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Abstract: Earthquake-triggered landslides (ETLs) feature large quantities, extensive distributions,
and enormous losses to human lives and critical infrastructures. Near-real spatial prediction of ETLs
can rapidly predict the locations of coseismic landslides just after a violent earthquake and is a vital
technical support for emergency response. However, near-real prediction of ETLs has always been a
great challenge with relatively low accuracy. This work proposes an ensemble prediction model of
EnPr by integrating machine learning tree models and a deep learning convolutional neural network.
EnPr exhibits relatively strong prediction and generalization performance and achieves relatively
accurate prediction of ETLs. Six great seismic events occurring from 2008 to 2022 on the southeastern
margin of the Tibetan Plateau are selected to conduct ETL prediction. In a chronological order, the
2008 Ms 8.0 Wenchuan, 2010 Ms 7.1 Yushu, 2013 Ms 7.0 Lushan, and 2014 Ms 6.5 Ludian earthquakes
are employed for model training and learning. The 2017 Ms 7.0 Jiuzhaigou and 2022 Ms 6.1 Lushan
earthquakes are adopted for ETL prediction. The prediction accuracy merits of ACC and AUC attain
91.28% and 0.85, respectively, for the Jiuzhaigou earthquake. The values of ACC and AUC achieve
93.78% and 0.88, respectively, for the Lushan earthquake. The proposed EnPr algorithm outperforms
the algorithms of XGBoost, random forest (RF), extremely randomized trees (ET), convolutional
neural network (CNN), and Transformer. Moreover, this work reveals that seismic intensity, high and
steep relief, pre-seismic fault tectonics, and pre-earthquake road construction have played significant
roles in coseismic landslide occurrence and distribution. The EnPr model uses globally accessible
open datasets and can therefore be used worldwide for new large seismic events in the future.

Keywords: Tibetan Plateau; coseismic landslide; near-real-time; ensemble learning

1. Introduction

Earthquake-triggered landslides (ETLs) are a representative type of secondary hazard
caused by earthquakes and feature huge quantities, wide distribution, sudden onset, and
great destructiveness [1]. For example, a total of 197,481 landslides were triggered by the
Wenchuan earthquake on 12 May 2008, and they were widely distributed over an area
of 75,424 km2 [2]. These coseismic landslides brought a huge loss to human lives and
properties by severely blocking traffic, destroying buildings, and causing dammed lakes.
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The ETLs also posed a great challenge to emergency rescue. Earthquakes have occurred
frequently in recent years due to crustal movement. Co-seismic landslides are usually
accompanied by large numbers of casualties. According to the Wenchuan Earthquake
Rescue Committee, there were more than 80,000 casualties of the earthquake, of which
about 30,000 resulted from the ETLs [2]. Therefore, rapid prediction of ETL positions just
after a violent earthquake, i.e., near-real-time prediction of coseismic landslides, is very
crucial for effective and efficient emergency rescue.

Remote sensing images are extensively employed in ETL recognition [3]; however, they
cannot meet the high timeliness demand in emergency rescue. (1) The lack of images for
the extensive earthquake-struck region after a great earthquake and dense cloud coverage
in images may both result in missing recognition of numerous landslides. For example,
almost half of coseismic landslides (about 5000 landslides) triggered by the 2022 Luding
earthquake cannot be interpreted due to dense cloud cover on the post-earthquake optical
satellite images [4]. (2) The quality of optical remote sensing images is seriously constrained
by weather conditions [5]. The wide coverage of fog and clouds significantly impede the
identification of ETLs. Continuous cloud cover during a single monsoon season typically
persists for several months, e.g., from May to September [6]. (3) The complete interpretation
of large quantities of coseismic landslides may cost weeks to months. For example, the
2015 Gorkha (Nepal) earthquake triggered around 24,903 landslides covering more than
30,000 km2 [7]; thus, it was very time-consuming to interpret landslides over such an
extensive region. As a contrast, near-real prediction of ETLs only requires hours after a
violent earthquake.

The current models for near-real ETL prediction mainly include two types: physical
models and statistical models. (1) Physical models are established according to landslide
movement mechanisms. This type of model employs the Newmark method [8] and calcu-
lates landslide probability and displacement in terms of the slope properties and ground
motion parameters provided by the United States Geological Survey (USGS) ShakeMap [9].
Godt et al. [10] proposed a hybrid method combining a simplified Newmark [8] stability
analysis and heuristic models to predict the ETL distribution in a spatial resolution of 1 km.
Cheng et al. [11] used the Newmark sliding-block method and ground motion parameters
for near-real EQIL prediction in a spatial resolution of 160 m. The intersection over union
(IoU) value attained 11.65% and was higher than the ones of the PAGER method [12] and
Godt model [10]. Physical models can achieve relatively high accuracy with precise geotech-
nical and ground motion parameters. However, in large earthquake zones, obtaining precise
geotechnical parameters is difficult, constraining the accuracy and applicability of physical
models. (2) Statistical models include fuzzy logic-based statistical models and landslide
inventory-based statistical models. Fuzzy logic-based statistical models employ fuzzy logic
models to depict the relation between various prediction indices and landslide probability.
Then, they predict ETL distribution based on the established relationship [13,14]. Robinson
et al. [15] proposed a fuzzy logic method to determine the landslide-inducing factors and
to predict the spatial probability of coseismic landslides according to some landslides oc-
curring shortly after the earthquake. Landslide inventory-based statistical models predict
the ETL distribution of an earthquake in terms of the coseismic landslide data from other
historical earthquake events [1,12,16]. The most representative method is the Global Rapid
Assessment for Earthquake Response, PAGER [12]. Nowicki et al. [17] developed a logistic
regression (LR)-based statistical model from five ETL inventories, and the spatial resolution
of the predicted ETL distribution is 1 km. He et al. [18] established a global model for rapid
evaluation of ETL spatial distribution by the random forest (RF) algorithm. The model was
trained via 288,114 landslides from 16 high-quality ETL inventories, and the predicted area
under curve (AUC) values were 0.873, 0.907, and 0.786, respectively, for the 1989 Loma
Prieta, 2013 Lushan, and 2016 Kaikoura earthquakes.

Substantial advancements have been made in ETL prediction; however, there are still
some challenges. (1) Physical models require geotechnical data, but accurate geotechnical
parameters are difficult to obtain in most regions of the world [12]. That has constrained
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the application and promotion of physical models. (2) ETL-prediction machine learning
algorithms feature relatively high false alarms, low generalization performance, and low
accuracy. (3) ETL-prediction deep learning algorithms are heavily dependent on data
quantities. Their strong learning ability and high accuracy demand massive data and
complicated structures.

Regarding physical models, the geological parameters, such as unit weight, effective
friction angle, and effective cohesion, in a vast geographical area are challenging to de-
termine. Existing methods for determining geological parameters include field surveys
and predictions based on landslide inventories [19]. In post-earthquake emergencies, it
is impractical to investigate field studies of geological parameters in large-scale areas.
Predictions using historical landslide inventories and the Newmark displacement model
require assumptions about a number of parameters and rely on historical statistics. Regard-
ing the machine learning algorithms, machine learning models such as RF, LR, etc., are
often accompanied by relatively high false alarms, low generalization performance, and
low accuracy [20] when ETL predictions are required for large-scale and geographically
complex areas. In addition, the deep learning is highly data-dependent, and the larger the
amount of data, the better the performance.

Focusing on the above challenges, this work makes two contributions. (1) The globally
available data of topography, geology, geography, and earthquakes are employed to conduct
near-real ETL prediction. These data can be acquired worldwide before an earthquake or
within minutes after an earthquake; thus, this work can be applied to any future earthquake
in the world. (2) A novel EnPr model is proposed to integrate decision tree structures
and a convolutional neural network (CNN) architecture. The EnPr model combines the
advantages of machine learning and deep learning and is characterized by relatively high
accuracy, good generalization, and a simple structure. It can achieve a good learning ability
based on a relatively small data set.

This study centers around the seismic events that took place on the southeastern
boundary of the Tibetan Plateau between 2008 and 2022 (Table 1). Its main objective is to
conduct near-real-time prediction of ETL distributions. The four earthquakes occurring
from 2008 to 2014 (the 2008 Ms 8.0 Wenchuan, 2010 Ms 7.1 Yushu, 2013 Ms 7.0 Lushan, and
2014 Ms 6.5 Ludian earthquakes) are used to train and build the EnPr model. The two
earthquakes occurring from 2017 to 2022 (the 2017 Ms 7.0 Jiuzhaigou and 2022 Ms 6.1 Lushan
earthquakes) are selected for ETL prediction in order to assess the reliability and accuracy
of the EnPr model. Furthermore, this work reveals the key geoenvironmental and disaster-
inducing factors closely relevant to the occurrence and distribution of coseismic landslides
in the Tibetan Plateau.

Table 1. Six violent earthquakes studied in this work.

ID Location Date Magnitude
(Ms)

Number of
Landslides

Survey Area
(km2) Reference

1 Wenchuan 12 May 2008 8.0 197,481 116,835.9 Xu et al. (2014) [2]
2 Yushu 13 April 2010 7.1 2036 8573.4 Xu et al. (2013) [21]
3 Lushan 20 April 2013 7.0 15,546 7202.0 Xu et al. (2015) [22]
4 Ludian 3 August 2014 6.5 1024 290.7 Xu et al. (2014) [23]
5 Jiuzhaigou 8 August 2017 7.0 5563 859.8 Wang et al. (2022) [24]
6 Lushan 1 June 2022 6.1 2352 12,174.5 Shao et al. (2022) [25]

2. Study Area and Multisource Data
2.1. Study Area

The study area (Figure 1) is located in the seismically active region on the southeast
edge of the Tibetan Plateau.
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Figure 1. Seismic and tectonic characteristics in the study area. (a) Location of the study area in
Eurasia. The Earth picture is sourced from Google Earth accessed on 2 May 2023. (b) Topographic
features, fault distribution, river networks, and recently occurring catastrophic earthquakes in the
study area.

The convergence of the Indian and Eurasian plates, which occurred 50 Ma ago, led to
the rapid uplift of the Tibetan Plateau and the shortening of the crust within the suture zone
by at least 1500 km [26]. As a result of the successive land–land collisions between the Indian
subcontinent and the southern part of the Eurasian continent, the Yarlung Zangbo river
suture belt was formed. This resulted in the long-term southeastward escape of materials
from the eastern edge of the Tibetan Plateau and a strong neotectonic movement [27].
The southeastern margin of the Tibetan Plateau may have experienced three stages of
regional tectonic deformation during the Cenozoic [28]. The Eocene-Early Oligocene crust
shortened and thickened in response to early Indo-Asian continental convergence, leading
to regional metamorphism and deep melting [28]. Three continental-scale shear zones
began to slip-shear simultaneously in the Late Oligocene, accompanied by block extrusion.
They may have been corridors for vertical extrusion of low-viscosity lower and middle
crustal materials [28]. In the middle-late Miocene, the deformation type and slip reversal
of the major fracture systems changed significantly along the southeastern margin of the
Tibetan Plateau [28].

After the occurrence of the Wenchuan earthquake in 2008, several moderate to severe
earthquakes took place in the study area. Their seismogenic faults are secondary active
faults near the main boundary faults of the Grade I and II active blocks [22]. Thus, the
stress has accumulated to a high level in the main boundary faults on the eastern and
southeastern edges of the Tibetan Plateau [29]. The 2008 Wenchuan, 2013 Lushan, and
2022 Lushan earthquakes occurred in the northeast-trending Longmenshan fault zone. The
Xianshuihe fault zone, northwest-oriented Ganzi fault, Yushu fault, Batang fault, Dan-
gjiang fault, south-oriented Anninghe fault, Zemuhe fault, and Xiaojiang fault constitute a
huge left-slip fault system (called the Xianshuihe fault zone system) [4]. This fault zone
system forms the eastern boundary of the Sichuan–Yunnan rhombic block [4]. The 2014
Ludian earthquake occurred in the boundary deformation zone between the Sichuan–
Yunnan rhombic block and the South China land mass. The 2017 Jiuzhaigou earthquake
was located at the northern section of the Huya fault that is one of the eastern branch
faults of the East Kunlun fault zone [29]. The 2010 Yushu earthquake was situated at the
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Garzê–Yushu fault that is a sinistral strike-slip fault on the western segment of the Xian-
shuihe fault zone [30].

Due to the uplift of the Tibetan Plateau, the plateau materials have been consis-
tently shifted towards the southeast direction. This geological process has resulted in
higher terrains in the northern regions and lower terrains in the southern areas of Tibetan
Plateau [31,32]. The relief is steep in the study area and characterized by mountains and
plateaus. The three primary rivers of Salween, Mekong, and Yangtze flow southward along
the southeastern edge of the plateau and constitute dense river networks [21]. Human
engineering activities are frequent in the low and middle elevation areas, including house
construction, animal grazing, and engineering excavation.

Therefore, the study area is one of the most ETL-frequent regions worldwide because
of concentrated fault zones, active tectonic movement, frequent seismic activities, steep
relief, dense water systems, and intensive human engineering activities.

2.2. Multisource Data

Five sets of multi-source data (Table 2) are utilized to predict the spatial distribution
of landslides triggered by earthquakes. (1) SRTM DEM data are used to construct the
topographic factors of elevation, slope angle, aspect, plan curvature, and profile curvature.
(2) The geological fault data are adopted to build the geological factors of distance to
fault and fault kernel density. (3) The land use data reflect the characteristics and types of
human engineering activities, and the road network data is utilized to construct the human
activity factor of distance to road. (4) The river network data are employed to establish the
environmental factor of distance to river. (5) The ShakeMap data are adopted to establish
the seismic factors of PGV, peak ground acceleration (PGA), Modified Mercalli Intensity
(MMI), and distance to the epicenters of these earthquakes.

Table 2. Multisource data employed in this work. USGS: United States Geological Survey; CENC:
China Earthquake Networks Center; SRTM: Shuttle Radar Topography Mission; and DEM: Digital
Elevation Model.

Data Type Data Date Resolution Source

Terrain SRTM DEM 2000 30 m Geospatial Data Cloud v4.1

Geology Geological fault Pre-earthquake –
Styron et al., 2020 [33];

Wang, L. 2021 [34];
Li et al., 2017 [35]

Human activity Land use Pre-earthquake 30 m GLOBELAND30

Road Network Pre-earthquake – OpenStreetMap v1.0.0;
Google earth v7.3

Environment River network Pre-earthquake – OpenStreetMap v1.0.0;
Google earth v7.3

Seismology Earthquake inventory 2008, 2010, 2013, 2014,
2017, 2022 – USGS

CENC

3. Methodology

Figure 2 shows the technical route for near-real-time prediction of ETLs, and it consists
of five main steps. (1) The geoenvironmental and disaster-inducing factors are extracted
from the multisource data to establish prediction indices. (2) The study area is segmented
into slope units by a surface curvature watershed method. Slope units can well portray
the topographic constraint to landslide occurrence, reflect the control of water systems
to landslide development, and avoid meaningless fragmented patches in the prediction
result. Thus, the utilization of slope units can effectively improve ETL prediction accuracy.
(3) Four earthquakes—2008 Ms 8.0 Wenchuan, 2010 Ms 7.1 Yushu, 2013 Ms 7.0 Lushan, and
2014 Ms 6.5 Ludian—are employed to construct and train the EnPr model. (4) The EnPr
model is used to predict the ETL distribution of two earthquakes: 2017 Ms 7.0 Jiuzhaigou
and 2022 Ms 6.1 Lushan. All actual coseismic landslides induced by the two earthquakes
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are adopted to validate the accuracy of the EnPr model. (5) The EnPr model is compared
with the RF, extremely randomized trees (ET), XGBoost (1.6.2), CNN, and Transformer
models to demonstrate its performance superiority.
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3.1. Establishment of Prediction Indices

There are two types of factors affecting the distribution of ETLs: geoenvironmental
factors and triggering factors. Geoenvironmental factors control the development of coseis-
mic landslides, and triggering factors induce the occurrence of coseismic landslides. The
established influencing factors are shown in Table 3 and constitute the prediction indices
of ETLs. The geoenvironmental factors include the geological and topographical factors.
(1) In terms of geology, fault tectonics damage the adjacent rock and soil mass. Thus, the
factors of fault density and distance to faults reflect the destruction to slope materials and
the development of cracks within rock and soil mass. In addition, the densely distributed
cracks near faults create flow channels for rainwater and underground water. The slope
stability decreases under the softening and soaking of water to soil and rock mass [36];
thus, it is apt to evolve into a landslide in a great earthquake. (2) Regarding topography,
elevation is closely relevant to vegetation growth, soil moisture, and human engineering
activities, and these factors play a significant role in slope stability. Moreover, coseismic
landslides usually occur on narrow ridges, which embody the amplification action of high
slopes to seismic waves [37]. Due to significant seismic amplification effects and long-term
exposure to weathering and distress on the high slope, the pore structure of the upper slope
soil is initially disrupted, resulting in scattered seismic subsidence of the upper soil and the
formation of tensile cracks in the rear part of the slope [37]. In gently sloping terrain like
ridges and terraces, the middle and lower parts of the soil undergo short-distance shearing
and sliding due to the additional loading from the subsided upper soil and the combined
action of seismic inertia forces, forming a slump-type seismic subsidence landslide [37]. On
steep slopes such as edges of plateaus, terraces, and valley slopes, the subsided soil at the
upper part directly collapses and forms a rockslide-type seismic subsidence landslide [37].
Slope angle indicates the steep free surfaces and geopotential energy of a slope [38]. Also,
steep relief can amplify the reflection and refraction of seismic waves and intensify the
damage of seismic waves on rock and soil mass [39]. Thus, high and steep slopes tend to
lose stability and run out during a large earthquake. Aspect reflects the solar radiation on
a slope and is closely related to vegetation coverage and soil saturation, which obviously
affect the stability of a slope. Furthermore, fault strike and rupture direction determine
the aspect featuring abundant coseismic landslides. Profile curvature and Plane curvature
illuminate the surface relief that controls the stress distribution within a slope and the
runoff velocity along the slope surface [39]. The slopes with large internal stress and strong
runoff scouring are inclined to lose stability and develop into landslides when suffering
from an earthquake. The factor of distance to rivers indicates the disruption of slope stress
balance by river erosion and undercutting. Additionally, the significant fluctuations in river
levels resulting from an earthquake may elevate the hydrodynamic pressure within the
slope adjacent to the river, thereby causing instability in the slope [9]. Under the action
of seismic forces, the pore pressure in saturated soil increases while the effective stress
decreases, leading to liquefaction of the soil on slopes. Instantaneous water film formed
between the liquefied soil layer itself or between the liquefied soil layer and the underlying
impermeable layer creates a sliding surface. If the liquefied layer is located at the bottom of
the slope, it often triggers long-distance sliding of the overlying unsaturated soil. When
the liquefied layer is situated at the surface of the slope, it induces long-distance earthflows
along the slope surface. In cases where liquefaction occurs at both the bottom and the sur-
face of the slope, sliding of the soil above the liquefied bottom layer and surface earthflows
can happen simultaneously [40]. Therefore, the slopes suffering from river erosion may
gradually become instable and tend to fail during an earthquake.

The disaster-triggering factors involve the seismic and human engineering activity
factors. (1) As for earthquakes, the factors of PGA and PGV reflect the propagation of
seismic waves, and the factors of MMI and distance to the epicenter embody the strength
and intensity of ground motion. Thus, the seismic factors illuminate the destruction of
seismic waves to the ground and slope surfaces [41]. (2) As to human engineering activities,
the factor of distance to roads indicates the excavation to slope feet and the damage to rock
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and soil intactness. The stress redistribution within a slope may change the seepage field
and generate new seepage channels. The infiltrated rainwater aggregates on the impervious
surface, saturates rock and soil mass, and softens the sliding surface [42]. Therefore, the
slopes beside roads are apt to fail and evolve into landslides under the function of express
pore water pressure when suffering from a violent earthquake. The factor of land use
depicts the intensification and types of human engineering activities before an earthquake.
The artificial excavation [43–45] and explosion in urban construction cause plenty of cracks
within a slope, and the exposed debris features a strong water permeability and is easily
weathered to become fractured. Moreover, cropland irrigation results in irrigation water
penetrating into the soil and the increase in porewater pressure, so the shear strength of
slope mass significantly reduces [42]. Therefore, the slopes undergoing intensive human
engineering activities are characterized by relatively poor stability and may develop into
landslides under strong earthquake ground motion.

Table 3. Geoenvironmental and triggering factors influencing coseismic landslide distribution. PGV:
peak ground velocity; PGA: peak ground acceleration; and MMI: modified Mercalli intensity.

Factor Type ID Influencing Factor Grade

Geoenvironmental
factor

Topography

1 Elevation (m) Continuous
2 Slope angle (◦) Continuous

3 Aspect
(1) Flat; (2) N; (3) NE; (4) E;
(5) SE; (6) S; (7) SW; (8) W;

(9) NW
4 Plan curvature Continuous
5 Profile curvature Continuous
6 Distance to river (m) Continuous

Geology 7 Distance to fault (km) Continuous
8 Fault kernel density Continuous

Triggering factor

Human activity 9 Land use

Cultivated land; (2) Forest;
(3) Grassland; (4) Shrubland;
(5) Wetland; (6) Water body;

(7) Tundra; (8) Artificial surface;
(9) Bare land; (10) Permanent

snow and ice
10 Distance to road (m) Continuous

Seismology

11 PGA (g) Continuous
12 PGV (cm/s) Continuous
13 MMI Continuous
14 Distance to epicenter (km) Continuous

3.2. EnPr Model for Earthquake-Induced Landslide Prediction

The structure of the EnPr model is shown in Figure 3 and contains three main steps.
(1) The prediction index value vector u of each slope unit is input into the EnPr model.
(2) The EnPr model involves four branches: RF, ET, XGBoost, and CNN. The vector u is
input into the four branches, respectively, to output four prediction vectors: yr, ye, yx, and yc
(Equation (1)). (3) The feature vectors, yr, ye, yx, and yc, are input into the XGBoost model
for ensemble learning. The prediction result after ensemble learning is the occurrence
probability p of coseismic landslides in each slope unit (Equation (2)). During the process
of ensemble learning, a larger weight is assigned to the feature vector y that has a lower
residual value (i.e., the predicted feature y is closer to the actual value).

y(u) = model(u) (1)

where the function model represents the prediction model of RF, ET, XGBoost, or CNN. u is
the prediction index value vector in each slope unit, and y is the predicted feature output
from each model.

p(y) = XGBoost1(yr, ye, yx, yc) (2)
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where p is the occurrence probability of coseismic landslides in each slope unit. yr, ye, yx, yc
mean the predicted features of RF, ET, XGBoost, and CNN, respectively.
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XGBoost, and CNN models, respectively. p is the predicted probability value of the ensemble model
EnPr (i.e., XGBoost1, this subscript 1 is to distinguish it from the previous XGBoost. ). (a,b) are spatial
distribution prediction of landslides triggered by the Jiuzhaigou and Lushan earthquakes, respectively.

Ensemble learning can acquire a strong and optimized predictor of EnPr by integrating
the advantages of the four models. Ensemble learning can effectively avoid local optimum,
reduce variance, and overcome overfitting. In addition, an ensemble model is generally
insensitive to abnormal data and has strong noise immunity. Thus, the EnPr model can
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achieve higher accuracy than each single model and possesses a good generalization
performance when it is applied in the cross-region prediction.

RF [46–48] is an ensemble tree-structured algorithm, and it establishes a forest com-
posed of uncorrelated decision trees by bagging and feature randomness. The bagging
strategy trains a series of independent models by random data samples and integrates these
models to yield a more accurate prediction. Bagging can effectively reduce variance within
a noisy dataset. Feature randomness means each decision tree is constructed according to a
random subset of features, so there is more diversity and low correlation among various
decision trees. RF features two key benefits: reduced risk of overfitting and flexibility.
First, a random forest involves a robust number of uncorrelated trees; thus, it can decrease
the overall variance and prediction error. Second, due to feature bagging, RF can retain
accuracy even if a part of the data is missing.

ET [49] is also a tree-based ensemble-learning model and integrates multiple trees
to conduct prediction. Different from RF, ET trains the trees over the entire dataset by
using different subset of features. ET possesses the advantages of reduction in bias and
decreased variance. First, the trees are established by learning from each observation in
the dataset. Different data subsets may produce varied biases, and ET samples the entire
dataset, so it can effectively prevent bias. Second, a decision tree in the ET is constructed
by the randomized splitting of nodes. The randomness of attributes and cutpoints can
significantly lower variance. Thus, the prediction result is not obviously influenced by
certain features in the dataset.

CNN [50] is a neural network and composed of an input layer, a convolutional layer, a
pooling layer, a fully connected layer, and an output layer in this work. The convolution
kernel in the convolution layer extracts a high-level pattern from low-level features and
creates a feature hierarchy. In addition, a ReLu transformation is employed to depict the
nonlinear relationship among features. The pooling layer reduces feature dimensionality
and parameter number by downsampling. Thus, pooling can lower model complexity,
improve efficiency, and constrain overfitting risk. The fully connected layer conducts the
task of landslide probability prediction in terms of the extracted features by the previous
layers. The layer leverages a Tanh activation function to produce a landslide probability yc
from 0 to 1.

XGBoost [51] leverages ensemble learning to transform a series of weak learning mod-
els to a strong and generalized model. It employs gradient augmentation and regularization
to prevent overfitting. In addition, the techniques of preordering and weighted quantile
are utilized to improve model performance.

The objective function of XGBoost consists of two parts: a loss function and a regular-
ization term (Equation (3)). The objective function is optimized by a second-order Taylor
expansion of the training loss and an expansion of the regularization term. The optimized
objective function is shown in Equation (4). The optimized variables are left with only the
weight vector w of the t-th tree. When w takes the minimum value (Equation (5)), the loss
is minimized, and the objective function determines the optimal solution (Equation (6)).

L = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (3)

where L is the predicted value. l is a differentiable convex loss function that measures the
difference between the predicted value ŷ and the real value yi of the i-th leaf. The second
part Ω embodies the complexity of k trees, and fk indicates the k-th tree. The smaller the Ω
value, the more generalized the model.

L(t) =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
wj

2
]
+ γT (4)

where L(t) is the predicted value of the t-th tree, T is the number of branches in the tree, and
wj is the weight value of the j-th leaf node. Gj is the cumulative sum of first-order partial
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derivatives of the samples contained in leaf node j, and Hj is the cumulative sum of second-
order partial derivatives of the samples included in leaf node j. λ is a regularization factor
greater than or equal to 0 and is used to weigh the empirical risk and model complexity.
γ is a regularization coefficient of the node number of the t-th tree.

w∗
j = −

Gj

Hj + λ
(5)

where w*
j is the weight value of each leaf node.

Obj = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (6)

where Obj is the final predicted value.
The EnPr model integrates the advantages of RF, ET, XGBoost, and CNN. RF, ET, and

XGBoost are attributed to decision tree models, and tree models feature simple structures,
good interpretation, and relatively little demand on sample amount. Neural network
models are characterized by strong robustness, good self-organization and self-learning
performance, accurate depiction of complex nonlinear relationships, and excellent feature
synthesis capability. Thus, EnPr can achieve relatively accurate prediction of coseismic
landslides over different earthquake-struck regions.

3.3. Evaluation Metrics

All the actual coseismic landslides are adopted to evaluate the prediction accuracy. The
evaluation metrics include ACC (accuracy), AUC (area under curve), and ROC (receiver
operating characteristic), and these three metrics are the most commonly used in prediction
tasks [52]. ACC (Equation (7)) reflects the overall prediction accuracy.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

where TP (true positive) indicates the count of landslide instances that are accurately
forecasted, FN (false negative) indicates the count of non-landslide instances that are
accurately forecasted, FP (false positive) denotes the count of non-landslide instances that
are forecasted as landslide instances, and TN (true negative) means the count of landslide
instances that are predicted as non-landslide instances.

AUC is the area under the ROC curve and can embody the prediction performance
of a model. The AUC value ranges from 0.5 to 1, and a larger AUC value indicates better
predictive ability of a model.

The ROC curve [53] is a commonly used statistical test that is a curve plotted with
Sensitivity as the x-axis and 1-Specificity as the y-axis. The accuracy of a prediction model
is assessed by true positive rate [54]. The closer the curve is to the upper left corner, the
more accurate the model.

3.4. Gini Coefficient

The Gini coefficient in XGBoost is adopted to calculate the contribution of various in-
fluencing factors. The Gini importance depends on impurity. The larger the Gini coefficient,
the higher the impurity. The Gini impurity for a node in a tree is shown in Equation (8). The
Gini decrease is the sum (weighted sum) of the Gini coefficient of each node minus the Gini
coefficient of its child nodes. The decrease in the Gini impurity is shown in Equation (9).
Gini importance is the weighted sum of the Gini decrease of the same feature nodes on all
trees. The importance of an influencing factor to ETL distribution is shown in Equation (10).

i(τ) = 1 − p2
1 − p2

0 (8)
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where τ is a node in a tree T, and i(τ) is the Gini impurity of the node. p0 denotes the
number proportion of the samples that are judged not to be landslides at the node τ.
p1 represents the number proportion of the samples that are judged to be landslides at the
node τ.

∆i(τ) = i(τ)− pl i(τl)− pri(τr) (9)

where ∆i(τ) is the decrease in the Gini impurity. pl and pr are the sample subsets when the
sample set is split by the left and right nodes, respectively.

IG(θ) = ∑
T

∑
τ

∆iθ(τ, T) (10)

where IG is the Gini importance, ∆iθ is the decrease of feature θ in the Gini impurity, and
τ is a node in a tree T. If a particular feature θ is selected more times for node segmentation,
it contributes more to the overall discrimination in a prediction task. Thus, the feature
θ possesses greater Gini importance and contributes more to ETL prediction.

4. Results and Discussions
4.1. Near-Real Spatial Prediction of ETLs

Figures 4 and 5 show the ETL prediction by the EnPr model for the 2017 Jiuzhaigou and
2022 Lushan earthquakes. The factual positions of all coseismic landslides are employed to
validate the prediction result and accuracy, and the statistics of the prediction results are
shown in Table 4. The results indicate that 82.32% of Jiuzhaigou coseismic landslides are
located in the predicted high and very high probability areas, and the very high and high
probability areas account for 12.2% of the study area. In total, 82.53% of Lushan ETLs fall in
the predicted high and very high probability areas, and the very high and high probability
regions occupy 6.18% of the study area. Table 5 and Figure 6 exhibit the prediction accuracy
of the EnPr model for the Jiuzhaigou and Lushan earthquakes. The ACC and AUC values
for the Jiuzhaigou earthquake reach 91.28% and 0.8534, respectively. The ACC and AUC
values for the Lushan earthquake attain 93.78% and 0.8832, respectively.

Table 4. Statistics of the prediction result via the EnPr model for the Jiuzhaigou and Lushan earthquakes.

Earthquake Probability
Level Area Proportion Landslide Area

(km2)

Number
Proportion of

Landslides

Jiuzhaigou

Very low 43.13% 1.01 5.03%
Low 38.66% 1.17 5.86%

Medium 6.00% 1.36 6.79%
High 6.52% 4.83 24.16%

Very high 5.68% 11.63 58.16%

Lushan

Very low 39.81% 0.14 2.59%
Low 48.14% 0.37 6.63%

Medium 5.87% 0.45 8.25%
High 3.61% 1.28 23.26%

Very high 2.57% 3.27 59.27%

Table 5. Prediction accuracy of the EnPr model for the Jiuzhaigou and Lushan (2022) earthquakes.

Earthquake ACC AUC

Jiuzhaigou 91.28% 0.8534
Lushan (2022) 93.78% 0.8832
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landslide-dense region in the southeast.
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4.2. Comparison of Model Accuracy

The prediction accuracy of the EnPr model is compared with those of five state-of-the-
art models: RF, ET, XGBoost, CNN, and Transformer (Figure 7). The optimized parameter
values of the five algorithms are shown in Table 6. For the Jiuzhaigou earthquake, compared
with the RF, ET, XGBoost, CNN, and Transformer models, the ACC value is improved by
3.23%, 3.48%, 4.77%, 22.89%, and 27.60%, respectively. The AUC value is improved by
2.31%, 5.19%, 1.13%, 10.44%, and 19.66%, respectively. For the Lushan earthquake, the ACC
value is improved by 2.18%, 1.25%, 5.68%, 6.25%, and 27.77%, respectively, and the AUC
value is improved by3.32%, 2.08%, 2.55%, 12.94%, and 23.17%, respectively. Figures 8 and 9
show comparisons of the predicted distribution maps by six methods. Unlike the other
five models, EnPr does not predict non-landslide regions as high or very high probability
areas and well avoids false alarms. In addition, EnPr relatively exactly predicts landslide
regions as very high probability areas and achieves high accuracy. Therefore, EnPr exhibits
relatively accurate prediction and good generalization ability.

Table 6. Optimized parameter values in the XGBoost, RF, ET, CNN, and Transformer algorithms.
Colsample_bytree is used to control the feature sampling rate when constructing each tree. Subsample
controls the sampling rate of training data in each tree. Min_samples_split determines the minimum
number of samples required for feature segmentation. Min_samples_leaf means the minimum
number of samples required for each leaf node. Max_features controls the maximum number of
features when building a tree.

XGBoost
Parameter Estimator

Number Colsample_Bytree Learning Rate Maximum Depth Subsample

Optimized value 100 0.9 0.3 9 0.9

RF
Parameter Estimator number Criterion Min_samples_split Min_samples_leaf Max_features

Optimized value 100 Gini 50 1 sqrt

ET
Parameter Estimator number Criterion Max_features – –

Optimized value 5 Entropy 5 – –

CNN
Parameter Epoch Verbose Activation – –

Optimized value 200 2 Tanh – –

Transformer
Parameter Epoch Learning rate – – –

Optimized value 300 0.001 – – –
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Figure 8. Comparison of the predicted distribution maps among six models for the Jiuzhaigou
earthquake. Regions A, B, and C are randomly selected from the whole study area for exhibition.
(a,g,m) RF. (b,h,n) ET. (c,i,o) XGBoost. (d,j,p) CNN. (e,k,q) Transformer. (f,l,r) EnPr.
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4.3. Significant Factors Influencing Coseismic Landslide Distribution

Figure 10 shows the Gini importance of each influencing factor. The factors of MMI,
elevation, distance to fault, slope angle, and distance to road are the main factors affecting
the spatial distribution of coseismic landslides. Moreover, the actual ETL distribution
of a series of great earthquakes in the Tibetan Plateau also indicates the same critical
influencing factors (Figure 11). In the southeast of the Tibetan Plateau, coseismic landslides
usually occur in the areas with large MMI values (VI~VIII), medium to high elevations
(600~4500 m), steep relief (20◦~60◦), dense faults, or developed road networks. Therefore,
seismic intensity, high and steep terrain, pre-earthquake fault tectonics, and pre-seismic
road construction have important controlling or inducing effects on the occurrence of
coseismic landslides.

(1) Regarding seismic intensity, slope surfaces are inclined to be destructed by strong
ground motion due to great shear strain. In addition, a great seismic intensity causes
excess pore water pressure rising rapidly within a slope, and then the soil mass
becomes liquefied and flows down [41]. Therefore, coseismic landslides densely occur
over the regions with great seismic intensity.

(2) With regard to the topographic action, coseismic landslides are generally shallow
landslides [55] and mostly located along the high ridges [56]. That is attributed to the
enhanced ground motion at the top of mountains [36,57]. High and steep topogra-
phy increases gravitational instability and amplifies the seismic wavefield [36]. The
acceleration amplification factors on the ground surface behind the crest typically
exhibit a high degree of variability around a value of 1. The impact of topography



Remote Sens. 2024, 16, 1683 17 of 21

on ground motion amplification diminishes notably as the distance from the crest
increases, approaching zero near the free-field boundary [58]. In slope angle, the
amplification factor reaches a maximum when the slope angle is 32.3◦ [58]. When
the slope angle is greater than 32.3◦, a secondary peak appears in the amplification
factor curve as the slope angle increases. The biggest amplification does not always
happen at the crest; rather, it is often observed below the crest. [58]. In slope ele-
vation, when the wavelength is smaller than the slope height, it has no impact on
the distribution of the maximum amplification factor. The ratio of slope height to
wavelength has a significant effect not only on the amplification magnitude but also
on the location of the maximum amplification. As the number of cycles increases, the
amplification value increases, and a secondary peak occurs in the acceleration ampli-
fication curve [58]. Hence, the impact of slope topography on ground acceleration
amplification is intricate, and the ratio between wavelength and slope size plays a
significant role.

(3) Regarding pre-seismic fault tectonics, active faults lead to gradual deformation of
surrounding slope materials and decrease the stability of rock and soil mass due
to developed horizontal and vertical large cracks. The slope materials near faults
are characterized by fractured structure, reduced shear strength, and relatively poor
stability [59]. Thus, the distribution of coseismic landslides is closely relevant to the
pre-earthquake fault movements.

(4) Pre-earthquake road construction is accompanied by slope excavation and artificial
explosion that obviously damage the natural stress state of slopes [42]. The back
pressure in a slope foot significantly decreases to release stress, and the upper slope
poses plastic extrusion to the excavated free surfaces. Thus, the free surfaces gradually
become unstable, and the weak intercalation forms [42]. Artificial explosion gener-
ates new cracks, opens pre-existing fissures, and further reduces slope stability [42].
Therefore, slopes in the vicinity of roads have suffered from a destruction of natural
stress balance and are apt to lose stability under a great earthquake.
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Figure 11. Distribution characteristics of landslides triggered by earthquakes. (a) Distribution of
coseismic landslides with different MMI values in the 2014 Ludian earthquake. (b) Distribution
characteristics of coseismic landslides with different elevation in the 2013 Lushan earthquake region.
(c) Distribution of coseismic landslides with different slope angle in the 2008 Wenchuan earthquake
area. (d) Distribution of coseismic landslides near the roads in the 2010 Yushu earthquake region.
(e,f) Distribution of coseismic landslides near the faults in the northwest and southeast of the 2017
Jiuzhaigou earthquake area.

5. Conclusions

Near-real spatial prediction of coseismic landslides can rapidly predict the location of
hundreds of thousands of coseismic landslides shortly after a violent earthquake; thus, it
can strongly support effective and efficient emergency rescue. This work focuses on six
great earthquakes occurring on the southeastern margin of the Tibetan Plateau from 2008 to
2022 and proposes a novel ensemble learning model of EnPr to realize near-real prediction
of ETLs. The model combines the advantages of tree-structured models and a neural
network and features relatively good generalization and relatively accurate prediction
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ability. Moreover, this work reveals the critical factors affecting the distribution of coseismic
landslides. Since the multi-source data used in this work are publicly available on a global
scale, the suggested EnPr model can be applied to new large earthquakes in the future.

(1) The EnPr model is applied to the ETL prediction of two newly occurring earthquakes.
Validated by all the actual coseismic landslides, the ACC values for the Jiuzhaigou
and Lushan earthquakes reach 91.28% and 93.78%, respectively. The AUC values for
the Jiuzhaigou and Lushan earthquakes attain 0.85 and 0.88, respectively. Moreover,
the EnPr model outperforms five state-of-the-art machine learning or deep learning
models: RF, ET, XGBoost, CNN, and Transformer. For the Jiuzhaigou earthquake,
compared with the RF, ET, XGBoost, CNN, and Transformer models, the ACC value
is improved by 3.23%, 3.48%, 4.77%, 22.89%, and 27.60%, respectively. The AUC value
is improved by 2.31%, 5.19%, 1.13%, 10.44%, and 19.66%, respectively. For the Lushan
earthquake, the ACC value is improved by 2.18%, 1.25%, 5.68%, 6.25%, and 27.77%,
respectively, and the AUC value is improved by 3.32%, 2.08%, 2.55%, 12.94%, and
23.17%, respectively. Therefore, EnPr features relatively accurate prediction ability.

(2) Seismic intensity, high and steep topography, pre-seismic fault tectonics, and pre-
earthquake road construction have important controlling or triggering influences on
coseismic landslide occurrence. Great seismic intensity causes severe damage to rock
and soil mass and a dramatic increase in excess pore water pressure. So coseismic
landslides are concentrated in the regions with great seismic intensities. High and
steep relief has an amplified effect on the refraction and reflection of seismic waves;
thus, coseismic landslides densely occur on thin ridges and steep mountains. Pre-
earthquake fault movement indicates the development of large cracks and the fracture
of rock and soil mass before an earthquake, so coseismic landslides primarily occur in
the fault-developed regions. Pre-seismic road construction excavates slope feet and
destroys the intactness of rock and soil mass, and the natural stress and seepage fields
are destructed. Therefore, numerous coseismic landslides are distributed along two
sides of roads.

In our future work, we will explore the integration of the short-term probability of
mechanical rock failure following severe ground shaking to enhance the precision of near-
real-time prediction of ETLs. Additionally, we aim to develop an early warning platform to
extend the prediction of earthquake-induced landslides to more regions.
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