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Abstract: The detection of subsurface archaeological remains using a range of remote sensing methods
poses several challenges. Recent studies regarding the detection of archaeological proxies like those
of cropmarks highlight the complexity of the phenomenon. In this work, we present three different
methods, and associated indices, for identifying stressed reflectance signatures indicating buried
archaeological remains, based on a dataset of measured ground spectroradiometric reflectance.
Several spectral profiles between the visible and near-infrared parts of the spectrum were taken
in a controlled environment in Cyprus during 2011–2012 and are re-used in this study. The first
two (spectral) methods are based on a suitable analysis of the spectral signatures in (1) the visible
part of the spectrum, in particular in the neighborhood of 570 nm, and (2) the red edge part of the
spectrum, in the neighborhood of 730 nm. Machine learning (decision trees) allows for the deduction
of suitable wavelengths to focus on in order to formulate the proposed indices and the associated
classification criteria (decision boundaries) that can enhance the detection probability of stressed
vegetation. Noise in the signal is taken into account by simulating reflectance signatures perturbed by
white noise. Applying decision tree classification on the ensemble of simulations and basic statistical
analysis, we refine the formulation of the indices and criteria for the noisy signatures. The success rate
of the proposed methods is over 90%. The third method rests on the estimation of vegetation/canopy
reflectance parameters through inversion of the physical-based PROSAIL reflectance model and the
associated classification through machine learning methods. The obtained results provide further
insights into the formation of stress vegetation that occurred due to the presence of shallow buried
archaeological remains, which are well aligned with physical-based models and existing empirical
knowledge. To the best of the authors’ knowledge, this is the first study demonstrating the usefulness
of radiative transfer models such as PROSAIL for understanding the formation of cropmarks. Similar
studies can support future research directions towards the development of regional remote sensing
methods and algorithms if systematic observations are adequately dispersed in space and time.

Keywords: archaeological proxies; cropmarks formation; subsurface archaeological remains; detection;
machine learning; spectral signatures

1. Introduction

Remote sensing techniques have long been used in archaeological research [1–12].
Some of these remote sensing studies are focused on the detection of archaeological proxies,
i.e., detection of areas with potential subsurface archaeological remains [13–17]. One of the
most widely used methods for the detection of subsurface remains is cropmarks [18–20].
Cropmarks, either stressed or positive, are usually created in areas where vegetation (crops)
overlays near-surface archaeological remains. Buried archaeological features might retain
soil moisture with a different percentage of moisture compared to non-archaeological areas
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and therefore impact the growth and phenological cycle of the cultivated crops on top of
the surface [21–25].

The detection of archaeological proxies has been studied in different environments
and contexts, using mainly optical satellite imagery with the support of other means and
remote sensors. For instance, in [26], the authors reviewed the historic record since the
1920s of aerial imageries around East Lothian in order to identify patterns observed for
the formation of crop marks. The authors argue that “weather patterns, land use and soils
are the most significant factors conditioning the likely success of aerial reconnaissance of
lowland areas” while the relative soil moisture as well as local soil characteristics are major
factors for the formation of cropmarks. The authors also argue that “the vast majority of
cropmark sites are known as a result of observer-directed reconnaissance” and point out
the need for the scientific community to move beyond bias interpretation and towards the
reliable use of survey data. Such an approach was presented in [27], where the authors
attempted through statistical analysis and ground spectroradiometric measurements to
identify optimum temporal and spectral windows for optical sensors between 400 and
900 nm (the vis–near-infrared part of the spectrum). Cropmark studies and analysis require
the use of hyperspectral data when feasible, as this allows the researchers to have a better
understanding of the spectral behavior of the cropmarks in a range of a few nanometers of
the wavelength. For instance, in [28], the authors explored the airborne CASI 2 pushbroom
imaging spectrometer, with a spectral range between 405 and 950 nm and the Argon ST
1268 Airborne Thematic Mapper (Boeing, VA, USA) with 11 spectral bands between the
visible to thermal infrared part of the spectrum, over the area of Dalkeith Park. The same
sensors have been elaborated in [29], over two different areas around the Midlothian and
the Clyde valley in Lanarkshire. The use of multi-spectral and hyperspectral imagery for
the identification of archaeological cropmarks was “effectively demonstrated” after the
implementation of various image processing techniques. Nevertheless, as the authors
argue, difficulties might exist including the spatial resolution of the images, while “no
single technique was universally successful”. Low-altitude, multitemporal, multispectral
campaigns for the detection of cropmarks have been employed in the area of Tavoliere
delle Puglie [30]. The results indicate that “crop marks visibility is connected not only to
humidity content but also to soil texture”, and future tasks include the use of integrated
satellite to low-altitude observations.

Therefore, the detection of cropmarks can be quite challenging. This study attempts
to fill a gap observed in the relevant literature, a gap observed between the “traditional
aerial archaeologists that work with image interpretation and remote sensing specialist
who adopt a more quantitative approach for the detection of crop marks”; see [29]. The
gap is noticed since the success for detecting cropmarks using remote sensing imageries
might vary depending on the area and the different environmental and soil properties.
This remark is familiar to experts in the field as they recognized that the formation of
cropmarks is influenced by different factors such as the soil properties, soil conditions,
climatic variables, cultivation practices and, of course, the same archaeological remains
themselves [21–23,26,29]. This research gap, i.e., that local remote sensing outcomes and
methods are designed only at the local landscape level, has overshadowed all relevant
research in the field, prohibiting research field progress.

Hence, it is important to better understand the physical mechanisms that enable the
formation of cropmarks as well as to further study ways for developing robust supervised
classification methods on not-so-well-studied archaeological landscapes. This will allow
the scientific community to establish regional remote sensing methods that can enhance
the presence of cropmarks in different environments and therefore increase the success rate
of these methods. The novelty of this study, therefore, is that it aims to understand, from a
physical perspective, the role of the different parameters that altered the spectral behavior
of cropmarks against healthy vegetation. At the same time, it aims to provide statistical
evidence over a complete phenological dataset, rather than a few observations (captured
either by satellite, aerial or ground sensors).
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This approach can allow the scientific community to better understand how different
physical parameters affect the stress conditions of crops—due to the presence of buried
archaeological remains—and when these occur in terms of the different phenological
stages of the crops. To do so, simulation experiments and tests in controlled fields are
essential to isolate the different factors, minimize potential noise and errors, and therefore
provide through systematic phenological observations the necessary dataset for further
statistical evaluation.

2. Materials and Methods

In this study, we recall the experiment that took place in Alambra test field in Cyprus
during the period 2011–2012 [31]. This dataset is ideal for the needs of this study as it
was based on ground calibrated spectral signatures, thus minimizing potential noise (e.g.,
atmospheric impact) and errors, taken during a complete phenological cycle of barley crops.

In more detail, ground spectral signatures were systematically collected over a test field
developed near Alampra village in Cyprus. Details for this test field as well as more results
on the processing of the ground spectral signatures can be found in [31,32]. As mentioned
in [32], a 5 × 5 m square was constructed to replicate “tombs” 25 cm below the surface.
Maintaining the soil’s natural stratigraphy—that is, placing the original ground surface at
the top—was a primary priority when constructing the controlled field. At that time, the
entire region was cultivated with barley crops, and Global Navigation Satellite Systems
(GNSS) were used (Leica Viva Pro GS15, Leica Geosystems AG, Heerbrugg, Switzerland)
to locate the “tombs” (Figure 1).
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Figure 1. (a) Photo from the construction of the controlled archaeological environment located at the
Alampra village. (b) The area was then cultivated with barley crops. (c) Photo of the barley crop
during its full growth. The linear cropmarks formed in the area above the archaeological environment
are shown with an arrow (source [32]).

Ground spectroradiometric measurements were made in each campaign, both across
the “archaeological” area and the non-archaeological area. A handheld GER 1500 spectrora-
diometer (Geophysical and Environmental Research Corporation, University of Edinburgh,
Scotland) was utilized for this purpose. With 512 distinct channels with a full width at
half maximum (FWHM) of around 1.5 nm, this device can record electromagnetic radi-
ation from the visible to near-infrared spectrum (400–1050 nm). Additionally, all of the
observations made over the crops were calibrated and the incoming sun radiation was
measured using a Lambertian spectralon panel (Geophysical and Environmental Research
Corporation, University of Edinburgh, Scotland) [33]. This panel has the capability to
reflect the incoming radiation to almost 100% (99.996%) in all directions. The instrument’s
field of view (FOV) was adjusted to 4 degrees (≈0.02 m2 from 1.2 m above the ground).
The reference measurement at the spectralon Lambertian surface panel was first used to
determine the incoming radiance, followed by the subsequent measurements. These steps
were repeated during and in each different campaign to harmonize and calibrate the overall
spectral signatures. The range of spectral signatures is between 0 and 100%.
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Multi-temporal ground spectroradiometric campaigns have been carried out over the
simulated test field from October 2011 until April 2012. In particular, there are 16 days of
observation, with a varying number of measurements in each day. The number of A and H
reflectance observations ρ made on particular dates is given in Table 1. Label A refers to
the measurements taken over the simulated “archaeological” subsurface target and Label
H refers to the measurements taken over healthy vegetation (crops).

Table 1. Observations per day.

Date Number of A Obs Number of H Obs Date Number of A Obs Number of H Obs

17/10/2011 19 19 20/12/2011 9 9
26/10/2011 18 18 03/01/2012 9 9
31/10/2011 9 9 11/02/2012 9 9
09/11/2011 9 9 21/02/2012 9 9
16/11/2011 5 5 04/03/2012 9 9
23/11/2011 9 9 17/03/2012 9 9
28/11/2011 9 9 29/03/2012 9 9
13/12/2011 9 9 17/04/2012 9 9

The overall methodology adopted for the needs of this study is depicted in Figure 2.
Once the datasets have been collected, they are quantitatively processed (rescaled to the
unit interval and forming the average of the ratio of every signature to any other in
the dataset) to facilitated classification. Using machine learning algorithms, specifically
decision trees [34], we identify two new (single wavelength) indices and the associated
thresholds (decision boundaries), which optimally classify the dataset into healthy and
stress vegetation spectral profiles (H and A, respectively). Taking into consideration the
noise impact, the new indices and thresholds were produced based on the suitable spectral
windows. Finally, the physically based model PROSAIL was used to estimate physical
parameters and identify decision boundaries associated with them. This analysis singles
out the leaf chlorophyll content as the physical parameter that can be effectively used for
classification purposes.Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 27 
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3. Results

The above-mentioned ground spectroradiometric datasets were processed in the
Python programming language [35]. The different processing steps and their results are
illustrated in the following subsections.

3.1. Analysis of the Dataset and Data Transformation

Our analysis of this dataset proceeds as follows. Consider the measured A reflectance
curves of a single day of observation, e.g., 11 February 2012, as shown in Figure 3a. The
spectral profile of these curves is characteristic of what we see in healthy vegetation: low
reflectance values in the visible part of the spectrum, i.e., approximately between 450 and
630 nm, with a small increase in the green part of the spectrum around 560 nm and a
sudden increase in the near-infrared part after 700 nm. Between 630 and 700 nm is the
so-called red edge part of the spectrum. Observing these curves, we can see that there is a
certain degree of similarity between them, indicating a nearly similar and a difference in
scale (i.e., absolute reflectance values).
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reflectance curves based on Equation (1).

Therefore, the next step could be to isolate this pattern of the curves. Therefore, we
transform (shift and rescale) each curve by linearly mapping the reflectance so that its range
becomes [0, 1], i.e., its minimum and maximum are mapped into 0 and 1, respectively,
based on Equation (1):

ρi(λ) =
ρi(λ)−min(ρi)

max(ρi)−min(ρi)
(1)

The index i runs over the number of observed curves. The transformed reflectance
curves ρi(λ) for the given date are shown in Figure 3b.

The effect of this transformation is clear: the relative significance of the differences
in pattern, e.g., between the visible spectrum and the red edge, as shown in Figure 3b, is
much more pronounced than before (Figure 3a). In contrast, the differences in absolute
reflectance values observed in the near-infrared part of the spectrum are not further visible.
Our further analysis will be based on the transformed reflectance curves (Figure 3b).

Let us now plot the (transformed) reflectance curves against each other, which we
may call reflectance-against-reflectance plots. In Figure 4, for a given day of observation
(17 March 2012), the A and H reflectance curves are plotted against each other, in all distinct
combinations of A and H in the following manner: in Figure 4a, all H measured curves of
the day are plotted against a single H curve, which serves as the horizontal axis. Similarly,
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for the other two figures (all A against a single H in Figure 4b and all H against a single H
curve in Figure 4c).
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(a) all H measured curves of the day plotted against a single H curve. (b) all A against a single H
curve and (c) all A against a single A curve. Different colours correspond to different measurements
on the given data.

One observes a specific pattern in the A against H graph in Figure 4b, i.e., A curve
values are depressed relative to the H curve values at the same wavelength. The patterns
shown in Figure 4 are characteristic of any given day in the January–February–March
(JFM) period, and the A and H curves serve as the horizontal axis, as shown in Figure 4.
The period JFM was selected from the overall observation timeframe as this is the period
(phenological cycle) where the crops start to grow in the area; therefore, we can observe the
spectral signature pattern, as shown in Figure 3a.

On the other hand, if the same analysis is carried out on any observation date in other
phenological periods, the result is qualitatively different, as can be seen in Figure 5 for
31 October 2011. During that period, the crops have just been seeded and the spectral
signatures thus correspond to those of soil targets rather than crops. Therefore, one realizes
that one should focus on the JFM period, which is consistent with the growth stage of
barley. The JFM period contains a dataset of 107 observations (reflectance signatures) to
work with.
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We may momentarily pause to generalize what we have carried out so far, thinking
in terms of an unknown dataset of similar spread throughout the months of the year. Let
us pretend that the given dataset (spectral signature) is unknown, and in any specific
measurement day pick any reflectance curve and set all the others against it, and then
perform that for all curves of the day (we always refer to the transformed ones). In Figure 6,
we show the results of this process for a date in the JFM period; we have chosen 4 March
2012, for two reflectance curves we called X_1 (unknown #1) and X_2 (unknown #2). It is
clear that unknown #1 must be A while unknown #2 must be H. Indeed, Figure 6a indicates
a stressed pattern (below the diagonal line 1:1) while, in contrast, in Figure 6b, a healthy
crop profile (near and above the diagonal line 1:1) is observed.
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observation X_1 against all the observations in the given date. X_1 and X_2 can be identified as (a) A
and (b) H, respectively, based on their pattern.

In the reflectance-against-reflectance type of plot, as in the case of Figures 4–6, it is
not clear which part of the spectrum they mainly visualize. In Figure 7, we plot an A
reflectance curve against an H reflectance curve for any specific date in the JFM period
(here, we have chosen 4 March 2012). Suitably restricting the range, it is clarified that the
main phenomena refer to the red edge part of the spectrum. Anticipating a discussion that
will be the subject of Section 3.6, we may observe that the resulting trend, which can be
fitted with near perfection with very simple functions, suggests that quite specific physical
phenomena are at work here to produce this result.
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3.2. Definition of a (Single-Wavelength) Classifying Index within the Visible Spectrum

The previous discussion suggests that in a dataset of (transformed) reflectance curves,
the A reflectance curves have in general smaller ordinates than the H reflectance curves, at
least in a part of the spectrum. In order to make such observations general and quantitative,
we may form ratios of the reflectance curves using Equation (2):

ρ-ratioi,j(λ) =
ρi(λ)

ρj(λ)
(2)

That is, for the i-th reflectance curve, we obtain N ρ-ratio curves (where N is the size
of the original dataset), or more precisely, N-1 non-trivial ones. We may now observe that if
the i-th curve is an A reflectance, then its ρ-ratio curves will lie lower that the ρ-ratio curves
of an i′-th curve, which is H reflectance. This statement can be made specific by averaging
the ρ-ratio curves corresponding to any specific observed reflectance (Equation (3)):

mean ρ-ratioi(λ) =
1

N − 1 ∑
j 6=i

ρ-ratioi,j(λ) =
1

N − 1 ∑
j 6=i

ρi(λ)

ρj(λ)
(3)

That is, for every wavelength λ, we average ρ-ratios of any reflectance curve relative
to any other reflectance curve in the dataset (always referring to the transformed ones). The
mean ρ-ratio is essentially an index associated with every signature for all wavelengths.
Given our discussion above, the assumption is that there might be a critical value of the
mean ρ-ratio, serving as a decision boundary, separating the A from the H reflectance
curves (with an acceptably high success rate).

A technical detail that should be taken care of is that the denominator of ratios of
normalized reflectances may be zero for certain wavelengths in the visible spectrum (see
Figure 3b). This can be achieved by introducing a small cutoff, that is, by clipping all values
below that cutoff and setting them to be equal to it. That cutoff should only serve as a
facilitator of calculations, that is, its value should not affect the final results if it is small
enough. Indeed, it turns out that any cutoff value below 5 × 10–5 produces the same results.

The mean ρ-ratios for all observed reflectance curves and for all wavelengths are
shown in Figure 8. One may then discover by mere inspection that in the vicinity of the
peak of the original reflectance curves in the visible spectrum, i.e., near 560 nm, there is
very clear separation between the A and H mean ρ-ratios. We should emphasize again that
this fact survives for all small values of the cutoff, which primarily affect these curves near
the blue and red edges.
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At first, we may proceed empirically. The most promising region is the one around the
peak of the reflectance within the visible region (~550 nm). By inspection, one finds that the
mean ρ-ratio at (approximately) 570 nm is the most suitable variable to define a decision
boundary between the A and H observations. Therefore, we shall define the following
index (Equation (4)) as follows:

Index570= mean ρ-ratio(570 nm) (4)

In Figure 9, we plot this index for all observations. We find that there is indeed a
distinctive decision boundary between A and H observations at the value Index570 = 1.2
(rounded to one decimal point).

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 27 
 

 
Figure 8. Mean ρ-ratio curves associated with each observed reflectance curve. 

At first, we may proceed empirically. The most promising region is the one around 
the peak of the reflectance within the visible region (~550 nm). By inspection, one finds 
that the mean ρ-ratio at (approximately) 570 nm is the most suitable variable to define a 
decision boundary between the A and H observations. Therefore, we shall define the fol-
lowing index (Equation (4)) as follows: 

570Index  =  mean -ratio(570 nm)ρ  (4)

In Figure 9, we plot this index for all observations. We find that there is indeed a 
distinctive decision boundary between A and H observations at the value Index570 = 1.2 
(rounded to one decimal point). 

 
Figure 9. Index570 for all A and H observations and the decision boundary at 1.2. 

To be more precise, if we identify an observation as A if its Index570 is greater than 
1.2, then the standard classification scores of this method show no failure (Table 2). 

Figure 9. Index570 for all A and H observations and the decision boundary at 1.2.

To be more precise, if we identify an observation as A if its Index570 is greater than 1.2,
then the standard classification scores of this method show no failure (Table 2).

Table 2. Classification scores for Index570 decision boundary at 1.2.

Accuracy Precision Recall F1 Score

1.0 1.0 1.0 1.0

We may note at this point that score values such as those observed in Table 2 usually
imply excessive overfitting. But it is hard to argue for such an interpretation given that the
results were obtained with a single degree of freedom. Then, another interpretation might
be that the dataset is—in some way—too biased. Indeed, the dataset does not have the
complications and deficiencies of satellite imagery, nor it is spread across many different
test cases. Simulating a certain level of noise in the measured reflectance signatures adds
some realism into the quality of the data, and its effects can be quantified. This is outlined
below. Moreover, we could argue that the classification methods discussed here can be
directly interpreted in terms of the physical properties of the canopy, thereby adding a
certain amount of generality/universality to our results.

3.3. Machine Learning Methods: Analysis with Logistic Regression and Decision Tree Classifiers

Although the 570 nm wavelength and a value of 1.2 for the Index were found in
an empirical fashion by inspecting the patterns in Figure 8, we would like to obtain the
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decision boundary and the associated wavelength(s) in a systematic way, as well to know
why that worked given the hundreds of degrees of freedom present in the mean ρ-ratio
curve. More importantly, given that real (i.e., satellite observations) data will have a more
complex structure than our dataset, it is necessary to look at and understand alternative
ways to identify the A observations.

To simplify our analysis, we group the wavelengths between 400 and 900 nm (covering
the visible to near-infrared part of the spectrum) into bands of 10 nm averaging the values
of the mean ρ-ratio in every band. We use the central points of the bands, i.e., 405, 415,
. . ., 895, as the name of the corresponding feature (variable), reducing the number of the
features to 50. We first calculate the 50 × 50 correlation matrix of the features, which is
visualized in Figure 10.
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 Figure 10. Correlation matrix of the mean ρ-curves averaged over 10 nm.

We observe that the correlation matrix is nearly block-diagonal, forming two blocks
in the visible/red edge and near-infrared parts of the spectrum. The latter in particular
forms a block of strongly correlated features. We observe that the wavelengths in the
neighborhood of 550 nm are weakly correlated with other wavelengths, except for the
wavelengths at the outer part of the red edge. This may be regarded as an explanation for
why the Index defined above can carry so much information alone. The wavelengths in the
neighborhood of 680 nm as well as 480 nm are negatively correlated with the near-infrared
spectrum. In fact, 680 nm wavelengths are quite strongly correlated with a large part of
the visible spectrum. Overall, these strong correlations imply that the effective degrees of
freedom are much fewer than the number of features.

Let us first model the classification of the curves into A and H through the logistic
regression classifiers available in the Python language libraries [35]. Logistic regression
involves all degrees of freedom (features) simultaneously finding the relative weight
(importance) of them in obtaining the answer. Although the empirical analysis of the
problem suggests that regression is not the most suitable method to consider, it is interesting
to see how it performs and obtain the pattern regarding the importance of features.

After reshuffling, we split the available datasets of 107 observations into 85 observations
(80%) for the training set and 22 (20%) for the validation set. The obtained model perfor-



Remote Sens. 2024, 16, 1705 11 of 25

mance is again given in Table 2, achieving perfect scores. It should be noted, though, that
the 10 nm bands appear to be the coarser resolution producing the best results: with bands
of 20 nm, scores are lowered to 96%. The importance of every feature (wavelength), that is,
the coefficients of the fitted logistic regression model, is shown in Figure 11.
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In this method, the classification is described quite differently than the single wave-
length Index570. Wavelengths around 660 nm have the greatest relative (positive) impor-
tance, while wavelengths around 480 and 680 nm do contribute significantly but coun-
terbalance (by having the opposite sign) the contributions of the majority of the features
(appearing in the blocks of the correlation matrix). Also, the wavelengths in the upper
block contribute significantly and rather equally.

Decision tree classifiers are more pertinent to the problem at hand, as the method finds
decision boundaries examining sequentially its features [34,36]. Moreover, the relatively
small size of the dataset and the rather low number of degrees of freedom, as well as the
‘white-box’ interpretability of decision trees [37], make this classification method a suitable
approach for the current purpose. Indeed, again constructing a training and validation set
and using gini impurity as a measure of the quality of the splits, we find that for a simple
depth equal to 1 (one node), there is a decision boundary, a single dominant feature at
571 nm, i.e., the only wavenumber with a non-zero weight and equal to 1 (Figure 12), and
a decision boundary (threshold) of 1.191, as shown in Figure 13, where our decision tree
is visualized. This is in accordance with our expectations from the analysis that led to the
Index570 and the associated decision boundary. The decision tree classification allowed us
to validate and refine that analysis, as well as to deduce these results in a systematic way,
i.e., through an algorithm instead of inspection.
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Upon checking the fitted model on the validation set, we again find the perfect scores
given in Table 2.

3.4. Simulating the Effects of Noise: Statistics of the Classifying Index570

At this point, it is necessary to incorporate the presence of noise into our analysis,
which is always part of real (e.g., satellite imagery) observations. We simulate adding white
(i.e., uncorrelated) noise, drawn from a normal distribution N(µ,σ) with the mean value µ
equal to the value ρ of the (original) reflectance signature curve (at any given wavelength
λ) and standard deviation σ = CV∗ρ, where CV is the coefficient of variance, which will be
fixed at 5%. That is (Equation (5)),

ρsimulated ∼ N(ρ, CV ∗ ρ) (5)
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This way, an ensemble of simulations of the dataset may be generated and the pre-
vious analyses may be applied for each element (dataset) of the ensemble. In particular,
two important analyses may be applied: (1) to investigate the performance of Index570 with
decision boundary 1.2, that is, determine the statistics of the classification scores, and (2) to
investigate the statistics of the decision boundary as determined by a decision tree.

First, we would like to visualize the mean ρ-curves of the ensemble of A and H
observations. These curves are shown in Figure 14 for 100 simulations of the dataset
with noise.
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Once the ensemble of mean ρ-curves for the A and H observations has been con-
structed, it is straightforward to apply classification methods and evaluate the statistics of
the success rate. First, we perform this for the Index570 and deduce the score statistics for
the associated classification criterion proposed in this work, i.e., that a reflectance signature
is A if its Index570 < 1.2.

The results shown in Table 3 indicate that the classification based on the Index570 per-
forms very well even in the presence of noise; we obtained a success rate of approximately
97% ± 2%. Hence, it might turn out to be an effective tool in actual applications.

Table 3. Statistics of classification scores for the Index570 < 1.2 criterion.

Scores Mean Value Standard Deviation

Accuracy 0.970 0.014
Precision 0.968 0.020

Recall 0.974 0.019
F1 score 0.971 0.014

Our second task is to study these simulations through the decision tree method in
order to obtain the statistics of the dominant wavenumber and thresholds. In this case,
both the chosen wavelength and the decision boundary will be discovered by the method
itself, and they will thus vary. The obtained results will allow us to refine the definition
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of the Index when dealing with noisy dataset. As mentioned earlier, the decision tree
classification has a greater affinity to the Index method proposed in this work and can
naturally be regarded as a validation as well as refinement of the latter.

Indeed, in the case of the simulation ensemble, a tree depth equal to 2 was needed
in some of the realizations, that is, at most two wavenumbers had a non-zero weight. It
should be mentioned that the classification scores on the validation set remain essentially
the same from depth 1 to depth 2; hence, we shall proceed with depth 2. As the decision
boundary is, in general, a multidimensional boundary surface in the feature space, here,
we quote the thresholds at which the tree splits data for the dominant wavelength. For
more stable statistical results, we use an ensemble of 5000 simulations. The statistics of
the classification scores are given in Table 4, together with the dominant wavelength (with
importance ~0.95 or higher) and the associated threshold. Classification scores reach as
high as 98%.

Table 4. Statistics of classification parameters for the decision tree method.

Parameter Mean Value Standard Deviation

Accuracy 0.975 0.025
Precision 0.977 0.023

Recall 0.975 0.025
F1 score 0.975 0.025

Dominant wavelength 564 6

The distribution of the dominant wavelength (frequency of appearance) is presented
in Figure 15. On top of every bar is the mean value of the threshold for that wavelength.
The wavelength 568 nm is the most frequently arising wavelength of the distribution, but
there are other values with significant rates of appearance. Table 5 shows certain important
percentiles of the distribution. We see that between the 5th and 95th percentile there are
many wavelengths that arise with a significant probability.
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Table 5. Percentiles of the dominant wavelength distribution.

Percentile 5 25 50 75 95

Wavelength 555 560 565 568 572

Inspection of the threshold values in Figure 15 shows that the threshold values increase
with the wavelength in this part of the spectrum. This is shown more concretely in Figure 16,
where one may see a very distinct trend in (roughly) the 5–95th percentile interval of the
wavelength distribution. Outside this interval, the events in every wavelength are too few;
hence, the (plotted) mean value of the threshold fluctuates a lot even over 5000 simulations.
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The simple (monotonic) trend shown in Figure 16 facilitates the definition of a clas-
sification index for the noisy data and the choice of the decision boundary to form a
classification criterion. We may define the index as the average of mean ρ-ratios over
the interval containing the representative wavelengths, 555–572 nm. We formalize this in
Equation (6):

Index570= mean ρ-ratio(555− 572 nm) < 1.17 (6)

Then, choosing the decision boundary from the thresholds of the smaller wavelengths
(smaller thresholds), we will have great precisions (few false positives) but relatively low
recall (low success rate in the identification of positives). If, on the other hand, we choose
the decision boundary from the thresholds of the larger wavelengths (larger thresholds)
and particularly the value 1.17 corresponding to the 95th percentile of the wavelength
distribution, a nice balance between the magnitudes of the classification scores is attained.
The very good performance of this criterion is given in Table 6.

Table 6. Statistics of classification parameters for the Index570 < 1.17 criterion over the ensemble.

Score Mean Value Standard Deviation

Accuracy 0.988 0.009
Precision 0.988 0.012

Recall 0.988 0.013
F1 score 0.988 0.009

3.5. The Red Edge

Our analysis in Section 2 suggests that classification in the red edge part of the spec-
trum could be carried out, with a high degree of success, by mere visual inspection, at least
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in the given dataset. We would like to systematize this analysis and, hence, quantify its
performance for this observation. We shall perform that by using decision tree classification.

Indeed, applying this method to the mean ρ-ratio curves for 680–760 nm, we find that
there is a dominant wavelength (with an importance of 0.91) at 731 nm. Figure 17 provides
a visualization of this decision tree. We see that depth 3 is required in the case of the red
edge. The threshold of the dominant value comes at 1.065. The obtained model returns
classification scores of 1.0 in the validation set. This information is summarized in Table 7.
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Table 7. Classification parameters for red edge using decision trees.

Parameter Mean Value

Accuracy 1.0
Precision 1.0

Recall 1.0
F1 score 1.0

Dominant wavelength 731
Threshold 1.065

Next, we investigate the effects of noise applying the same analysis in its element of
the ensemble of simulated reflectance signatures. The mean values of the classification
scores on the validation set attain a peak for tree depth 3; hence, we stop there, and in what
follows, we quote these results. For more stable statistical results, we again use an ensemble
of 5000 simulations. The statistics of the performance of the decision tree model are shown
in Table 8. The obtained classification scores are ~91%. Overall, one may conclude that
using indices in the red edge regime of the spectrum is expected to be less effective than
within the visible spectrum.

Table 8. Statistics of classification parameters for the decision tree method.

Parameter Mean Value Standard Deviation

Accuracy 0.913 0.049
Precision 0.917 0.048

Recall 0.913 0.049
F1 score 0.913 0.049

Dominant wavelength 728 5
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The distribution of the dominant wavelength (whose importance is always greater
than 0.79) is shown in the histogram in Figure 18. On top of every bar of the histogram is
the mean value of the threshold for that wavelength. The wavelength distribution has a
mean ± standard deviation at 728 ± 5 nm. The interval 728–731 nm can be regarded as
representative. Certain percentiles of the distribution are given in Table 9.
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Figure 18. Histogram of the dominant wavelengths’ values for the 5000 simulations from the red
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Table 9. Percentiles of the dominant wavelength distribution.

Percentile 5 25 50 75 95

Wavelength 720 726 729 731 735

Thresholds are plotted against the corresponding wavelength in Figure 19. There
is again a strong trend, as we also saw in the visible spectrum analysis, only this time
decreasing. As before, the trend is less clear outside the 5–95th percentile interval due to
fewer events there. The simplicity (monotonicity) of the relationship allows us to easily deal
with the tradeoff between precision and recall in the way we define a classification index
and choose the decision boundary, as it also occurred in the case of the visible spectrum.
Defining the index by the wavelengths of the representative interval and choosing the
decision boundary from the thresholds of the larger wavelengths (smaller thresholds), we
obtain great precision and relatively low recall. Alternatively, choosing the decision bound-
ary from the thresholds of the smaller wavelengths (larger thresholds), and specifically, the
value 1.10 corresponding to the 5th percentile of the wavelength distribution, we again
manage to have a nice balance between the classification scores.
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Indeed, we define the classification criterion as follows:

Index730= mean ρ-ratio(728− 731 nm) < 1.10 (7)

The performance of the criterion in Equation (7) is given in Table 10. As expected, this
method of classification performs less well than the visible spectrum one; the analogous
scores are shown in Table 6.

Table 10. Statistics of classification parameters for the Index730 < 1.1 criterion over the ensemble.

Score Mean Value Standard Deviation

Accuracy 0.927 0.016
Precision 0.924 0.025

Recall 0.933 0.018
F1 score 0.928 0.015

3.6. Interpretation and Classification on Physically Based Modelling (PROSAIL)

The high correlation between degrees of freedom (wavelengths) we have seen in
Figure 10 means that the actual degrees of freedom are actually far fewer than the hundreds
of reflectance values in a reflectance signature. The PROSAIL model produces reflectance
signatures from about a dozen physical parameters modelling the leaves optical properties
and the canopy reflectance properties [38,39]. PROSAIL belongs to a class of radiative
transfer models and allows for a physically based retrieval of the plant properties [40–42].

In this section, we present a preliminary work relating the physical properties of
vegetation and canopy with the A and H classification. We use plausible values and
ranges for the PROSAIL input parameters based on the literature [39,41], which are given
in Table 11.
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Table 11. The values and ranges of the PROSAIL input parameters used in this study. Parameters
with (*) are fitted within the quoted bounds.

Parameter Value

Leaf structure index, N (-) 1.5
Leaf chlorophyll content, Cab* (µg cm−2) 0–100
Leaf carotenoid content, Car* (µg cm−2) 0–30
Leaf dry matter content, Cm (g cm−2) 0.002
Equivalent water thickness, Cw (cm) 0.02
Brown pigment content, Cbrown (-) 0
Leaf anthocyanin content, Cant (µg cm−2) 0
Leaf area index, LAI* (m2 m−2) 0.5–8
Average leaf angle, lidfa* (deg) 20–80
Hot-spot size parameter, hspot (m m−1) 0.1
Soil reflectance, psoil (-)
Sun zenith angle (deg) 0
View zenith angle (deg) 0
Relative azimuth angle (deg) 0

Four variables are allowed to vary: Cab, Car, LAI, and lidfa. Inversion is performed
using the PROSAIL module [43] and standard optimizers of Python libraries. The statistics
of fitting them across the dataset of 107 observations are given in Table 12:

Table 12. Statistics of fitting the PROSAIL parameters across the dataset of observations.

Parameter Mean Value Standard Deviation

RMSE 0.0098 0.0031
R2 0.996 0.004

Scatterplots of the estimated parameters are given in Figure 20, for some of the possible
pairs of parameters. As will be further understood shortly, the leaf chlorophyll content Cab
is the most important and robust parameter, in the sense of being less sensitive to different
choices of parameters than estimated and their assumed bounds (this experimentation
cannot be shown here).

The linear relationship between the Car and Cab parameters known in the literature,
see, e.g., [44], is verified here, although it was not adopted. The highly important leaf
area index (LAI) parameter is estimated to have relatively large values, which is consistent
with the growth stage of the plant [41]. The average leaf angle is estimated to be above
40 degrees for all observations and, in fact, above 55 degrees for the A observations. The leaf
angle proved to be crucial for good fitting of the reflectance signatures. These observations
are consistent with the literature [44].

Inspection of these scatterplots suggests that it is quite meaningful to construct decision
boundaries for and A and H classification, that is, to construct the boundary surface in the
four-dimensional parameter space. Hence, we next turn to decision trees to provide us
with information of that kind.

The four-feature (physical parameters) dataset estimated from the PROSAIL inversion
is labeled with A and H and is split randomly with an 80–20 proportionality into training
and validation sets. Table 13 shows one of the classification scores (accuracy) on the
validation set of the decision tree models built for different depths of the tree. This analysis
is necessary to avoid overfitting and hence avoid drawing non-generalizable conclusions
from the decision boundary. We see that the scores decrease beyond depth 1, that is, beyond
the first split on the dominant variable, which is always the Cab parameter. As we proceed
deeper, the scores do not always change, but the relative importance of the parameters does
change (not quoted here). The importance of Cab is larger than 78% in all cases. This result
means that the construction of a non-trivial boundary surface requires (1) a larger dataset
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and/or (2) more detailed work on the physical parameter constraints (e.g., regarding season
or interdependence) that lies beyond the scope of the present work.
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(a) leaf carotenoid content vs leaf chlorophyll content, (b) lead area index vs leaf chlorophyll content,
(c) average leaf angle vs leaf chlorophyll content, and (d) leaf area index vs leaf carotenoid content.

Table 13. Statistics of accuracy on the validation set for different tree depths.

Decision Tree Depth

Score Depth 1 Depth 2 Depth 3 Depth 4

Accuracy 0.955 0909 0.909 0.909

Hence, physically based classification is expressed in terms of a one-dimensional
decision boundary for the chlorophyll content Cab parameter. That boundary (the threshold
value for the split) is found to be 28 at two significant figures (Figure 21): if the chlorophyll
content of an observed signature is predicted to be lower than 28, then the observation is
classified as H, otherwise, it is classified as A.
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We formalize this statement by introducing a physical index that is equal to the
chlorophyll content in the usual units (µg cm−2). Then, an observation is classified as A if

Indexphys = Cab > 28 (8)

Let us then run this criterion directly over the dataset of the estimated values of the
Cab parameter. Table 14 summarizes the scores found. This index is not as effective as
Index570, but it does have a high enough success rate.

Table 14. Classification scores for Index_phys with decision boundary at 28.1.

Accuracy Precision Recall F1 Score

0.915 0.959 0.870 0.913

Having understood the importance of the Cab parameter, we are in a position to
trace the origin of the nearly mathematically perfect pattern observed in the (rescaled)
reflectance-against-reflectance curves, deduced from the observed reflectance signatures in,
e.g., Figures 6 and 7. To this end, we plot a (rescaled) reflectance-against-reflectance curve
derived from PROSAIL, keeping all parameters the same, except Cab, for which the larger
value is put on the y-axis, as shown in Figure 22. The result is the pattern we have noticed
in the observed curves in Figures 6 and 7.
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4. Discussion

The results obtained here provide some interesting insights regarding the optimum
wavelength for the detection of cropmarks.

The main findings of this work can be summarized as follows:

• Classification is greatly facilitated by normalizing (rescaling) the calibrated reflectance
signatures to the unit interval.

• Reflectance-to-reflectance plots between pairs of rescaled signatures offer a visual
means to identify (with great but not absolute success) the stressed signatures in the
red edge part of the spectrum.

• Two very effective spectral indices (Index570 and Index730) can be defined in a small
band of wavelengths at around 570 and 730 nm, respectively, by dividing the rescaled
reflectance of its observation with that of any other observation in the dataset and
averaging the result per wavelength and per band. The classification criteria for stress
signatures correspond to the indices being less than 1.2 and 1.1, respectively. The
indices operate independently, and the visible spectrum index is more effective than
the red edge one.

• The indices and criteria are found algorithmically using decision tree classification methods.
• The effect of noise in the observed signatures is taken into account by simulating

noise-affected signatures. By deducing and analyzing distributions of the dominant
wavelength (Index) and classification thresholds using decision tree methods, we are
able to formulate the previously defined indices and criteria for noisy signatures. The
proposed methods are shown to be robust with classification scores always greater
than 90%.

• An index based on the physical properties of the leaf and canopy (Indexphys) is intro-
duced by analyzing the estimated parameters of the PROSAIL model obtained from
the observed signatures by inversion. We find that the leaf chlorophyll content Cab is
the dominant classification parameter. For the specific (barley) crop under study, we
find that stressed signatures tend to have Cab values greater than 28 µg cm−2 (with an
over 90% success rate).

It should be noted that the spectral indices are expected to be more robust than
the physically based one, as the former indices are dimensionless and the associated
criteria quantify the tendency of the stressed crop signatures to be smaller than the healthy
crop signatures.

The absence of the near-infrared part of the spectrum in the abovementioned indices
(excluding the red-edge-related index provided in Equation (7)), which is usually used
for the detection of cropmarks, e.g., through the use of the Normalized Difference Vege-
tation Index (NDVI), should be linked directly to the proposed methodology and overall
analysis carried out here, i.e., by normalizing the reflectance curves, the obvious absolute
differences between the spectral signatures observed in the near-infrared part of the spec-
trum (see Figure 3a) are now minimized (see Figure 3b). Nonetheless, the near-infrared
part is involved in the definition of the indices, given that it is used in the rescaling of
signatures, given by Equation (1), as the part of the spectrum where the maximum of the
signatures occurs.

5. Conclusions

This study introduces and analyzes classification indices and criteria (two spectral and
one physical index) of the spectral signatures taken during a complete phenological cycle
over crops, in a controlled environment. This environment was constructed to simulate
cultivate areas with shallow buried archaeological remains. The main findings of this work
were summarized and discussed above.

It is important to highlight that the findings from the presented analysis of the crop-
marks using physically based models such as those of PROSAIL can be considered quite
novel. To the best of the authors’ knowledge, this is the first study ever to attempt to model
stressed vegetation due to the presence of buried archaeological remains with physical
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properties and modelling. The overall results are quite interesting as the model depicts the
most significant parameters that affect the formation of cropmarks in the specific area, and
especially the Cab. One may argue that the soil-associated parameters are less significant
as the areas compared between H and A measurements were in very close proximity. Even
though these findings can be considered peculiar, i.e., for the specific soil context, similar
studies in other environments might reveal potential comparisons.

The novel indices proposed in this study are targeted for hyperspectral data. Never-
theless, it should be noted that such hyperspectral data beyond ground spectroradiometers
used in the study are quite rare with lower spatial resolution. In contrast, there is a plethora
of multispectral satellite, aerial and low-altitude sensors that are widely used for archaeo-
logical purposes. Therefore, future directions could be to downscale the results moving
from hyperspectral to multispectral bands, which might have a more practical meaning for
studying archaeological areas. Additionally, systematic theoretical analysis of observations
from different controlled environments, e.g., different locations, crops, methods of cultiva-
tion, etc., is required, to establish methods that allow us to analyze real-world applications
and archaeological areas.
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