this study, manual alignment operations were performed on 131 image pairs.
The proposed model learns the corresponding pixel correlation from SAR and optical image
pairs, and calculates the maximum pixel-level HGR cross-correlation between SAR-optical
datasets and the corresponding projection vectors f (x), g (y) to generate the heatmap and
HGR cross-correlation pooling matrix modules. The pixel-level HGR has a certain potential
for improving network multimodal information learning.

In the Houston 2013 dataset [46], the HSI image contains 349 × 1905 pixels and
features 144 spectral channels at a spectral resolution of 10 nm, spanning a range from
364 to 1046 nm. Meanwhile, LiDAR data for a single band provide elevation information
for the same image area. The study scene encompasses 15 distinct land cover and land use
categories. This dataset contains 2832 training samples and 12,197 test samples, as listed in
Table 1 [49].
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Table 1. The Houston2013 dataset with 2832 training samples and 12,197 testing samples.

No Class Name Training Set Testing Set

1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking lot 1 192 1041
13 Parking lot 2 184 285
14 Tennis court 181 247
15 Running track 187 473

Total 2832 12,197
Percentage 18.84% 81.16%

In the MUUFL dataset [48], the HSI image contains 325 × 220 pixels, covering 72 spec-
tral bands. The LiDAR imagery incorporates elevation data across two grids. Due to noise
considerations, 8 initial and final bands were discarded, and 64 bands remained. The data
encompass 11 urban land cover classes, comprising 53,687 ground truth pixels. Table 2
presents the distribution of 5% samples randomly extracted from each category.

Table 2. The MUUFL Gulfport dataset with 2669 training samples and 51,018 testing samples.

No Class Name Training Set Testing Set

1 Trees 1166 22,080
2 Grass-Pure 222 4048
3 Grass-Groundsurface 356 6526
4 Dirt-and-Sand 86 1740
5 Road-Materials 315 6372
6 Water 30 436
7 Buildings’-Shadow 93 2140
8 Buildings 302 5938
9 Sidewalk 74 1311
10 Yellow-Curb 9 174
11 ClothPanels 16 253

Total 2669 51,018
Percentage 4.97% 95.03%

The proposed model was trained using the Lion optimizer for 500 epochs and a batch
size of 32 with an initial learning rate of 0.0001. After 30 epochs, the learning rate gradually
decreased by 1 × 10−0.01 times in each epoch. All experiments were conducted on a
computer equipped with an Intel(R) Xeon(R) Gold 6133 CPU @ 2.50 GHz and an NVIDIA
GeForce RTX3090 GPU (NVIDIA, Santa Clara, CA, USA) with 24 G memory, 64-bit Ubuntu
20.04 operating system, CUDA 12.2, and cuDNN 8.8. The source code was implemented
using PyTorch 2.1.1 and Python 3.9.16.

4.3. Ship Recognition Experiment

To verify the performance of the proposed HGRPool method, a series of experiments
were conducted on the QXS-SAROPT dataset (100 training samples with 4358 instances,
31 testing samples with 1385 instances) to perform ship feature recognition on SAR–optical
image pairs. The results of three experiments are illustrated in Figures 7–9, where (a) illustrates
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the optical image, (b) shows the heatmap, (c) displays the SAR image, and (d) depicts
the ship recognition results. The results from these figures demonstrate that the HGR-
Pool method effectively identifies different ships, achieving commendable recognition
performance and effectively distinguishing water bodies.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

31 testing samples with 1385 instances) to perform ship feature recognition on SAR–opti-
cal image pairs. The results of three experiments are illustrated in Figures 7–9, where (a) 
illustrates the optical image, (b) shows the heatmap, (c) displays the SAR image, and (d) 
depicts the ship recognition results. The results from these figures demonstrate that the 
HGRPool method effectively identifies different ships, achieving commendable recogni-
tion performance and effectively distinguishing water bodies. 

    
(a) (b) (c) (d) 

Figure 7. Ship recognition experiment 1: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 8. Ship recognition experiment 2: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 9. Ship recognition experiment 3: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

The proposed HGRPool method was compared with the BNN method proposed by 
Bao et al. [50]. Table 3 lists the values of four commonly used indicators, namely precision 
(P), recall (R), F1-score (F1), and accuracy (Acc) for the recognition results. Meanwhile, 
under the same experimental conditions, comparative experiments were conducted with 
other existing methods, including MoCo-BNN [51], CCR-Net [2], and MFT [52]. The ex-
perimental data are presented in Table 3. The precision, recall, F1-score, and accuracy of 

Figure 7. Ship recognition experiment 1: (a) optical image; (b) heatmap; (c) SAR image; (d) ship
recognition results.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

31 testing samples with 1385 instances) to perform ship feature recognition on SAR–opti-
cal image pairs. The results of three experiments are illustrated in Figures 7–9, where (a) 
illustrates the optical image, (b) shows the heatmap, (c) displays the SAR image, and (d) 
depicts the ship recognition results. The results from these figures demonstrate that the 
HGRPool method effectively identifies different ships, achieving commendable recogni-
tion performance and effectively distinguishing water bodies. 

    
(a) (b) (c) (d) 

Figure 7. Ship recognition experiment 1: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 8. Ship recognition experiment 2: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 9. Ship recognition experiment 3: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

The proposed HGRPool method was compared with the BNN method proposed by 
Bao et al. [50]. Table 3 lists the values of four commonly used indicators, namely precision 
(P), recall (R), F1-score (F1), and accuracy (Acc) for the recognition results. Meanwhile, 
under the same experimental conditions, comparative experiments were conducted with 
other existing methods, including MoCo-BNN [51], CCR-Net [2], and MFT [52]. The ex-
perimental data are presented in Table 3. The precision, recall, F1-score, and accuracy of 

Figure 8. Ship recognition experiment 2: (a) optical image; (b) heatmap; (c) SAR image; (d) ship
recognition results.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

31 testing samples with 1385 instances) to perform ship feature recognition on SAR–opti-
cal image pairs. The results of three experiments are illustrated in Figures 7–9, where (a) 
illustrates the optical image, (b) shows the heatmap, (c) displays the SAR image, and (d) 
depicts the ship recognition results. The results from these figures demonstrate that the 
HGRPool method effectively identifies different ships, achieving commendable recogni-
tion performance and effectively distinguishing water bodies. 

    
(a) (b) (c) (d) 

Figure 7. Ship recognition experiment 1: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 8. Ship recognition experiment 2: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

    
(a) (b) (c) (d) 

Figure 9. Ship recognition experiment 3: (a) optical image; (b) heatmap; (c) SAR image; (d) ship 
recognition results. 

The proposed HGRPool method was compared with the BNN method proposed by 
Bao et al. [50]. Table 3 lists the values of four commonly used indicators, namely precision 
(P), recall (R), F1-score (F1), and accuracy (Acc) for the recognition results. Meanwhile, 
under the same experimental conditions, comparative experiments were conducted with 
other existing methods, including MoCo-BNN [51], CCR-Net [2], and MFT [52]. The ex-
perimental data are presented in Table 3. The precision, recall, F1-score, and accuracy of 

Figure 9. Ship recognition experiment 3: (a) optical image; (b) heatmap; (c) SAR image; (d) ship
recognition results.

The proposed HGRPool method was compared with the BNN method proposed by
Bao et al. [50]. Table 3 lists the values of four commonly used indicators, namely precision
(P), recall (R), F1-score (F1), and accuracy (Acc) for the recognition results. Meanwhile,
under the same experimental conditions, comparative experiments were conducted with
other existing methods, including MoCo-BNN [51], CCR-Net [2], and MFT [52]. The
experimental data are presented in Table 3. The precision, recall, F1-score, and accuracy
of the proposed method reached 0.908, 0.988, 0.946, and 0.898, respectively. The proposed
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method achieved better results than existing methods, especially in terms of accuracy. The
results suggest that the proposed method has greater recognition stability and accuracy
and higher localization accuracy.

Table 3. Ship identification experimental results (best results are bolded).

Model Accuracy (Acc) Precision (P) Recall (R) F1-Score

NP-BNN + ResNet50 0.831 0.750 0.990 0.853
NP-BNN + Darknet53 0.826 0.761 0.980 0.857
IP-BNN + ResNet50 0.829 0.748 0.993 0.853
IP-BNN + Darknet53 0.828 0.746 0.995 0.853
MoCo-BNN + ResNet50 0.873 0.808 0.995 0.892
MoCo-BNN + Darknet53 0.871 0.809 0.997 0.893
CCR-Net 0.854 0.883 0.963 0.894
MFT 0.876 0.892 0.980 0.934
HGRPool (ours) 0.898 0.908 0.988 0.946

4.4. Information Traceability Experiment

To demonstrate information integrity throughout the processing stages, an information
traceability experiment was conducted using images in three distinct forms: positive,
negative, and zero. The experiment aimed to retrieve the original images based on these
three forms. This part of the experiment involved six sets of tests, three with optical images
and three with SAR images. The results are illustrated in Figures 10–15. In these figures,
(a) represents the positive image, (b) the negative image, (c) the zero image, and (d) the
target traceability result image. From Figures 10–15, it can be observed that the traced
images are consistent with the original images, with no information loss. This indicates
that the proposed algorithm maintains information integrity throughout the processing
stages, ensuring that no information is lost.
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4.5. Land Cover Classification Experiment on the Houston 2013 Dataset

To validate the generalizability of the method proposed in this paper, land cover
classification experiments were conducted on the Houston 2013 dataset. Our method
was compared with traditional machine learning algorithms and state-of-the-art methods
in the field of deep learning, including CCF [53], CoSpace [54], Co-CNN [55], FusAT-
Net [56], ViT [57], S2FL [49], Spectral-Former [58], CCR-Net [2], MFT [52], and DIMNet [59].
The specific results are shown in Figure 16, where (a) displays the DSM of LiDAR data,
(b) shows the heatmap, (c) represents the three-band color composite for HSI spectral
information, (d) shows the train ground-truth map, (e) shows the test ground-truth map,
and (f) illustrates the classification results, with good contrast post-reconstruction. The
values of three universal indicators, namely overall accuracy (OA), class accuracy (AA),
and Kappa coefficient, are presented in Table 4 for comparison, where the top outcomes are
highlighted in bold. It is evident that our method outperforms the others in terms of OA
(92.23%), AA (93.55%), and Kappa coefficient (0.9157). It surpasses other methods in eight
categories (stressed grass, synthetic grass, water, residential, road, parking lot 1, tennis
court, and running track), especially achieving the highest accuracy of 100% in the four
categories of synthetic grass, tennis court, water, and running track. Even in the remaining
seven categories, our method provides commendable results. Therefore, statistically, our
method exhibits superior performance compared to all other models. This suggests that
our method is general and universally applicable, and is thus a reliable model.
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Table 4. Comparison of various methods on the Houston 2013 dataset (best results are bolded).

Class CCF CoSpace Co-
CNN

FusAt-
Net ViT S2FL Spectral-

Former
CCR-
Net MFT DIMNet HGRPool

(Ours)

OA (%) 83.46 82.14 87.23 88.69 85.05 85.07 86.14 88.15 89.15 91.47 92.23
AA (%) 85.95 84.54 88.82 90.29 86.83 86.11 87.48 89.82 90.56 92.48 93.55

Kappa coefficient 0.8214 0.8062 0.8619 0.8772 0.8384 0.8378 0.8497 0.8719 0.8822 0.9077 0.9157

Healthy grass 83.10 81.96 83.1 96.87 82.59 80.06 83.48 83 82.72 83.00 83.00
Stressed grass 83.93 83.27 84.87 82.42 82.33 84.49 95.58 84.87 85.09 84.68 98.87
Synthetic grass 100.00 100.00 99.8 100.00 97.43 98.02 99.60 100.00 98.55 99.01 100.00

Trees 92.42 94.22 92.42 91.95 92.93 87.31 99.15 92.14 95.99 91.38 98.58
Soil 98.77 99.34 99.24 97.92 99.84 100.00 97.44 99.81 99.78 99.62 92.90

Water 99.30 99.30 95.8 90.91 84.15 83.22 95.10 95.8 97.20 95.10 100.00
Residential 84.42 81.44 95.24 92.91 87.84 73.32 88.99 95.34 86.32 92.91 98.50
Commercial 52.90 66.1 81.86 89.46 79.93 74.84 73.31 81.39 81.16 87.27 79.58

Road 76.02 69.97 85.08 82.06 82.94 78.38 71.86 84.14 87.76 88.01 88.22
Highway 67.18 48.94 61.1 66.60 52.93 83.30 87.93 63.22 74.71 93.82 86.50
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Table 4. Cont.

Class CCF CoSpace Co-
CNN

FusAt-
Net ViT S2FL Spectral-

Former
CCR-
Net MFT DIMNet HGRPool

(Ours)

Railway 84.44 88.61 83.87 80.36 80.99 81.69 80.36 90.32 93.71 88.80 91.46
Parking lot 1 92.80 88.57 91.26 92.41 91.07 95.10 70.70 93.08 96.16 96.54 97.50
Parking lot 2 76.49 68.07 88.77 92.63 87.84 72.63 71.23 88.42 92.51 90.53 90.88
Tennis court 99.60 100.00 91.09 100.00 100.00 100.00 98.79 96.36 100.00 96.76 100.00

Running track 97.89 98.31 98.73 97.89 99.65 99.37 98.73 99.37 86.82 99.79 100.00

4.6. Land Cover Classification Experiment on the MUUFL Dataset

To validate the generalizability of the proposed method, the land cover classifica-
tion experiments were conducted on the HSI-LiDAR MUUFL dataset. Our method was
compared with traditional machine learning algorithms and state-of-the-art methods in
the field of deep learning, including CCF, CoSpace, Co-CNN, FusAT-Net, ViT [57], S2FL,
Spectral-Former, CCR-Net, and MFT. The specific results are illustrated in Figure 17, where
(a) displays the three-band color composite for HSI spectral information, (b) shows the
heatmap, (c) represents the LiDAR image, (d) shows the train ground-truth map, (e) shows
the test ground-truth map, and (f) illustrates the classification results. The values of three
universal indicators, namely OA, AA, and Kappa coefficient, are presented in Table 5, with
the top outcomes being highlighted in bold. It is evident that our method outperforms the
others in terms of OA (94.99%), AA (88.13%), and Kappa coefficient (0.9339). Our method
surpasses other methods in five categories (grass-pure, water, buildings’-shadow, buildings,
and sidewalk). Even in the remaining six categories, our method obtains commendable
results. Therefore, statistically, our method exhibits superior performance compared to all
other models. This shows that our method is general and universally applicable, and is
thus a reliable model.
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Figure 17. MUUFL dataset: (a) three-band color composite for HSI images (bands 16, 32, 64); (b) heatmap
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Table 5. Comparison of various methods on the HSI-LiDAR MUUFL dataset (best results are bolded).

Class CCF CoSpace Co-
CNN

FusAt-
Net ViT S2FL Spectral-

Former
CCR-
Net MFT HGRPool

(Ours)

OA(%) 88.22 87.55 90.93 91.48 92.15 72.49 88.25 90.39 94.34 94.99
AA(%) 71.76 71.63 77.18 78.58 78.50 79.23 68.47 76.31 81.48 88.13
Kappa 0.8441 0.8353 0.8822 0.8865 0.8956 0.6581 0.8440 0.8603 0.9251 0.9339

Trees 96.50 95.89 98.90 98.10 97.85 72.40 97.30 96.78 97.90 97.98
Grass-Pure 77.17 66.65 78.60 71.66 76.06 75.97 69.35 83.99 92.11 92.45

Grass-Groundsurface 74.80 85.24 90.66 87.65 87.58 54.72 78.48 84.16 91.80 89.86
Dirt-and-Sand 91.94 68.45 90.60 86.42 92.05 82.20 82.63 93.05 91.59 91.81
Road-Materials 93.45 94.52 96.90 95.09 94.73 71.26 87.91 91.37 95.60 95.13

Water 95.05 96.10 75.98 90.73 82.02 94.42 58.77 81.88 88.19 99.28
Buildings’-Shadow 79.82 84.91 73.54 74.27 87.11 77.34 85.87 76.54 90.27 93.25

Buildings 98.21 91.19 96.66 97.55 97.60 86.19 95.60 94.58 97.26 97.83
Sidewalk 0.52 9.69 64.93 60.44 57.83 59.21 53.52 43.02 61.35 78.14

Yellow-Curb 0.00 0.00 19.47 09.39 31.99 98.91 08.43 00.00 17.43 46.25
ClothPanels 81.89 95.26 62.76 93.02 58.72 98.88 35.29 94.70 72.79 87.45
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5. Discussion
5.1. Ablation Experiment

The ablation experiments were conducted on the QXS-SROPT dataset, the Houston
2013 dataset, and the MUUFL dataset to evaluate the proposed HGR correlation pooling
fusion framework.

In the ablation experiments on QXS-SROPT datasets, the performance was observed
when partially using the HGRPool, i.e., using the HGRPool for positive and negative
samples or positive and zero samples, as well as when completely omitting it. The re-
sults of ablation experiments on the QXS-SROPT dataset are presented in Table 6. The
proposed model demonstrates optimal performance in ship recognition experiments on
the QXS-SROPT dataset when it incorporates all components, i.e., when fully utilizing
the HGRPool. Meanwhile, there is a notable decline in ship recognition accuracy as the
HGRPool component is partially employed or entirely excluded.

Table 6. Ablation study by removing different modules on the QXS-SROPT dataset (best results
are bolded).

Methods Accuracy (Acc) Precision (P) Recall (R) F1-Score

Without HGRPool 0.722 0.803 0.877 0.838
Partially using HGRPool (positive/zero sample) 0.789 0.834 0.937 0.883
Partially using HGRPool (positive /negative sample) 0.810 0.849 0.947 0.895
HGRPool 0.898 0.908 0.988 0.946

In the ablation experiments on the Houston 2013 and MUUFL datasets, the perfor-
mance was observed when partially using HGRPool and completely omitting it. The
results of ablation experiments on the Houston 2013 and MUUFL datasets are shown
in Table 7. Similarly, the proposed model demonstrates optimal performance in land
cover classification experiments on the Houston 2013 and MUUFL datasets when it in-
corporates all components, i.e., when fully utilizing the HGRPool. Due to partial use or
complete exclusion of the HGRPool component, there is a significant decrease in land cover
classification accuracy.

Table 7. Ablation study by removing different modules on the Houston 2013 and MUUFL datasets
(best results are bolded).

Methods Houston 2013 Dataset MUUFL Dataset

OA (%) AA (%) Kappa OA (%) AA (%) Kappa

Without HGRPool 89.64 90.26 0.8851 92.72 80.94 0.9040
Partially using HGRPool (positive/zero sample) 90.20 91.05 0.8937 93.24 84.41 0.9106
Partially using HGRPool (positive/negative sample) 90.81 91.46 0.9013 93.79 85.07 0.9180
HGRPool 92.23 93.55 0.9157 94.99 88.13 0.9339

5.2. Analyzing the Effect of Experiments

The comparative experimental results confirm the precision and accuracy of our
method. Compared with various advanced matching networks, this method not only
achieves accurate and stable matching in ship recognition but also has particularly ob-
vious advantages in land cover classification. By integrating a feature fusion method
with an HGR correlation algorithm to separate information based on intrinsic correlation
into different classification channels while maintaining information integrity, this model
achieves information separation and maximizes the utilization of multimodal data, thereby
improving the precision and accuracy of target recognition and classification.

From Table 6, it can be seen that the proposed model demonstrates optimal perfor-
mance (with precision, recall, F1-score, and accuracy of 0.898, 0.908, 0.988, and 0.946,
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respectively) in ship recognition experiments on the QXS-SROPT dataset when it incor-
porated all components, i.e., fully using the HGRPool. There is a notable decline in ship
recognition accuracy when the HGRPool component is partially used or entirely excluded.
When partially using HGRPool (positive/negative sample), only recall (R) is still as high
as 0.947. The results of accuracy, precision, and F1-score drop to 0.810, 0.849, and 0.895,
respectively. The result of partially using HGRPool (positive/zero sample) is slightly
worse than that of partially using HGRPool (positive/negative sample). Additionally, the
result corresponding to without HGRPool is the worst, with accuracy, precision, recall, and
F1-score being only 0.722, 0.803, 0.877, and 0.838, respectively.

Meanwhile, it can be deduced from Table 7 that there is a notable decline in land
cover classification accuracy as the HGRPool component is partially employed or entirely
excluded. The result of partially using HGRPool (positive/negative sample) in OA, AA, and
Kappa drop to 90.81%, 91.46%, and 0.9013 on the Houston 2013 dataset and 93.79%, 85.07%,
and 0.9180 on the MUUFL dataset. The result of partially using HGRPool (positive/zero
sample) is slightly worse than that of partially using HGRPool (positive/negative sample).
The result corresponding to without HGRPool is the worst, with OA, AA, and Kappa being
only 89.64%, 90.26%, and 0.8851 on the Houston 2013 dataset and 92.72%, 80.94%, and
0.9040 on the MUUFL dataset. It can be concluded that the proposed HGR correlation pool
fusion framework is effective and helps to improve accuracy.

6. Conclusions

The fusion of multimodal images has always been a research hotspot in the field of
remote sensing. To address the issues of low recognition and classification accuracy and
difficulty in integrating multimodal features in existing remote sensing data recognition
and classification methods, this paper proposes a multimodal remote sensing data recog-
nition and classification model based on a heatmap and HGR cross-correlation pooling
fusion operation. Then, an HGR cross-correlation pooling fusion algorithm is proposed
by combining the feature fusion method with the HGR cross-correlation algorithm. The
model first calculates the statistical matrix through multimodal image pairs, extracts multi-
modal image features using convolutional layers, and then computes the heatmap from
these features. Subsequently, by performing HGR cross-correlation pooling operations,
the model can separate information with intrinsic relevance into respective classification
channels, achieving dimensionality reduction of multimodal image features. In this ap-
proach, less feature data are used to represent the image area information of multimodal
images while maintaining the original image information, thereby avoiding the problem
of feature dimension explosion. Finally, point multiplication fusion is performed on the
dimensionality-reduced feature samples, which are then input into the recognition and
classification network for training to achieve recognition and classification of remote sens-
ing data. This method maximizes the utilization of multimodal information, enhances the
feature learning capability of multimodal images, improves the performance of specific
interpretation tasks related to multimodal image fusion, and achieves classification and
efficient utilization of information with different degrees of relevance. By conducting ship
recognition experiments on the QXS-SROPT dataset and land cover classification experi-
ments on the Houston 2013 and MUUFL datasets, it was fully verified that the proposed
method outperforms other state-of-the-art remote sensing data recognition and classifica-
tion methods. In future research, efforts will be made to further enhance recognition and
classification accuracy and expand the application scope of this method to encompass more
complex scenes and additional modalities. Further investigation will also be carried out of
adaptive tuning of the parameters to achieve the best recognition and classification effects.
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