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Abstract: Hyperspectral images (HSI) find extensive application across numerous domains of study.
Spectral superresolution (SSR) refers to reconstructing HSIs from readily available RGB images
using the mapping relationships between RGB images and HSIs. In recent years, convolutional
neural networks (CNNs) have become widely adopted in SSR research, primarily because of their
exceptional ability to extract features. However, most current CNN-based algorithms are weak in
terms of extracting the spectral features of HSIs. While certain algorithms can reconstruct HSIs
through the fusion of spectral and spatial data, their practical effectiveness is hindered by their
substantial computational complexity. In light of these challenges, we propose a lightweight network,
Transformer with convolutional spectral self-attention (TCSSA), for SSR. TCSSA comprises a CNN-
Transformer encoder and a CNN-Transformer decoder, in which the convolutional spectral self-
attention blocks (CSSABs) are the basic modules. Multiple cascaded encoding and decoding modules
within TCSSA facilitate the efficient extraction of spatial and spectral contextual information from
HSIs. The convolutional spectral self-attention (CSSA) as the basic unit of CSSAB combines CNN
with self-attention in the transformer, effectively extracting both spatial local features and global
spectral features from HSIs. Experimental validation of TCSSA’s effectiveness is performed on three
distinct datasets: GF5 for remote sensing images along with CAVE and NTIRE2022 for natural images.
The experimental results demonstrate that the proposed method achieves a harmonious balance
between reconstruction performance and computational complexity.

Keywords: hyperspectral image; spectral superresolution; transformer; convolutional neural network;
self-attention

1. Introduction

Hyperspectral sensors fully explore the spectrum of an object based on the fine res-
olution of the radiation and perform hyperspectral imaging. A hyperspectral image has
hundreds of consecutive spectral channels along the wavelength direction for recording
detailed spectral features. Due to the different spectral characteristics of various materials,
hyperspectral imaging techniques can be used to distinguish different materials at the
pixel level. The rich spectral information of HSIs enhances their efficacy across a spectrum
of remote sensing applications, including categorization of images [1], identification of
targets [2], and segmentation tasks [3], which are gaining increasing attention.

Owing to constraints inherent in the HSI imaging principle, hyperspectral imaging
devices operate within a narrow spectral band and receive relatively less photon energy.
In order to capture a broader range of object and surface features, a large field of view
is necessary to gather an ample amount of photons, which in turn influences the spatial
resolution of the resulting HSIs. Consequently, achieving high spatial and spectral reso-
lutions simultaneously in HSIs is a challenging task. In general, HSI imaging achieves
high spectral resolution by sacrificing spatial resolution [4]. It should be mentioned that
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hyperspectral imaging devices are expensive and challenging to operate. In contrast, RGB
images with high spatial resolutions are easier to collect and at a low cost. Therefore, it
is an economical option to obtain hyperspectral imagery recovery from RGB images via
spectral superresolution (SSR) [5,6].

The traditional SSR model assumes that HSIs reside within a low-dimensional sub-
space, employing mathematical models to correlate RGB images with coordinates within
this subspace. For example, Arad et al. [7] utilized the hyperspectral prior in crafting a
sparse hyperspectral feature dictionary, alongside its associated sparse RGB projection dic-
tionary. Heikkinen [8] constructed estimation models using spectral subspace coordinates
by means of Gaussian processes. Gao et al. [9] reconstructed HSIs by a joint low-rank and
dictionary learning approach and sparsely encoded the resulting dictionary to infer and
recover unknown HSI information over a larger coverage. Akhtar et al. [10] extracted
overlapping regions from RGB images, aligning them with the hyperspectral training set
through spectral transformation to generate the reconstructed HSIs.

With the proliferation of accessible hyperspectral data, there has been increasing
attention towards reconstruction methods employing shallow neural networks. Jia et al. [11]
introduced a manifold-based learning and 3D embedding approach for reconstructing HSIs
using only an RGB image acquired by a commonly available camera equipped with a
known spectral response. Aeschbacher et al. [12] introduced an A+ shallow network [13]
that used local Euclidean distances in the spectral space to calculate a projection matrix
from RGB values to HSI values. Nevertheless, these methods demonstrate proficient
reconstruction outcomes exclusively in certain scenes and datasets, thereby exhibiting
constrained feature extraction capabilities and inadequate generalization aptitudes.

Because convolutional neural networks (CNNs) can effectively construct nonlinear
maps, many CNN-based SSR methods have been proposed [14–16]. CNNs have strong
feature extraction and expression capabilities, and have demonstrated remarkable achieve-
ments in the field of SSR. Although CNN-based methods can improve the obtained SSR
effectiveness to a certain extent, most CNN-based models are sensitive to local information
and have limited ability to perceive global information. These models frequently stack
layers using convolutional operations without considering the network’s depth, leading
to an abundance of parameters and significant computational demands. Consequently,
the practical applicability of these techniques is limited.

Transformers were first proposed in [17] to solve translation tasks performed by ma-
chines in natural language processing, yielding excellent results. Subsequently, researchers
have applied transformers in the hyperspectral direction, proposing several methods for
spectral superresolution [18,19]. A standard transformer module comprises a self-attention
mechanism and a multi-layer perceptron. The self-attention mechanism is the core com-
ponent of a transformer. Transformers have unique advantages over CNNs in the realm
of computer vision [20,21]. They decrease reliance on external data and exhibit superior
capability in capturing the intrinsic correlations within features. Consequently, trans-
formers have found extensive application in the domain of computer vision and received
increasing attention due to their powerful global information modeling ability. For this
reason, the combination of transformers and CNN would be more efficient for extracting
the characteristics of HSIs.

Accordingly, we propose a lightweight HSI reconstruction network, namely, Trans-
former with Convolutional Spectral Self-Attention (TCSSA). The network comprises both a
CNN-Transformer encoder and a CNN-Transformer decoder, with CSSA blocks serving
as the fundamental module. Unlike conventional U-shaped networks, TCSSA first uses
a 3 × 3 convolution to sample feature maps of RGB images in the spectral dimension into
the CSSAB to obtain multiscale encoding and decoding features for HSIs. Meanwhile,
resampling the spectral dimensions can effectively reduce the computational complexity.
Then, the obtained encoded and decoded features are concatenated to leverage the com-
prehensive information spanning both spatial and spectral domains. As is well known,
the spectra of HSIs are highly correlated between consecutive bands; meanwhile, the spatial
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information is strongly correlated with neighboring regions and weakly correlated with
more distant regions. To extract spatial texture and global spectral correlations of HSIs
more efficiently, we combine convolutions and self-attention in the transformer to design
the CSSA, which is the basic unit of the CSSABs. Convolutions are used to extract spatially
local features. Afterwards, self-attention is calculated across both spatial and spectral
dimensions to effectively capture the spatial details and spectral characteristics of HSIs. As
illustrated in Figure 1, the proposed TCSSA achieves a trade-off between reconstruction
accuracy, multiply–add operations (MAdds), and parameters.
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Figure 1. Comparison of our proposed TCSSA model with other SSR models using the CAVE dataset.
The horizontal axis represents multiply–add operations (MAdds), while the vertical axis depicts
peak signal-to-noise ratio (PSNR). The points in the figure are labeled as the number of parameters.
Our TCSSA approach exhibits a better tradeoff between its computational complexity (numbers of
parameters and MAdds) and PSNR.

(1) We propose an SSR network based on a combination of transformers and CNN.
The network consists of multiple cascaded encoders and decoders that can efficiently
extract spatial texture and spectral contextual features from HSIs.

(2) The proposed CSSA, which combines a CNN and a self-attention mechanism, can
compute spatial local self-attention and global spectral self-attention.

(3) The proposed network effectively balances computational complexity with the quality
of reconstruction achieved. The superiority of our approach is demonstrated on one
remote sensing image dataset and two natural image datasets.

The rest of the paper is structured as follows. Section 2 provides an overview of related
work, encompassing CNN-based SSR methods and transformer-based models. Section 3
elaborates on the proposed approach. Section 4 evaluates the effectiveness of our approach
on three datasets. Section 5 provides a detailed discussion of our proposed method. Lastly,
Section 6 summarizes the findings and concludes the paper.
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2. Related Works
2.1. CNN-Based SSR Approaches

With the remarkable achievements demonstrated by CNNs in computer vision [22–24]
and the continuous expansion of HSI datasets, researchers are increasingly turning to CNNs
for SSR. Galliani et al. [25] enhanced a residual network derived from the U-Net architecture,
employing it for spectral reconstruction tasks. This marked the first application of a deep
learning approach to reconstructing HSIs from RGB images, and the authors achieved
unprecedented performance. Their approach is an important node in the development
of SSR. Xiong et al. [26] introduced HSCNN for recovering hyperspectral information
from RGB and spectrally undersampled projections. Subsequently, the authors enhanced
HSCNN by eliminating the upsampling operation and changing the residual blocks with
dense blocks, obtaining an improved model named HSCNN+ [27]. Fu et al. [28] investigated
the influence of camera spectral response (CSR) on hyperspectral image restoration and
introduced a CSR selection layer to identify the most suitable CSR for each hyperspectral
image. Inspired by residual dense networks [29], Zhao et al. [30] designed a multilevel
high-resolution network (HRNet) comprised of residual dense blocks and residual global
blocks to remove image residuals and enhance the perceptual domain, respectively. To
better enhance the spatial resolution of HSIs while preserving their spectral characteristics,
a hybrid convolution and spectral symmetry preservation network was proposed in [31].
Zhang et al. [32] designed a pixel-aware network with different receptive field sizes for
SSR. However, the majority of approaches only emphasize local spatial information, often
overlooking the modeling of spectral information [33,34].

With the development of attention mechanisms [35], many researchers have combined
attention and CNN for SSR tasks. The primary function of an attention mechanism is
to evaluate different dimensions of the input and assign weights to features based on
their importance, thereby emphasizing the influence of significant features on downstream
models [36]. The hybrid 2D–3D deep residual attentional network described in [33] has
the ability to dynamically adjust channel and bandwidth feature responses to enhance
contextual features; this was the first time that an attention mechanism was used for SSR.
Adaptive weighted attention networks [37] reassign feature weights to channel dimensions
by integrating correlations between channels. Li et al. [38] introduced a CNN-based
method combining dual second-order attention and convolutional spectral self-attention
to effectively analyze spatial–spectral information. He et al. [39] introduced a channel
attention module that used trainable parameters to learn the spectral differences in different
bands. Zhang et al. [40] designed a channel attention reconstruction network using a CNN
that efficiently learns the spatial and spectral correlation in HSIs. Although the above
techniques incorporate spectral information into their models, they still have a high level
of parameterization and computational complexity.

2.2. Transformer-Based Models

Vision Transformer (ViT) [41] marked a breakthrough in computer vision tasks by
employing the transformer architecture to process images as sequences, achieving out-
standing performance. It has good scalability and has become a milestone in utilizing
transformers for computer vision applications. Following ViT, researchers have developed
a range of improved methods. To address the deficiency of local information in ViT, Swin
Transformer [42] incorporates a shifted windows operation akin to CNN, enabling self-
attention to be computed within each local window to extract image’s local features and
mitigate computational complexity. Yuan et al. [43] proposed a Tokens-to-Token module
(T2T) that combines neighboring tokens into a single token. T2T is performed iteratively
to continuously aggregate neighboring tokens. Transformer-in-Transformer (TNT) [44] is
designed with two transformer blocks; the outer transformer block captures the global
relationship between the patch embedding, while the inner transformer block focuses on
extracting local structure information from the pixel embedding. To reduce the training
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time, Data-efficient image Transformers (DeiT) [45] introduced a strategy of knowledge
distillation in transformers.

In the hyperspectral direction, Cai et al. [18] proposed a transformer-based method for
HSI reconstruction called Coarse-to-fine Sparse Transformer (CST), embedding the sparsity
of HSIs into deep learning-based algorithms. CST first employs a spectra-aware screening
mechanism (SASM) for coarse patch selection; subsequently, the selected patches are fed
into spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine-grained
pixel clustering and self-similarity capture. To address the issue of underutilized spectral
information and artifacts in the upsampled data, Zhang et al. [19] proposed an efficient
transformer for hyperspectral image superresolution, referred to as ESSAformer. They
introduced a robust and spectral-friendly similarity metric called the Spectral Correlation
Coefficient (SCC) and proposed an efficient SCC-kernel-based self-attention (ESSA), which
reduces attention computation to linear complexity. ESSA enlarges the receptive field
of upsampled features without extensive computation, enabling the model to effectively
utilize spatial–spectral information at different scales, thereby producing more natural
high-resolution images.

2.3. Architectures Combining CNN and Transformer

In an effort to merge the strengths of CNN and transformer architectures, co-scale
Conv-attentional image Transformers (CoaT) [46] were proposed as a conv-attention mod-
ule to exploit convolutions in positional encoding and the relative position embedding
within the factorized attention module to improve computational efficiency. Convolu-
tional ViT (ConViT) [47] investigated the importance of inductive bias in transformers
and explored integrating a CNN and transformer. Aiming to address interpretability is-
sues, the unmixing-guided convolutional transformer network was introduced in [48],
integrating transformer and resBlock components within a paralleled framework. Convo-
lution vision Transformer (CvT) [49] utilizes CNN before computing self-attention, which
can provide the model with the advantages of CNNs in terms of translation, scaling,
and deformation invariance. LocalViT [50] and Pyramid Vision Transformer (PVT v2) [51]
add depthwise convolution to extract local information by using a CNN after computing
self-attention. Lite Vision Transformer (LVT) [52] combines both self-attention and convolu-
tions by exploiting local self-attention in a kernel of size 3 × 3. Restoration Transformer
(Restormer) [53] uses CNN to aggregate local information before calculating self-attention
and obtains the global spectral features by computing cross-channel covariance matrices
in the spectral dimension. EdgeNeXt [54] uses depthwise convolution and cross-channel
self-attention to capture multiscale spatial and spectral features from images.

The above methods are not applicable to SSR tasks. Extracting the spatial texture
features via CNN lacks the ability to capture the local spatial self-similarity. Unlike the
above methods, TCSSA first utilizes 3 × 3 grouped convolution as the linear mapping
operation and extracts the local spatial features. Afterwards, local spatial and global
spectral self-attention are computed in the spatial–spectral dimension to effectively grasp
the local spatial similarity and global spectral similarity of the HSIs.

3. Proposed Method
3.1. Architecture of TCSSA

Let X ∈ RH×W×3 denote an RGB image and let Y ∈ RH×W×C denote the correspond-
ing HSI reconstructed from X. Here, C represents the number of channels in the HSI
while W and H denote its width and height, respectively. Reconstructing HSIs from RGB
images poses a significantly ill-posed challenge, particularly when C assumes large values.
The SSR problem can be expressed as follows:

AY = X, (1)

where A ∈ R3×C represents the transition matrix from Y ∈ RHW×C to X ∈ RHW×3, while X
and Y are the matrices unfolded from X and Y.



Remote Sens. 2024, 16, 1688 6 of 20

The proposed TCSSA is mainly composed of a CNN-Transformer encoder and a
CNN-Transformer decoder, as illustrated in Figure 2, TCSSA operates with X as its input;
after the action of multiple cascaded encoders and decoders, it then outputs Y with rich
spectral information.
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Figure 2. The structure of the proposed TCSSA, primarily comprising a CNN-Transformer encoder
and a CNN-Transformer decoder.

3.1.1. CNN-Transformer Encoder

The initial step involves passing the provided RGB image X through a 3 × 3 con-
volutional layer to capture low-level features. The obtained feature map adds a skip
connection before entering the encoding module to ensure the preservation of the founda-
tional characteristics inherent in the RGB image. The encoding module E, comprising a
3 × 3 convolutional layer and a CSSAB, is capable of extracting profound spatial and spec-
tral contextual features. The output from the k-th encoding module can is formulated as

Fk = E(Fk−1) k ∈{1, · · · , n}, (2)

where n represents the total count of encoding modules. When k = 1, F0 ∈ RH×W×C

represents the input of the first encoding module; when k ∈ {2,· · · , n}, Fk−1∈ RH×W×Ck−1

and Fk ∈ RH×W×Ck represent the input and output of the k-th encoding module, where
Ck−1 and Ck denote the number of channels of Fk−1 and Fk, respectively. After each
encoding module, a skip connection is introduced to preserve deep spatial and spectral
information by linking the output of the k-th encoding module with the input of the
(n − k + 1)-th decoding module.

3.1.2. CNN-Transformer Decoder

After the output of the CNN-Transformer encoder, we incorporate a 3 × 3 convolu-
tional layer as an intermediate transition layer to perform feature mapping before pro-
ceeding to the CNN-Transformer decoder. Then, the deep spatial and spectral information
extracted by the CNN-Transformer encoder is decoded by n decoding modules. Each decod-
ing module D includes a spectral downsampling layer, a CSSAB, and a 3 × 3 convolution.
The expression for the output from the k-th decoding module is as follows:

Tk =

{
D(T0) k = 1
D(Cat(Tk−1,Fn−k+1)) k ∈ {2,· · · , n}

. (3)

When k = 1, T0 represents the input of the first decoding module. When k ∈ {2, · · · , n},
Tk−1 and Fn−k+1 are concatenated (Cat) to obtain the input of the k-th decoding mod-
ule, outputting Tk, which is in the dimension of H × W × Cn−k+1. Tk is concatenated
with Fk to generate an augmented feature representation. In the end, Tn undergoes a
3 × 3 convolutional operation to produce the decoded feature map. The recovered HSI is
obtained by summing the feature map and F0.
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3.2. CSSAB

The convolutional spectral self-attention block (CSSAB) is depicted in Figure 3. First,
skip connections are introduced to alleviate information loss, followed by the extraction
of vital features from the spatial and spectral dimensions of HSI using CSSA. The result-
ing output passes through a normalization layer, a Gaussian Error Linear Unit (GELU)
activation function, and 1 × 1 convolution to obtain the feature maps. Efficient channel
attention (ECA) [55] is employed for learning the weights of each channel. Initially, ECA
conducts spatially averaged pooling on the input, yielding a vector with dimensions of
1 × 1 × C. Subsequently, it employs one-dimensional convolution to acquire the channel
weight coefficients. The obtained weight vector is passed through a sigmoid activation
function, and the resulting output is utilized to modify the channel weights by element-wise
multiplication with the skip connection output. After passing through a GELU activation
function and a 1 × 1 convolution, the feature map corresponding to the adjusted channel
weights is combined with the skip connection output, resulting in the generation of the
final high-dimensional feature map.
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Figure 3. Illustrations of CSSAB and CSSA.

3.3. CSSA

Convolutional operations are particularly effective in capturing the spatial contextual
intricacies of images [56]. Therefore, this paper proposes a CSSA mechanism, as shown
in Figure 3. Given a normalized tensor X̂ ∈ RH×W×C, the dimension of X̂ is extended
to HW/s × q2C by the un f old function [57], where q and s represent the scale of the
sliding window and stride in the un f old function, respectively. The un f old function is
utilized for extracting sliding local blocks from a batch of input tensors, resulting in a
two-dimensional output tensor. We use X̃ ∈ RHW/s×q2C×1×1 to denote the tensor after the
reshaping operation. Then, 3× 3 group convolutions are applied to compute the projections
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of the query (Q), key (K), and value (V). The input tokens Q = X̃
q
, K = X̃

k
and V = X̃

v
of the

attention function can be generalized as

X̃
q,k,v

= Conv(X̃), (4)

where Conv represents the grouped convolution operation. Subsequently, Q, K, and V are
segmented into N heads, with each segment organized along the spectral dimension. Next,
the L2 norm of Q and K is calculated to make the model more stable during training. We
perform a dot product operation across the spatial–spectral dimension between K and QT

to produce an attention matrix of dimension HW/s × C × C. Subsequently, this matrix is
fed into the So f tmax function to obtain the softmax-scaled attention score matrix M. The
following represents the attention mechanism, labeled as Attention:

Attention(Q, K, V) = V · M · α (5)

where α is the learnable weight coefficient. After the Reshape and f old functions, the di-
mensions of Attention(Q, K, V) are HW/s × q2C and H × W × C. The f old function is
the inverse of the un f old function. Finally, the output is obtained by adding the position
embedding that is learned by the convolutional network.

4. Experiments
4.1. Datasets and Evaluation Metrics
4.1.1. Remote Sensing Image Dataset

We created a remote sensing image dataset named GF5, which contains Chinese
Gaofen-5 satellite images. The dataset is accessible at http://jiasen.tech/ on 1 June 2024.
HSIs in GF5 have a variety of scenes, such as urban, mountain, farmland, river, lake,
harbors, etc. Figure 4 shows ten examples of different scenarios from the GF5 dataset.
The original HSIs were calibrated to digital numbers (DNs) in the range of 0–65,535 with
a spectral range of 390–1035 nm in 150 bands at a spectral resolution of 5 nm. The RGB
images were thumbnail images in Gaofen-5 production. All images in GF5 were normalized
to [0, 1] using the min–max normalization method. The spatial size of HSIs and RGBs were
readjusted to 256 × 256, resulting in a total of 1715 image pairs, with 1500 pairs randomly
chosen as the training data, 50 pairs as the validation data, and 50 pairs as the test data.

Figure 4. Ten example scenes of remote sensing images in the GF5 dataset displayed in RGB.

4.1.2. Natural Image Datasets

We also select two public natural image datasets CAVE [58] and NTIRE2022 [59],
to assess the efficacy of the proposed TCSSA.

CAVE contains 32 sets of paired RGB-HSI images, with each HSI featuring spatial
dimensions of 512 × 512 and 31 consecutive spectral bands ranging from 400 nm to 700 nm
at intervals of 10 nm. We standardized all images in CAVE to fall within the range of [0, 1]

http://jiasen.tech/
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using the min–max normalization technique. Next, one image from each scene was chosen
as the test dataset, while the remaining images were designated as the training dataset.

NTIRE2022 is the dataset that was used for the 2022 Spectral Reconstruction Competi-
tion. The scenes in this dataset are very diverse. The dataset comprises 1000 paired images,
with 900 designated for training, 50 for validation, and another 50 for testing purposes. As
the test data are not public available, we utilized the validation images for evaluating our
model. The original HSIs consist of 204 spectral bands spanning wavelengths from 400 to
1000 nm. Each image was resampled to 31 spectral bands with wavelengths from 400 nm
to 700 nm, with a 10 nm interval between each band. The spatial dimensions of each image
are 482 × 512.

4.1.3. Evaluation Metrics for SSR

In this paper, we chose various evaluation metrics on different datasets to assess the
proposed method. The performance of TCSSA on the NTIRE2022 dataset was quantitatively
evaluated using the root mean square error (RMSE), mean relative absolute error (MRAE),
peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) [60].
The evaluation metrics used on the CAVE and GF5 datasets were RMSE, PSNR, spectral
angle mapping (SAM) [61], and SSIM.

Greater PSNR and SSIM values correlate with reduced MRAE, SAM, and RMSE,
suggesting superior performance. The formulas for MRAE and RMSE are as follows:

MRAE =
1

MN

M

∑
i=1

N

∑
j=1

(
|Gij − Hij|

Gij
) (6)

RMSE =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(Gij − Hij)2 (7)

PSNR = 20 · log10

(
1

RMSE

)
(8)

SSIM =
(2µGµH + c1)(2σGH + c2)

(µ2
G + µ2

H + c1)(σ
2
G + σ2

H + c2)
(9)

SAM = cos−1

 ∑M
i=1 ∑N

j=1(GijHij)√
∑M

i=1 ∑N
j=1(G

2
ij)∑M

i=1 ∑N
j=1(H2

ij)

 (10)

where Gij and Hij represent the value of the j-th pixel value in band i of the ground truth
and the reconstructed HSI, respectively, M is the total number of bands, and N is the
total number of pixels in the image. In the formula for calculating SSIM, µG, µH , σG,
and σH represent the mean and standard deviation of the ground truth image and the
reconstructed HSI, while σGH represents the covariance between the ground truth image
and the reconstructed HS and c1 and c2 are small constants used for numerical stability.

4.2. Implementation Settings

The paired RGB images and HSIs in GF5, CAVE, and NTIRE2022 were all cropped
to 128 × 128 for training. The training batch size was 20 and n was set to 3. As proposed,
the TCSSA model undergoes optimization utilizing the Adam optimizer with specific
parameters: beta1 = 0.9, beta2 = 0.99, and epsilon = 10−8. The initial learning rate was
established at 0.0004, with training concluding after 250 epochs on GF5 and NTIRE2022
datasets and 100 epochs on CAVE. The PyTorch framework was utilized for all experiments,
leveraging the computational power of an NVIDIA A40 GPU and an Intel(R) Xeon(R) Silver
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4314 CPU. The optimization strategy in this research revolves around employing MRAE as
the loss function, which provides a quantitative assessment of the disparity between the
ground truth and the reconstructed HSI.

4.3. Comparisons With State-of-the-Art Methods

The effectiveness of the proposed TCSSA model was evaluated against six state-
of-the-art methods: HSCNN+ [27], FMNet [32], HRNet [30], EDSR [62], HSACS [38],
and ESSAformer [19] across the GF5, CAVE, and NTIRE2022 datasets. HSCNN+, FMNet,
and HRNet represent three established deep learning-based SSR methods in the comparison,
while EDSR is a spatial superresolution model and HSACS is a state-of-the-art SSR method
based on a deep hybrid 2D–3D CNN.

4.3.1. Quantitative and Visual Results Obtained on GF5

The GF5 dataset contains remote sensing images that have complex spatial information
and 150 spectral bands, which makes them more difficult to restore from RGB images.
The proposed method, along with other state-of-the-art approaches, was applied to the
validation and test datasets from GF5. The quantitative results are showcased in Table 1.
The results obtained from the validation data indicate that TCSSA surpasses the other SSR
methods across all four evaluation criteria. On the test data, HRNet slightly outperforms
TCSSA in terms of the SSIM metric, while TCSSA outperforms the other SSR methods in
RMSE, PSNR, and SAM metrics.

Table 1. Quantitative results of different methods on both validation and test data in GF5. The optimal
outcomes are emphasized in bold.

Models
GF5 (Validation) GF5 (Test)

RMSE (↓) PSNR (↑) SAM (↓) SSIM (↑) RMSE (↓) PSNR (↑) SAM (↓) SSIM (↑)

HSCNN+ [27] 0.0369 30.72 3.53 0.9115 0.0349 30.12 3.29 0.9112
EDSR [62] 0.0244 32.76 3.60 0.9274 0.0278 31.69 3.46 0.9216

FMNet [32] 0.0227 33.45 3.21 0.9333 0.0281 31.78 3.24 0.9256
HRNet [30] 0.0211 34.06 3.00 0.9371 0.0232 33.32 2.85 0.9340
HSACS [38] 0.0209 34.23 3.15 0.9338 0.0234 33.29 3.00 0.9293

ESSAformer [19] 0.0205 34.33 3.15 0.9353 0.0213 34.11 3.00 0.9331
Ours 0.0201 34.49 2.94 0.9374 0.0212 34.19 2.81 0.9324

To analyze the reconstruction results across various bands, we compared the absolute
error maps of seven distinct bands from a sample image in the GF5 test dataset, as depicted
in Figure 5. The wavelengths of seven bands are 428 nm (band 10), 514 nm (band 30),
600 nm (band 50), 685 nm (band 70), 771 nm (band 90), 856 nm (band 110), and 942 nm
(band 130). The image contains a variety of features, such as buildings, rivers, farmlands,
and oceans, which bring a great challenge to the SSR task. For band 10 reconstructed by
HSACS and our method, there is nearly no difference between the recovered band and
ground truth. The model’s reconstruction performance notably surpasses that of HSACS
and FMNET and other algorithms, particularly on bands 30, 50, and 70. Due to the longer
wavelengths of band 90 and band 110, the reflectance of different objects varies greatly,
which makes spectral reconstruction difficult. It is noteworthy that there is a significant
disparity in the reconstruction results of the river, building, and estuary areas across
different methods. The performance of TCSSA in these regions is still superior to that of
the other SSR methods. Two images with different scenes were selected from the validation
dataset of GF5 to evaluate the performance of the proposed TCSSA on real-world data,
with the results shown in Figure 6. Four locations with different land covers are labeled in
blue, red, yellow, and green colors on the images. We plotted the real spectral curves of the
four locations and the spectral response curves reconstructed by TCSSA. As seen from the
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figure, the spectral fidelity of the four reconstructed ground features is excellent, indicating
the superior spectral reconstruction capability of our method.
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Figure 5. Qualitative results of an example image from the test data in GF5. The top row displays the
restored true-color RGB composites of bands 50 (600 nm), 30 (514 nm), and 10 (428 nm) by all methods
and ground truth. The second to eighth rows are the results of absolute error maps corresponding to
seven reconstructed spectral bands at different wavelengths and ground truth. The MAE value on
the top right corner of each absolute error map represents the mean absolute error of that map.
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Figure 6. (a,d) are two scenes from the validation data in GF5, while (b,c) are the spectral curves of
the blue and red points in (a) and (e,f) are the spectral curves of the yellow and green points in (d).
The solid and dashed lines represent the ground truth and the spectral signature recovered by the
proposed method.

4.3.2. Quantitative and Visual Results Obtained on CAVE and NTIRE2022

Table 2 presents the quantitative evaluation results obtained on the natural image
datasets. On the CAVE dataset, TCSSA achieves a reduction of 0.23 in RMSE and 0.48 in
SAM while increasing SSIM by 0.0047 and PSNR by 0.41 dB compared with the HSACS
method. Compared with the classic HSCNN+ and HRNet approaches on the NTIRE2022
dataset, TCSSA reduces the MRAE by 0.2043 and 0.1761 and improves PSNR by 7.13 dB and
6.14 dB. Our approach achieves superior performance compared to the other six methods
on the test data in CAVE and the validation data in NTIRE2022.

Table 2. Quantitative results of different methods on the test data in CAVE and validation data in
NTIRE2022. The optimal outcomes are emphasized in bold.

Models
CAVE NTIRE2022

RMSE (↓) PSNR (↑) SAM (↓) SSIM (↑) MRAE (↓) RMSE (↓) PSNR (↑) SSIM (↑)

HSCNN+ [27] 0.0389 29.47 7.17 0.9583 0.3849 0.0585 26.29 0.8281
EDSR [62] 0.0225 34.05 7.64 0.9753 0.3637 0.0524 27.01 0.8676

FMNet [32] 0.0220 33.87 7.59 0.9771 0.3377 0.0482 27.69 0.8743
HRNet [30] 0.0220 34.34 6.99 0.9779 0.3567 0.0528 27.28 0.8520
HSACS [38] 0.0216 34.44 6.47 0.9779 0.1843 0.0276 33.17 0.9446

ESSAformer [19] 0.0216 33.57 6.91 0.9796 0.2847 0.0309 31.29 0.9492
Ours 0.0207 34.85 5.99 0.9826 0.1806 0.0269 33.42 0.9470

To assess the perceptual quality of the proposed TCSSA, we present the mean absolute
error map between the reconstructed image (Fake and Real Lemons) and the ground truth
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in CAVE in Figure 7. The error map of HSCNN+ has the most errors, which are concentrated
around the fake lemon (left). The band recovered by our method closely resembles the
ground truth and outperforms the other methods. Additionally, we selected four points
within the lemons, and their spectral curves, reconstructed by our method, are illustrated
in Figure 8. It is evident that the four spectral responses are all approximately the same as
the responses of the ground truth. In summary, our method concurrently restores both the
spatial and spectral detail of the image.

HSACSFMNet HRNetEDSRHSCNN+ OursESSAformer

Figure 7. Qualitative results of lemons in CAVE. The top row exhibits reconstructed images at band
31 obtained from different SSR methods, while the bottom row displays the corresponding mean
absolute error maps.
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Figure 8. (a) RGB image of Fake and Real Lemons in CAVE with four selected points. (b) The spectral
curves of four points obtained by our method and the ground truth are plotted by the dashed lines
and solid lines, respectively.

Figure 9 shows the qualitative results on the NTIRE2022 dataset. We selected six im-
ages from the validation data and compared the error maps of the SSR results. It can be
seen that the competing methods retain considerable texture information. Our method has
the minimum reconstruction error, which implies that the proposed TCSSA achieves good
performance in recovering the hyperspectral bands.
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Figure 9. Qualitative results of six example images from the validation data in NTIRE2022. The initial
row displays the RGB images, while the subsequent rows (second to eighth) depict the absolute
error maps corresponding to different SSR methods. The MAE value on the top right corner of each
absolute error map represents the mean absolute error of that map.

To further compare the outcomes of various methods, we selected four RGB images
from the NTIRE2022 dataset in which one random location in each of four images is labeled
by a red dot, as shown in Figure 10. Displayed on the right, spectral response curves depict
the comparison between the reconstructed results from all methods and the ground truth
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for these positions. It can be observed that the spectral curve reconstructed by TCSSA
closely resembles the ground truth curve compared to other methods. This can be attributed
to TCSSA’s capability to learn global spectral self-attention and retain intricate spectral
details within the image.

Figure 10. (a1–d1) The top row displays four RGB images selected from NTIRE2022. (a2–d2)
Below are the spectral curves corresponding to the marked red dot in the four RGB images obtained
through different SSR methods.

Table 3 demonstrates the number of parameters (Params), the number of multiply-add
operations (MAdds), the memory footprint (Memory), and the test time achieved by all
SSR methods on the test data of CAVE. Params, MAdds, and Memory can reveal the
computational complexity of different methods. MAdds and Memory were measured
on an image patch with a size of 128 × 128 × 31. The test time of each method was
calculated on six reconstructed HSIs. TCSSA only needs 1.08 M parameters and 14 G
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MAdds, which requires the lowest computational cost among all approaches. Specifically,
params compared to HSACS, FMNet, and HSCNN+ are reduced by 94.53%, 90.82%, and
76.77%, respectively. Regarding the test time, TCSSA runs approximately eight times faster
than HSACS, which is the second best SSR method, and has almost the same time as
EDSR, whereas its reconstruction performance is far from ours. Overall, our proposed
method achieves a tradeoff between reconstructed image fidelity, computational complexity,
and time efficiency.

Table 3. Comparison of computational complexity and test time of different SSR methods. MAdds
and Memory were measured on an image patch with size 128× 128× 31. The test time was calculated
on six reconstructed HSIs in CAVE.

Method Params (M) MAdds (G) Memory (MB) Test Time (s)

HSCNN+ 4.65 152 552 4.82
EDSR 3.77 123 337 1.32

FMNet 11.77 193 512 4.31
HRNet 31.70 82 459 5.91
HSACS 19.73 640 1372 14.27

ESSAformer 15.16 248 1114 7.99
Ours 1.08 14 213 1.78

4.4. Ablation Analysis

To validate the effectiveness of CSSA and to explore the influence of the number n of
encoding modules E in the CNN-Transformer encoder and number of decoding modules D
in the CNN-Transformer decoder, we conducted ablation experiments using the validation
data from NTIRE2022.

4.4.1. Effectiveness of the CSSA

To evaluate the effectiveness of CSSA, which integrates CNN with the self-attention
mechanism in transformer, we conducted ablation experiments comparing two alternative
self-attention mechanisms: convolutional self-attention (CSA) [52] and multi-Dconv head
transposed attention (MDTA) [53]. The results are recorded in Table 4. The backbone was
obtained by eliminating CSSA from TCSSA. Sa, Sb, and Sc denote the models with CSA,
MDTA, and, CSSA, respectively. The performance of Sa, Sb, and Sc exhibits an improvement
in MRAE by 0.0643, 0.0914, and 0.0938, respectively, compared with the baseline Backbone.
Moreover, Sc achieves superior RMSE and PSNR values, underscoring the superiority of
CSSA over CSA and MDTA.

Table 4. Evaluation of our method’s performance with various self-attention modules on the valida-
tion data from NTIRE2022.

Description CSA MDTA CSSA MRAE RMSE PSNR

Backbone ✗ ✗ ✗ 0.2744 0.0390 30.48
Sa ✓ ✗ ✗ 0.2101 0.0316 32.18
Sb ✗ ✓ ✗ 0.1830 0.0298 32.97
Sc ✗ ✗ ✓ 0.1806 0.0260 33.42

4.4.2. Effect of Number N

To analyze the influence of the number of encoding and decoding modules on the
TCSSA performance, we used different n values to conduct the experiments. The results are
recorded in Table 5. Obviously, when n ≤ 3, as the model’s parameter count and MAdds
rise, notable enhancements in performance metrics such as MRAE, RMSE, and PSNR are
evident. When n = 4, the model’s parameter count and MAdds increase approximately
four times compared with the number when n = 3, while the MRAE increases by 0.0268,
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the RMSE increases by 0.0049, and the PSNR decreases by 0.98 dB. Therefore, we chose
n = 3 in the experiments to balance computational complexity and spectral reconstruction
performance.

Table 5. Evaluation of our method’s performance with different values of n on the validation data
from NTIRE2022.

Description Params (M) MAdds (G) MRAE RMSE PSNR

n = 1 0.09 1 0.2434 0.0406 30.02
n = 2 0.28 4 0.2127 0.0312 32.16
n = 3 1.08 14 0.1806 0.0260 33.42
n = 4 4.05 54 0.2074 0.0309 32.44

5. Discussion

TCSSA effectively captures both the local spatial similarity and global spectral simi-
larity of HSIs, leading to promising outcomes in spectral superresolution. However, there
are some limitations present in TCSSA. First, as the proposed method focuses on the re-
construction of spectral channels, the CSSA attention mechanism designed in this study
exhibits less capability in extracting spatial information than spectral information. Second,
in practical applications RGB images often contain some level of noise or contamination.
Our approach does not address this issue. When significant noise or contamination is
present in RGB images, additional processing steps for noise or contamination removal are
necessary to achieve more robust reconstruction results.

6. Conclusions

This paper presents a Transformer-based network with Convolutional Spectral Self-
Attention (TCSSA) for the reconstruction of HSIs from RGB images. The spatial and
spectral information can be efficiently restored through multiple cascaded encoding and
decoding modules. By resampling HSIs in the spectral dimension, TCSSA effectively
reduces the computational cost associated with self-attention calculations within the model.
To establish the mappings between RGB images and HSIs more efficiently, we design a
CSSA mechanism by combining a CNN with self-attention to calculate the spatial local
self-attention and global spectral self-attention. Experimental results on one remote sensing
image dataset and two natural image datasets highlight the superiority and effectiveness
of the proposed approach compared to six state-of-the-art SSR methods. Furthermore,
TCSSA stands out for its efficiency, demanding fewer parameters, MAdds, and testing
time all while maintaining an optimal equilibrium between computational complexity and
SSR efficacy.
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