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Abstract: The efficient and timely identification of oil spill areas is crucial for ocean environmental
protection. Synthetic aperture radar (SAR) is widely used in oil spill detection due to its all-weather
monitoring capability. Meanwhile, existing deep learning-based oil spill detection methods mainly
rely on the classical U-Net framework and have achieved impressive results. However, SAR images
exhibit high noise, blurry boundaries, and irregular shapes of target areas, as well as speckles and
shadows, which lead to the loss of performance in existing algorithms. In this paper, we propose a
novel network architecture to achieve more precise segmentation of oil spill areas by reintroducing
rich semantic contextual information before obtaining the final segmentation mask. Specifically, the
proposed architecture can re-fuse feature maps from different levels at the decoder end. We design a
multi-convolutional layer (MCL) module to extract basic feature information from SAR images, and
a feature extraction module (FEM) module further extracts and fuses feature maps generated by the
U-Net decoder at different levels. Through these operations, the network can learn rich global and
local contextual information, enable sufficient interaction of feature information at different stages,
enhance the model’s contextual awareness, and improve its ability to recognize complex textures
and blurry boundaries, thereby enhancing the segmentation accuracy of SAR images. Compared
to many U-Net based segmentation networks, our method shows promising results and achieves
state-of-the-art performance on multiple evaluation metrics.

Keywords: oil spill detection application; multi-source remote sensing classification system; multi-scale
feature fusion; synthetic aperture radar

1. Introduction

The ocean comprises a vital component of our global ecosystem, exerting a pro-
found influence on global climate and environmental shifts as evidenced by numerous
studies [1–3]. However, marine pollution has escalated into a pressing global concern [4–6],
particularly in the context of oil spills occurring during maritime transportation [7,8]. Oil
spills have the potential to blanket the water’s surface, impeding sunlight penetration
and consequently impairing the photosynthetic processes of aquatic flora. This disrup-
tion can lead to the demise of aquatic vegetation, which subsequently undermines the
stability of the marine food chain. The consequences are not limited to marine life; they
also encompass critical ecosystem functions [9,10]. Furthermore, the presence of toxic
chemicals in spilled oil can cause direct fatality or reproductive impairments in aquatic
fauna, such as fish, when accidentally ingested [11,12]. The resulting substantial decline
in their populations has significant ramifications for the fishing industry. Simultaneously,
hydrocarbons released during oil spills accumulate in the atmosphere, contributing to the
formation of greenhouse gases that trap heat and exacerbate the greenhouse effect. This, in
turn, has far-reaching impacts on human society. Hence, the repercussions of oil spills are
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widespread and profound, affecting the environment, economy, ecology, and public health
on a significant scale [13,14].

Oil spills often stem from incidents involving ships or tankers, ruptured pipelines,
illicit discharges, and the improper disposal of bilge oil residue. Furthermore, accidents
on offshore drilling platforms or within petroleum pipelines can also result in significant
oil leaks [15–17]. Statistics reveal that approximately 380 million gallons of oil are spilled
annually due to natural disasters and anthropogenic activities. Notably, human factors
contribute to roughly 45% of global oil-related environmental pollution from spills, with
transportation-related oil leakage accounting for 5% [18,19]. Oil possesses remarkable
persistence, exhibiting a sluggish degradation rate that necessitates a considerable amount
of time for natural decomposition. Consequently, the environmental implications of an
oil spill can persist for an extended period, posing significant challenges for ecosystem
recovery and restoration, especially in intricate environments like the oceans.

Marine oil spill detection is considered a critically important task in ocean observation.
Effective oil spill monitoring not only aids in the early detection and tracking of potential
pollution sources but also guides emergency responses and measures to alleviate the
adverse impact of oil spill incidents on the environment, economy, and society. Traditional
detection methods require on-site human identification, but such direct contact with oil
poses safety risks [20]. Subsequently, marine detection systems have utilized aircraft and
coast guard units for inspections. While these methods can accomplish the task of oil
spill detection, the issue of high costs has emerged as a concern [21]. With the continuous
advancement of remote sensing technology, people are gradually realizing that using
satellites for marine oil spill detection is a readily available, cost-effective, and low-risk
method. This approach is capable of accurately capturing signs of oil spills, aiding in issuing
early warnings and responding rapidly to potential pollution incidents. By obtaining real-
time data from vast oceanic areas, we can swiftly identify oil spill situations and take
precise measures to mitigate potential environmental and economic risks.

Recently, synthetic aperture radar (SAR) satellite remote sensing has become the
primary method for locating maritime oil spills. This technology utilizes synthetic aperture
radar carried by satellites to efficiently detect oil films on the ocean surface, without
being limited by weather or lighting conditions [22,23]. SAR satellite remote sensing has
numerous advantages compared to technologies such as hyperspectral remote sensing,
visible light remote sensing, and thermal infrared remote sensing [24–26]. Firstly, SAR
satellites utilize radar beams to transmit and receive electromagnetic waves, unaffected
by weather and lighting conditions. They can provide reliable remote sensing data in
all weather conditions, including daytime, nighttime, clear weather, and cloudy weather.
On the contrary, technologies such as hyperspectral remote sensing, visible light remote
sensing, and thermal infrared remote sensing are limited by weather and lighting conditions.
Factors such as cloud cover and atmospheric humidity can cause a significant decline in
the quality of monitoring images. Secondly, SAR satellite remote sensing technology has
higher spatial resolution, which is advantageous for locating oil spill areas, identifying
boundaries, and assessing the extent of oil spills. Meanwhile, visible light remote sensing
and thermal infrared remote sensing technologies generally have lower spatial resolution,
which imposes limitations on the accuracy of subsequent oil spill area detection.

In addition, certain other phenomena on the sea surface can also cause dark areas in
SAR images [27–29], including areas with low wind speed, internal waves in the water,
organic films or biological substances on the water surface, the formation of thin oil slicks,
rainfall, and ocean currents. Simultaneously, SAR images exhibit characteristics such as
high noise levels, unclear boundary definition, and uneven intensity distribution. These
factors could potentially impact the accurate positioning and identification of oil spill
features within the images. A set of SAR example images is depicted in Figure 1. The oil
spill areas displayed in SAR images exhibit irregular shapes, often accompanied by spots,
shadows, and various textures. These visual characteristics could be indicative of oil spills,
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but they could also be influenced by factors such as marine environment, waves, and wind,
which motivates us to develop more effective algorithms for oil spill detection.

Figure 1. SAR example imagery. They come from the PALSAR dataset and the SENTINEL dataset,
which are the two main remote sensing data resources provided by SAR remote sensing technology.
The darker areas indicate potential oil spill zones, while the rest of the areas are non-spill zones.

Fortunately, with the continuous improvement of hardware capabilities, deep learning
technology has made significant advancements, showcasing its immense potential in the
field of image recognition. Generally speaking, the oil spill detection task can be classified
as an image semantic segmentation problem, wherein each pixel in the image is divided
into two categories. One category represents the oil spill area, while the other represents
the non-oil spill area. In this task, the objective is to assign accurate semantic labels to
every pixel in the image, in order to precisely distinguish between the oil spill and non-oil
spill areas. Deep learning models possess exceptional feature extraction and learning
capabilities. Leveraging similar datasets during the training phase, these models can effec-
tively synthesize information inherent in the data and facilitate comprehensive end-to-end
analysis. This methodology obviates the need for the laborious manual feature engineering
steps associated with traditional approaches, enabling the model to autonomously learn
the most discriminative and expressive features from the data.

As a highly efficient visual feature extraction approach, convolutional neural networks
(CNNs) are widely applied in the field of image semantic segmentation. By adjusting
network architectures, numerous variant models have emerged. These variant models
consistently explore innovations in various aspects such as hierarchical structures, loss
functions, and skip connections, with the aim of further enhancing the performance of
segmentation tasks. The FCN [30] employs fully convolutional layers for semantic segmen-
tation, eliminating fully connected layers. This not only reduces the parameter count but
also allows the model to take in input images of arbitrary sizes and produce segmentation
masks of the same dimensions. This enhances the model’s flexibility and generalization
capability. SegNet [31] adopts an encoder–decoder architecture, leveraging multiple layers
of convolution and pooling operations to progressively reduce the size of feature maps
and extract higher-level features. During the encoding phase, features are extracted by
the encoder, while the decoding phase utilizes the decoder to restore features to the input
size. This approach aids in recovering image details, enabling pixel-level segmentation
predictions. U-Net [32] was originally applied in the field of medical image segmentation,
and it offers a richer acquisition of multi-scale information compared to FCN.The unique-
ness of U-Net lies in its U-shaped architecture, which combines encoders and decoders,
enabling the simultaneous capture of both local and global features within images. This
allows U-Net to more accurately recover details and perform finer image segmentation.
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Derived networks from U-Net include Unet++ [33], R2Unet [34], TransUnet [35], AttU-
Net [36] and Swin-Unet [37], among others. These variants build upon the foundation of U-
Net and introduce varying degrees of improvements and extensions. For instance, Unet++
employs a nested architecture enhancement, Swin-Unet integrates the Swin Transformer to
enhance feature extraction, R2Unet introduces a recurrent mechanism, TransUnet combines
Transformer modules, and AttU-Net introduces attention mechanisms. These additions
aim to further optimize feature learning and image segmentation performance within the
networks, enabling these variant architectures to better address diverse types of image
segmentation tasks.

Although these U-Net networks can aggregate features into the deepest feature map
produced by convolution operations, they may ignore rich contextual information contained
in the different-scale feature maps, which may lead to loss of performance. To solve the
above issues, in this paper, we design a novel framework aimed at addressing oil spill
detection tasks. Our proposed model assumes that within the decoding phase of U-Net,
the intermediate layers encompass a substantial amount of information that is crucial for
generating the final segmentation mask. The presence of this information enables the
network to capture the subtle variations in different feature regions of the image more
accurately during segmentation tasks, thereby enhancing the precision and reliability of the
segmentation outcomes. Compared to the previous methods [30–37], our model achieves
promising high scores on metrics: Dice score, HD95, precision, and accuracy. This indicates
that our model demonstrates excellent performance across multiple key evaluation criteria.

The main contributions of this article are as follows:

1. We propose a novel network architecture which extends U-Net framework. By inte-
grating different scale feature information generated at various stages of the decoder,
the model effectively utilizes multi-stage contextual information, thereby significantly
enhancing the accuracy of oil spill area identification in oil spill segmentation tasks.

2. A multi-convolutional layer (MCL) module is introduced to extract crucial feature
information from the input SAR image. By employing the MCL module, we utilize
transpose convolution operations to increase the image dimensions. In contrast to
regular convolution, the MCL enlarges the size of feature maps during the decoding
phase and aids in recovering lost details and spatial resolution. Simultaneously,
it effectively remaps abstract features from the encoder to the decoder, ensuring
comprehensive and accurate feature representation.

3. A feature extraction module (FEM) is carefully designed to integrate feature maps
of varying scales. This module incorporates a channel attention mechanism that can
adaptively adjust the weights of feature maps along the channel dimension. This
process enhances the ability of the proposed model to understand information from
different channels.

4. We conduct extensive experiments on two distinct SAR datasets to verify the per-
formance of the proposed model. And the results show that, compared to existing
semantic segmentation networks, our proposed model achieves the current state-of-
the-art performance.

The remaining sections of this paper are organized as follows: Section 2 introduces
the relevant works about oil spill detection. Section 3 describes the network structure we
propose. In Section 4, we conduct comparative experiments by training different models on
the same datasets, and perform ablation studies on our model architecture. Subsequently,
we discuss and analyze the results of these experiments. Finally, in Section 6, we present
the conclusions of our study and outline the prospects for future research directions.

2. Related Work

In the domain of SAR satellite remote sensing for oil spill detection, there are two
primary research directions. The first one relies on traditional image processing techniques
and feature extraction methods including thresholding, edge detection, texture analysis,
and region growing. These methods extract features such as edges and textures from the
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image to achieve target segmentation and recognition. The second direction leverages deep
neural network models, which can learn high-level latent representations and semantic
information of the images aiding segmentation and recognition. These deep neural network
models can automatically learn complex features and semantic information from the images,
thereby improving the accuracy and robustness of segmentation and recognition.

2.1. Traditional Image Processing Techniques

In earlier studies, researchers widely employed traditional image processing methods,
including thresholding, edge detection, texture analysis, and region growing. Litera-
ture [38] proposed a dual-threshold oil spill image segmentation algorithm, which utilizes
high and low thresholds to extract grayscale information at different levels and performs
segmentation of oil spill regions based on a feature probability function. Ref. [39] presents
a novel oil spill feature selection and classification technique based on a forest of decision
trees. It adopts a framework of a multi-objective problem, aiming to minimize the used
input features while maximizing the overall testing classification accuracy. A self-adaptive
mechanism based on the Otsu method is proposed in [40], combining region growing with
edge detection and threshold segmentation (RGEDOM) for oil spill extraction. In [41], the
classification algorithm combines classification tree analysis and fuzzy logic to process the
data in two stages. Feature parameters are extracted from each segmented dark spot for
oil spill and ’look-alike’ classification, and ranked according to their importance. In [42],
an improved edge detection algorithm based on the Canny algorithm and thresholding
algorithm is proposed to address the issue of high standard deviation statistical distribution
caused by speckle noise in SAR images. In [43], a semi-automatic oil spill detection method
is proposed that does not require manual threshold setting, enabling the extraction of oil
spills in a semi-automated manner. The method utilizes texture analysis, machine learning,
and adaptive thresholding on X-band marine radar images. By combining the region
growing method and multi-scale analysis algorithm, Ref. [44] proposes a technique for
locating dark areas in the ocean that may potentially be oil slicks. The method utilizes
multi-scale analysis with undecimated wavelets to smooth the speckle noise in SAR images
and enhance edges. In the field of traditional machine learning algorithms, the support
vector machine (SVM) method and artificial neural network (ANN) technique are also being
used to detect and recognize oil spill areas. Ref. [45] proposes a generic and systematic
approach based on machine learning-based feature selection methods to select concise
and relevant feature sets for improving oil spill detection systems. Ref. [46] combines
the object-based classification method with Support Vector Machines (SVMs) for oil spill
identification. This method classifies dark patches in SAR images to distinguish oil spill
areas from other similar phenomena. Ref. [47] utilizes artificial neural networks (ANNs)
for image segmentation and classification to distinguish oil spill areas from similar regions.
The core idea is to employ two separate ANNs in a sequential manner. The first ANN is
employed for SAR image segmentation, identifying candidate pixels representing oil spill
features. Subsequently, statistical feature parameters are extracted and used to drive the
second ANN, which classifies the targets as either oil spills or similar phenomena. However,
the above methods often require the manual design and selection of feature extractors,
which are time-consuming and dependent on expert knowledge, and often optimize for
specific scenarios or datasets, with relatively weak generalization ability. Therefore, these
methods have encountered performance bottlenecks in practical applications. Ref. [48]
conducts in-depth research on the characteristics of oil spills and divides them into three
categories: geometric features, physical behavior features, and contextual features. Geomet-
ric features, such as area, perimeter, and complexity, describe the shape and size of the oil
pollution. Physical behavior features, such as average or maximum echo value, standard
deviation of dark areas, or size of surrounding areas, capture the physical properties and
behavior of the oil pollution. Contextual features provide information about the context
of oil pollution in the image, such as the number of other dark areas or the presence of
vessels. Finally, a genetic algorithm is used to identify the feature combinations that are
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most relevant to oil spill detection, helping to improve the accuracy of oil spill detection.
Ref. [49] employs evolutionary algorithms and Bayesian network methods to investigate
the features of SAR images. The author extracts various features from the SAR images,
encompassing geometric, texture, physical, and contextual aspects. In order to determine
the optimal subset of features, the author utilizes eight distinct evolutionary algorithms and
assesses the classification error rates of the generated feature sets using Bayesian networks.
The primary objective is to enhance the precision in discriminating between oil spills and
similar substances.

2.2. Advancements in Deep Learning Technologies

In recent years, deep learning techniques have been receiving widespread attention
and research from numerous scholars due to their end-to-end training approach and
powerful learning capabilities. Ref. [50] proposes a feature fusion network (FMNet) for
the segmentation of oil spill areas in SAR images. It utilizes a threshold segmentation
method to obtain the global features of the SAR image. High-dimensional features are
then extracted from the threshold segmentation results using convolutional operations,
enabling the model to make more accurate decisions. Ref. [51] addresses the issue of the
underutilization of phase information and other polarimetric information in SAR images by
proposing an intelligent oil spill detection architecture based on a deep convolutional neural
network (DCNN). Ref. [52] proposes a Deeplabv3+ semantic segmentation algorithm that
utilizes multiple loss function constraints and a multi-level cascading residual structure.
Ref. [53] addresses the problem of training an oil spill detection model with limited data by
proposing a multi-scale conditional adversarial network (MCAN) comprised of adversarial
networks at multiple scales. The multi-scale architecture comprehensively captures both
global and local oil spill characteristics, while adversarial training enhances the model’s
representational power through generated data. This paper is based on deep learning
neural network technology and proposes a simple and efficient multi-scale fusion strategy
for the feature maps generated at different stages of the decoder in the U-Net architecture.
The strategy involves the re-extraction and fusion of feature maps from different stages,
enabling interaction between contextual information at each stage. This approach provides
a more comprehensive and rich feature representation, leading to better segmentation
results for oil spill regions. In summary, deep learning has gradually replaced traditional
methods in the field of image segmentation due to its powerful feature learning ability, end-
to-end learning approach, powerful generalization ability, improved computing resources,
and continuous progress of algorithms.

3. Methods

In this section, we provide a detailed exposition of the information regarding the SAR
dataset we have employed, along with unveiling the core principles and model architecture
of our proposed method.

3.1. Overall Framework

As U-Net [32] demonstrates remarkable performance in the field of image segmenta-
tion, an increasing number of variant networks based on U-Net are emerging [33–37]. With
the continuous in-depth research into the U-Net architecture, we are increasingly confident
that the decoder-side intermediate feature maps of the U-Net network architecture may
contain abundant contextual information that is highly beneficial for the final segmentation
mask. These feature maps possess multiple scales, with each scale presenting unique char-
acteristics of the image. They have the capability to capture both the global structure and
subtle details of the image. In the segmentation process, they provide strong guidance for
pixel classification and region segmentation, contributing to a more accurate understanding
of the image’s structure and details. Therefore, we believe that harnessing the abundant
contextual information contained in the intermediate feature maps of the U-Net decoder is
crucial for enhancing the accuracy and robustness of image segmentation outcomes.
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Building upon the aforementioned considerations, our objective is to delve into the
exploration of more effective ways to capture image features, aiming to achieve a more
precise segmentation of SAR images. Therefore, we have constructed a model with the
aim of validating the effectiveness of our ideas and methods. As depicted in Figure 2,
this represents the model we have designed following the U-Net architecture. Firstly, we
preprocess the SAR image with dimensions [3, 256, 256], transforming it into a single-
channel grayscale image with dimensions [1, 256, 256], and then input it into the network.
Secondly, in the encoding phase, the U-Net encoder continually extracts features from the
image through multiple layers of convolutional layers while performing downsampling
operations on the image multiple times. This process helps to gradually abstract and
compress the image information, thereby obtaining higher-level feature representations in
preparation for the subsequent decoding phase. With each layer’s processing, the semantic
information and abstraction level of the image progressively enhance, laying the foundation
for more accurate segmentation results. During the downsampling process, we employ
convolution operations with a stride of 2, which effectively reduces the image size. Utilizing
convolutions with a stride of 2 enhances the learning of image feature representation
compared to methods like max pooling. Convolution operations, while downsampling,
retain more image details and contextual information, enabling the capture of valuable
features within the image. This approach diminishes information loss, allowing the model
to more effectively extract task-relevant information from the input image. Thirdly, the
feature maps extracted by the encoder undergo processing by the U-Net decoder. During
this process, we employ shortcut connections to complement and merge feature maps
from different levels of the encoder with corresponding levels in the decoder. This practice
facilitates the mutual exchange of high-level semantic information and low-level detail
information, thus comprehensively capturing image features and contextual information.
Within this process, the upsampling step employs the method of transpose convolution,
using transpose convolution operations to increase the image dimensions. Transpose
convolution, in contrast to regular convolution, enables us to enlarge the size of feature
maps during the decoding phase [54,55]. This approach aids in recovering lost details and
spatial resolution, while effectively reprojecting abstract features from the encoder to the
decoder. As a result, it provides a more precise and accurate feature representation for the
final segmentation outcome.

Fourthly, we extract feature maps from each layer of the decoding stage, with di-
mensions of [512, 32, 32], [256, 64, 64], [128, 128, 128], and [64, 256, 256], respectively.
Immediately following, we pass these feature maps through a feature extraction network
module to further refine their information. Subsequently, we employ bilinear interpolation
to perform upsampling on these feature maps, yielding four single-channel feature maps
named a, b, c, and d, each with dimensions [1, 256, 256]. The bilinear interpolation algorithm
calculates the weighted sum of the pixel values of the four nearest neighboring positions
to the location in a smooth manner to obtain the pixel value at the target position [56] as
illustrated in Figure 3. This method utilizes the linear relationship between neighboring
pixels, enabling more accurate estimation of new pixel values during image enlargement.
The calculation formula is shown as Equation (1):

a = (1 − x) · (1 − y),

b = x · (1 − y), c = (1 − x) · y, d = x · y,

P0 = aP1 + bP2 + cP3 + dP4

(1)
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Figure 2. Overall flow of our model. We input single-channel SAR images into the model. After the
U-Net encoding phase, during the decoding process, we extract the feature maps from each layer
for further feature extraction. As a result, richer contextual information is captured, providing more
valuable information for generating the final segmentation mask.

Figure 3. Bilinear interpolation diagram. Obtain the pixel value at the target position using the
surrounding values of the four nearest neighboring pixels.

Fifthly, we concatenate feature maps a, b, c, and d along the channel dimension to
form a composite feature map with dimensions [4, 256, 256]. Subsequently, this is input to
the feature extraction network module again, resulting in a feature map e with dimensions
[1, 256, 256]. Simultaneously, for feature maps a, b, c, and d, we perform per-pixel binary
voting. Specifically, we average the corresponding pixels from these four feature maps
and then threshold the result using a threshold of 0.5 to obtain a feature map f with
dimensions [1, 256, 256]. This process effectively consolidates information from multiple
feature maps to achieve more accurate predictions. Finally, we threshold the feature map
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e with a threshold of 0.5, perform mean fusion with f , and then threshold the result again
with a threshold of 0.5 to obtain the final predicted segmentation mask.

In conclusion, the main improvement of this article is the extension and novel design
of the classical U-Net network architecture. By incorporating different hierarchical feature
information from the decoder, the proposed network architecture obtains a wider range of
information. This improvement overcomes the limitations of interplay between different
levels of feature information and enables better utilization of global and local contextual
information. As a result, the model exhibits enhanced information interaction and contex-
tual awareness, effectively addressing the segmentation accuracy challenges posed by the
unique imaging characteristics of SAR images.

3.2. Multi-Convolutional Layer Module

We have constructed a multi-convolutional layer (MCL) module for utilization in the
encoding and decoding stages of U-Net. The aim is to extract essential feature information
from the input image. This design is presented as depicted in Figure 4. “Conv” signifies
a convolution operation with a kernel size of 3 × 3, while “SiLU” is a novel activation
function that outperforms “ReLU” [57,58], with its computational formula as shown in
Equation (2):

f (x) =
x

1 + e−x (2)

“BN” represents the batch normalization operation, which speeds up training con-
vergence and enhances model stability. The input data first undergo multiple layers of
convolution and a single layer of convolution operation, respectively. Subsequently, they
are concatenated along the channel dimension, resulting in a more enriched feature rep-
resentation. Finally, the process involves passing through another convolutional block
for feature extraction and adjusting the output channel numbers. As shown in Figure 1,
by using this module multiple times within the U-Net architecture, it effectively achieves
multi-level feature extraction and representation of the input data.

Figure 4. Multi-convolutional layer module. It is the basic unit module of the encoder and decoder in
the U-Net architecture, implementing the feature extraction functionality for the input data.

3.3. Feature Extraction Module

After extracting the feature maps at each layer of the U-Net decoding stage, we
designed a feature extraction module (FEM) to further extract features and adjust channel
numbers. The structure of this module is illustrated in Figure 5.

Figure 5. Feature extraction module. This module further extracts features from the feature maps
obtained at each layer of the encoding stage in order to acquire more comprehensive information.
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Firstly, by applying a channel attention mechanism to the input feature map, it achieves
weighted modulation of the feature map along the channel dimension. This process en-
hances the network’s focus on different channel information. Subsequently, we transmit
the feature map acquired from the attention module to a convolutional block while con-
currently adding the output of the convolutional block to it. Not utilizing channel-wise
connections is due to the fact that, at this stage, there is already a considerable amount of
contextual semantic information. By directly adding them, it allows for the re-introduction
of contextual details, while also aiding in reducing the computational load. This contributes
to enhancing the model’s performance and efficiency. Finally, we adjust the channel count
through a convolutional operation and map the output to the range [0, 1] using the Softmax
function, resulting in the ultimate output.

The structure of the channel attention module is illustrated in Figure 6. We start by
performing global max-pooling on the input feature map to aggregate spatial information,
generating the feature Fmax. Subsequently, Fmax is fed into a multi-layer perceptron to
obtain weights equal to the number of channels. Finally, these weights are multiplied with
the input feature map as shown in Equation (3):

Fmax = GMP(input),

weights = σ(W1(σ(W0(Fmax)))),

output = weights · input

(3)

where σ represents the sigmoid function, W0 ∈ RC/2×C and W1 ∈ RC×C/2 are the weight coef-
ficients of the multi-layer perceptron, and the “GMP” represents the Global Maximum Pooling.

Figure 6. Channel attention module. It accomplishes weighted adjustment of the feature map along
the channel dimension.

3.4. Loss Function

Using the Kullback–Leibler divergence, one can measure the difference between
two separate probability distributions, p and q, for a random variable x as shown in
Equation (4):

DKL(p||q) =
n

∑
i=1

p(xi)ln
p(xi)

q(xi)
(4)

where n represents the number of possible values that variable x can take. When DKL(p||q)
is smaller, it indicates that distributions p and q are closer. Expanding Equation (4) yields:

DKL(p||q) =
n

∑
i=1

p(xi)lnp(xi)−
n

∑
i=1

p(xi)lnq(xi)

= −H(p) + H(p, q)

(5)

where H(p) represents the entropy of distribution p, while H(p, q) represents the cross-
entropy between distributions p and q. Entropy is related to the probability distribution of
events; specifically, it represents the expected value of the information content of individual
events within the probability distribution. In information theory, the information content
of an event x is defined as
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I(x) = −ln(p(x)) (6)

where p(x) represents the probability of event x occurring. If the probability of event
x occurring is smaller, it contains a greater amount of information when it happens. There-
fore, when the probability distribution is determined, its entropy remains constant. Thus,
when optimizing deep models, it is necessary to focus only on the cross-entropy between
the predicted distribution and the actual distribution as shown in Equation (7):

H(p, q) = −
n

∑
i=1

p(xi)lnq(xi) (7)

where n represents the number of possible values event x can take. For m random events,
their cross-entropy is as shown in Equation (8):

J = −
m

∑
i=1

n

∑
j=1

xi,jlnp(xi,j) (8)

In particular, for binary classification problems, where n = 2 and xi ∈ {0, 1}, Equation (8)
can be expanded as follows:

J = −
m

∑
i=1

[xiln(p(xi)) + (1 − xi)ln(1 − p(xi))] (9)

Since the objective of oil spill detection based on SAR images is to accurately segment
the oil spills from SAR images, which is a binary classification task, we use a binary
cross-entropy loss function, namely:

LBCE(p, m) = − 1
N

N

∑
i=1

[mi · log(pi) + (1 − mi) · log(1 − pi)] (10)

where N represents the number of samples, m is the actual segmentation mask, and p is the
predicted probability value by the model.

As shown in Figures 7–10, the feature maps extracted from the U-Net encoding stage
undergo FEM and are denoted as a′, b′, c′, and d. Afterwards, a′, b′, and c′ are upsampled
to obtain the feature maps a, b, and c. We concatenate a, b, c, and d along the channel
dimension and input them to FEM, obtaining e. To better integrate information from
various feature maps, we introduce a joint loss function:

Lunion = ∑
x∈{a,b,c,d,e}

LBCE(x, m) (11)

This joint loss function effectively guides the network training, enabling better balance and
fusion among different feature maps, thereby achieving more accurate segmentation results.

As depicted in the figures above, through the process of upsampling, the small-
scale feature maps are expanded, thereby capturing more detailed information. Feature
maps of different scales contain their own unique characteristics. This diversity enriches
the coverage scope of contextual information, aiding in more accurately locating and
identifying targets, thereby enhancing the capability of oil leak detection. The model
training algorithm is depicted as shown in Algorithm 1, where “Net” represents our model
as illustrated in Figure 2.



Remote Sens. 2024, 16, 1684 12 of 20

Algorithm 1 Training algorithm.

INPUT SAR images and masks dataset D = {(Sk, Mk)}K
k

REPEAT
Sample (Si, Mi) ∼ D;
a, b, c, d, e = Net(Si);
Lunion = ∑x∈{a,b,c,d,e} LBCE(x, m);
Take a gradient descent step on ∇θ Lunion;

UNTIL convergence

Figure 7. (a′–c′) represent the feature information output by different stages of the decoder.
(a–e) represent the feature information generated at different processing stages in “Net” for SAR
example image 1.

Figure 8. (a′–c′) represent the feature information output by different stages of the decoder.
(a–e) represent the feature information generated at different processing stages in “Net” for SAR
example image 2.
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Figure 9. (a′–c′) represent the feature information output by different stages of the decoder.
(a–e) represent the feature information generated at different processing stages in “Net” for SAR
example image 3.

Figure 10. (a′–c′) represent the feature information output by different stages of the decoder.
(a–e) represent the feature information generated at different processing stages in “Net” for SAR
example image 4.

4. Experimental Results and Analysis

In this chapter, we show the detailed description of the comparative experiments.

4.1. Dataset

We employ two different publicly available SAR image datasets, PALSAR and SEN-
TINEL, to validate the effectiveness of our method for oil spill detection. The PALSAR
dataset is collected by the ALOS satellite, which has L-band frequencies to enable cloud-free,
and day and night land observations. The PALSAR dataset is sourced from an explosion
that occurred on the Deepwater Horizon drilling platform in the Gulf of Mexico in 2010,
which resulted in a massive oil spill; the spill extended approximately 160 km in length
and reached a maximum width of around 72 km. The oil spill images were captured
between May 2010 and August 2010, totaling 3101 training set images, each with a size of
256 × 256 pixels, along with their corresponding masks. Additionally, there are 776 test



Remote Sens. 2024, 16, 1684 14 of 20

set images of the same size, also accompanied by their respective masks. The PALSAR
dataset is collected by Sentinel 1A satellite, which is equipped with a C-band SAR sensor
and provides uninterrupted observations of the Persian Gulf region. The spatial resolution
of the Sentinel 1A is 5 m in range and 20 m in azimuth. The SENTINEL dataset consists of
3345 training set images, each with a size of 256 × 256 pixels, along with their correspond-
ing masks. Additionally, there are 839 test set images of the same size, also accompanied
by their respective masks.

4.2. Experimental Results

We will use a range of common image semantic segmentation evaluation metrics,
such as Dice score, HD95, precision, and accuracy. They respectively measure the degree
of overlap in the segmentation results, the consistency of segmentation boundaries, the
proportion of correctly classified pixels, and the overall segmentation accuracy. Through
these evaluation metrics, we can more comprehensively assess the performance of different
methods for oil spill detection based on the SAR images. In the comparative experiments,
we will use the same SAR dataset to compare methods [30–37] with the approach shown
in Figure 2. In the ablation experiments, we will vary certain modules of our model and
validate their effectiveness once again.

As shown in Table 1, our method achieves excellent performance on two datasets,
reaching the optimal levels across multiple evaluation metrics. This indicates that our
approach possesses remarkable robustness and is capable of effectively accomplishing oil
spill detection tasks on SAR images collected from various devices. Additionally, Figure 11
presents the masked results of the segmentation applied to eight sets of SAR images from
PALSAR and SENTINEL using different methods. From these figures, the differences in
segmentation outcomes among the various methods can be clearly observed.

In order to find the optimal network architecture, we take a series of steps. First, we
threshold the generated images D, E, and F, and compare the computed evaluation metrics
with the current results. Next, we attempt different shortcut fusion methods for the MCL
and FEM modules to validate their effectiveness. Then, we adjust the height of the U-Net
framework and compare the evaluation metric results. Finally, we also remove the channel
attention mechanism from the FEM module to explore its impact on network performance.
The experimental results are shown in Tables 2–5.

Table 1. Comparison experiment results. Bold indicates the best result, while underline indicates the
second-best result. ↑ represents the higher, the better, while ↓ represents the lower, the better.

Method
Dice↑ HD95↓ Precision↑ Accuracy↑

PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL

FCN [30] 0.723 0.741 9.95 11.17 0.790 0.655 0.897 0.827
SegNet [31] 0.667 0.664 8.22 10.76 0.605 0.519 0.899 0.803
U-Net [32] 0.716 0.733 8.79 11.05 0.636 0.709 0.911 0.807

Unet++ [33] 0.725 0.728 9.39 11.85 0.679 0.666 0.907 0.807
R2UNet [34] 0.731 0.709 9.05 11.02 0.694 0.640 0.909 0.787

AttU-Net [35] 0.713 0.724 8.75 11.18 0.621 0.739 0.912 0.790
Transunet [36] 0.721 0.732 9.04 11.94 0.593 0.690 0.915 0.811
Swin-Unet [37] 0.716 0.755 8.86 11.29 0.609 0.663 0.912 0.830

Ours 0.784 0.815 8.21 9.99 0.729 0.769 0.930 0.879
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Figure 11. The visual comparison of segmentation results from different algorithm models on
the same SAR image. These red boxes highlight the detailed comparison of segmentation masks
generated from SAR images using different algorithms.

By conducting experiments and comparisons on different architectures, we comprehen-
sively consider factors such as evaluation metric results and model parameter quantity. We
decide to use “pred” as the final segmentation result. We apply the concatenation shortcut
fusion method to the MCL module, and utilize the addition shortcut fusion method with
an added channel attention mechanism for the FEM module. Simultaneously, the U-Net
architecture’s height is set to four. This leads us to a network structure as shown in Figure 2
that excels in performance while maintaining a relatively efficient model complexity.
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Table 2. Comparison of different mask results. Bold indicates the best result, while underline indicates
the second-best result. ↑ represents the higher, the better, while ↓ represents the lower, the better.

Mask
Dice↑ HD95↓ Precision↑ Accuracy↑

PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL

d 0.772 0.807 8.76 10.19 0.786 0.753 0.921 0.875
e 0.780 0.810 8.26 10.13 0.714 0.762 0.929 0.875
f 0.781 0.811 8.19 9.97 0.714 0.747 0.930 0.879

pred 0.784 0.815 8.21 9.99 0.729 0.769 0.930 0.879

Table 3. Comparison of the effectiveness of concatenation (C) and addition (A) as two distinct
shortcut fusion methods in MCL and FEM modules. Bold indicates the best result. ↑ represents the
higher, the better, while ↓ represents the lower, the better.

MCL FEM Dice↑ HD95↓ Precision↑ Accuracy↑
C A C A PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL

! ! 0.772 0.792 8.36 10.41 0.712 0.744 0.926 0.863
! ! 0.784 0.815 8.21 9.99 0.729 0.769 0.930 0.879

! ! 0.771 0.801 8.43 10.35 0.724 0.764 0.925 0.866
! ! 0.767 0.797 8.69 10.13 0.757 0.719 0.920 0.868

Table 4. Comparison of different height of our U-Net architecture. Bold indicates the best result.
↑ represents the higher, the better, while ↓ represents the lower, the better.

Height Params/M
Dice↑ HD95↓ Precision↑ Accuracy↑

PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL

three 7.06 0.765 0.767 8.63 10.57 0.725 0.721 0.921 0.841
f our 28.90 0.784 0.815 8.21 9.99 0.729 0.769 0.930 0.879
f ive 116.23 0.782 0.813 8.43 10.08 0.749 0.758 0.927 0.877

Table 5. Effect of channel attention mechanism (CAM). Bold indicates the best result. ↑ represents the
higher, the better, while ↓ represents the lower, the better.

CAM
Dice↑ HD95↓ Precision↑ Accuracy↑

PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL PALSAR SENTINEL

% 0.738 0.758 8.81 10.82 0.715 0.740 0.913 0.830
! 0.784 0.815 8.21 9.99 0.729 0.769 0.930 0.879

Experimental results demonstrate that the segmentation mask “pred” obtained through
further voting achieves optimal performance due to the acquisition of additional informa-
tion. This further emphasizes the superiority of our approach. Meanwhile, the utilization
of the concatenation fusion method in the architecture of U-Net preserves more contextual
information. On the other hand, employing the addition fusion method when processing
feature maps is justified by the substantial information already present in these feature
maps. This not only alleviates computational burden but also potentially enhances model
performance. Shallow network depths might constrain the model’s feature extraction
capacity, whereas deeper network depths could elevate the risk of overfitting. The channel
attention mechanism effectively adjusts the weights of feature channels, particularly in
scenarios with numerous channels and intricate information. This mechanism optimizes
the quality of feature representation.



Remote Sens. 2024, 16, 1684 17 of 20

5. Discussion

In comparative experiments, our model achieves excellent results in multiple metrics
compared to existing semantic segmentation networks. This is attributed to our model
framework breaking the limitations of information interaction between different stages.
Existing semantic segmentation networks typically extract features independently at each
stage and lack effective mechanisms for information transmission between stages. Due
to the specific characteristics of SAR images, such as high noise, blurry boundaries, and
lighting variations, existing segmentation methods often fail to achieve satisfactory results.
However, through the feature extraction framework of cross-stage feature map connections,
our model is better equipped to address these challenges and achieve higher segmentation
performance. Specifically, our model integrates feature maps again at each feature extrac-
tion stage in the decoder, enabling cross-stage connections of feature maps to facilitate the
fusion and interaction of information between different stages. This approach is particularly
effective in addressing the segmentation challenges posed by SAR images. By utilizing
these cross-stage connections of feature maps, our model is able to capture global contextual
information more effectively. The feature maps from different stages can transmit and share
crucial semantic information, thereby enhancing the understanding of complex scenes in
the image. This global contextual awareness contributes to accurate segmentation of SAR
images with features such as blurry boundaries, irregular shapes, multiple speckles, and
shadows. Additionally, the cross-stage connections of feature maps facilitate information
fusion and updating at different scales and levels. By combining low-level features with
high-level semantic features, our model can simultaneously capture both detailed and
holistic semantic information, thus improving the accuracy and robustness of segmentation.
This capability is particularly crucial for addressing challenges such as high noise and oil
spill regions in SAR images.

The visualization results of different segmentation algorithms are shown in Figure 11.
The first row represents the SAR satellite remote sensing image to be segmented, and
the second row shows its corresponding segmentation mask label. The remaining rows
display the segmentation masks generated by different segmentation algorithms, with the
last row representing the segmentation mask generated by the proposed model in this
paper. Comparing the segmentation masks produced by different algorithms with the true
labels, it can be observed from some details, such as the area enclosed by the red box, that
our model has achieved better results. Our model can more accurately capture detailed
features of regions with complex textures and blurry boundaries, which are difficult for
traditional FCN, SegNet, and other U-Net series algorithms. It can precisely identify oil
spill areas and segment the boundaries between targets and backgrounds. This is attributed
to the proposed model breaking the limitations of hierarchical feature interaction in the
feature extraction and segmentation process, allowing our model to better utilize global
and local contextual information. Through sufficient information interaction and contextual
awareness, our model achieves higher accuracy and precision.

In the ablation experiments, we further explore the architecture of the model to find
the optimal network design. Firstly, we threshold the masks generated by the model
at different stages and calculate their segmentation performance. The results show that
the masks fused multiple times achieve the highest segmentation accuracy. Secondly,
we conduct ablation experiments on the feature map connections of the MCL and FEM
modules. The experimental results indicate that within the U-shaped network, using
concatenation connections and addition connections when extracting different-scale feature
maps yields better results. Thirdly, we conduct ablation experiments on the height of the U-
shaped network and find that the model architecture with a height of four layers performs
better, considering both performance and parameter quantity. Finally, we perform ablation
experiments on the channel attention mechanism within the FEM module. The results
showed that adding channel-wise attention in the feature extraction and fusion of multi-
channel feature maps at different stages of the decoder significantly improves the extraction
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capacity of relevant information, thereby enhancing the segmentation performance of
the model.

6. Conclusions

Oil spill pollution has escalated into a pressing global concern. In this paper, we
propose a novel Oil spill detection model for SAR image, which can blend the contextual
information generated by multiple scales feature maps in the U-Net. Specifically, we design
a multi-convolutional layer (MCL) module to enlarge the size of feature maps during the
decoding and aid in recovering lost details and spatial resolution. We also propose a feature
extraction module (FEM) to enhance the ability of the proposed model to understand
information from different dimension channels. To validate the efficacy of our approach,
we conduct comparative experiments on two SAR datasets. The results demonstrate that, in
comparison to existing segmentation networks, our proposed model excels in segmenting
SAR images and achieves remarkable accuracy in oil spill detection tasks. In future research,
we intend to further explore the development of an efficient algorithmic framework based
on convolutional neural networks for segmenting SAR images. This endeavor aims to
further elevate the performance of our methodology in oil spill detection tasks, ultimately
contributing to more effective environmental monitoring and protection efforts.
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