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Abstract: Owing to the significant application potential of unmanned aerial vehicles (UAVs) and
infrared imaging technologies, researchers from different fields have conducted numerous experi-
ments on aerial infrared image processing. To continuously detect small road objects 24 h/day, this
study proposes an efficient Rep-style Gaussian–Wasserstein network (ERGW-net) for small road
object detection in infrared aerial images. This method aims to resolve problems of small object
size, low contrast, few object features, and occlusions. The ERGW-net adopts the advantages of
ResNet, Inception net, and YOLOv8 networks to improve object detection efficiency and accuracy
by improving the structure of the backbone, neck, and loss function. The ERGW-net was tested on
a DroneVehicle dataset with a large sample size and the HIT-UAV dataset with a relatively small
sample size. The results show that the detection accuracy of different road targets (e.g., pedestrians,
cars, buses, and trucks) is greater than 80%, which is higher than the existing methods.

Keywords: deep learning; aerial image; infrared image; detection; road object

1. Introduction

With the rapid development of information processing [1] and integrated circuit [2,3]
technology, the cost of advanced scientific and technological applications (e.g., unmanned
aerial vehicle (UAV) remote sensing [4–7] and deep learning networks [8–10]) is decreasing,
leading to many notable social and industrial improvements. These improvements enable
scientists to develop a variety of new products. For example, researchers have classified
crops with UAV remote sensing images and deep learning algorithms to provide decision
support for farmers’ planting and reduce crop management costs [11]. Some researchers
have applied drone-based remote sensing image processing for river characterization and
analysis to prevent or respond to unexpected flooding events [12]. Some researchers have
detected cracks on roads using UAV-based remote sensing images and convolutional neural
networks to analyze road damage [13]. Some researchers have observed wildlife activities
with UAV-based visible infrared remote sensing images to analyze information such as
population sizes, feeding sites, and migration directions [14]. It can be seen that UAV-based
remote sensing image processing has high application value, especially infrared remote
sensing image processing completed after the availability of low-cost infrared UAV remote
sensing equipment. High-performance and lower-cost infrared thermal imaging has many
advantages. First, object features can be obtained 24 h/day because there is no need
for external light sources during infrared imaging. Second, collectors can now penetrate
fog and provide anti-interference abilities [15]. Compared with fixed infrared thermal
imaging, UAV remote-sensing platforms have better flexibility and perform more complex
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imaging tasks, obtaining multidimensional imaging characteristics, even at night and in
poor weather, as can be seen in Figure 1. With the plummeting costs of aerial infrared
imaging tools, there is a great opportunity to make solutions more efficient with superior
performance. Although infrared aerial images have many advantages, they do not have
color and lack relatively fine texture information compared with visible images; therefore,
detecting small targets from infrared images is a big challenge, and how to detect infrared
small targets quickly and accurately has become a hot topic in the field of infrared remote
sensing. Presently, detection methods use either traditional artificial intelligence processes
or deep learning models. Notably, deep learning models provide dramatic improvements
in precision and accuracy with their iterative model training with dynamic multi-class
image features. Consequently, deep learning-based target detection techniques for UAV
infrared images were brought into the field of urban road surveillance and safety.

Figure 1. Advantages of infrared images compared with visual images. (a) Visual image at night,
(b) infrared image at night, (c) visual image in fog, and (d) infrared image in fog.

In the field of infrared image processing, researchers have performed a lot of work
for road surveillance and traffic target detection in recent years. The limited computing
power of early systems restricted artificial intelligence methods to image preprocessing,
with feature detection relying largely on parametric algorithms. For example, Iwasaki
et al. [16] later proposed a vehicle recognition algorithm based on infrared images for use
in inclement weather that extracts Haar-like features and pixel information and inputs
them into a cascaded set of multistage classifiers. Although the method can detect road
congestion, the target class can only account for positive and negative samples, which
greatly limits its practical utility.

Notably, traditional artificial intelligence methods require relatively small amounts
of computation, but a large number of parameters are required for training, and detection
accuracy is low. More recently, with the rapid improvements in and lowering costs of semi-
conductor technologies, it has become possible to build sophisticated deep learning models.
Consequently, in 2012, Krizhevsky et al. [17] won the ImageNet image competition using
the AlexNet method for target detection, outperforming traditional support vector machine
options and opening a new era of machine learning. Zhu et al. [18] proposed a deep learning
vehicle recognition model that uses a pretrained YOLOv3 network to detect targets using a
transfer learning approach; however, the method can only detect one target class at a time
and cannot manage multi-class target detection. Ren et al. [19], from the Nanjing University
of Science and Technology, proposed a super-resolution infrared small-target recognition
model that uses a generative adversarial network to detect super-resolution small targets
with high accuracy; however, the method requires a vast number of computations and
is inefficient. Alhammadi et al. [20] proposed a transfer learning method with relatively
high accuracy, but it requires infrared images collected using vehicle-mounted thermal
cameras. Hence, it is not suitable for handling aerial target prediction. Zhang et al. [21]
developed an aerial method that provides good feature extraction and processing but only
provides single-class detection results. Bhadoriya et al. [22] proposed a method designed
to handle low-visibility conditions using multiple long-wave infrared imagery to overcome
low-visibility restrictions while providing decision support for intelligent driving; however,
it requires multiple thermal imaging sensors and data fusion at very high computational
costs. Tichýd et al. [23] analyzed the thermal characteristics of road vehicle objects and used
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detailed features for vehicle detection and identification, but the data must be manually
processed, which is practically prohibitive.

In summary, researchers have made many advancements in road target recognition
using infrared images; however, current methods still struggle with multi-class detection,
high computational costs, and narrow application areas. To overcome these limitations, this
paper proposes an efficient Rep-style Gaussian–Wasserstein network (ERGW-net) based
on YOLOv8 for small road object detection in infrared aerial images. The ERGW-net
leverages state-of-the-art networks (i.e., Resnet and InceptionNet), adds an improved loss
function, and lays the foundation for a vast array of improvements. Using experiments, we
verify its improved effectiveness on a DroneVehicle dataset [24] and the famous HIT-UAV
dataset [25]. The main contributions of our method can be summarized as follows:

• By redesigning and improving the backbone and neck, network parameters are re-
duced, and target detection accuracy is improved.

• A new loss function is proposed. Aiming to address the drawbacks of the existing loss
function in small target recognition, we propose the loss function LGWPIoU to improve
target detection accuracy.

• To the best of our knowledge, this is the first time that up to five small target detection
categories are considered using only UAV infrared images.

2. Materials and Methods

In order to better design the ERGW-net for small object detection in UAV-based
infrared remote sensing images, we need to understand the characteristics of UAV remote
sensing infrared images and prepare a large number of UAV infrared remote sensing images.
Our private dataset has the disadvantages of a single shooting scene and inaccessibility for
subsequent comparison studies by other researchers, so we selected two public datasets
such as HIT-AUV and DroneVehicle.

2.1. Datasets

The two datasets contain different target classes and numbers of instances, so their
structure and characterization are introduced separately.

2.1.1. HIT-UAV

The HIT-UAV dataset is a collection of UAV infrared remote sensing images provided
by Zhang et al. [25]. A drone DJI Matrice M210 V2 is used to obtain the dataset, and a
DJI Zenmuse XT2 infrared camera is mounted on the drone, which has a resolution of
640 × 512 pixels and a 25 mm lens. The dataset contains 2898 infrared images taken above
roads, parking lots, and schools. Because it contains several targets from various complex
scenes, it is more suitable for verifying the robustness of detection algorithms than datasets
with multiple targets from a single scene. Furthermore, the infrared images in this dataset
contain several imaging influencing factors information, such as different flight altitudes
and different shooting angles. The variations in altitude from 60 m to 130 m and shooting
angles different from 30◦ to 90◦ play an important role in the diversity of target imaging
results in the dataset. This study divided the data into training, validation, and testing sets,
and person, car, bicycle, other, and “DontCare” classifications were labeled. The number
and size distribution of target instances used for training is described in Figure 2, where the
total number of instances from different classes is shown in Figure 2a. The horizontal and
vertical axes in Figure 2b indicate the normalized target size relative to the whole image
size. The horizontal scale represents the ratio of target width and image width; the vertical
scale represents the ratio of target height and image height. Thus, both the x and y axes
in Figure 2b have no units. In Figure 2b, different squares represent instances of different
sizes, and the more overlapping instances of the same size are, the deeper color of their
corresponding regions.
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Figure 2. Distribution of object instances in the HIT-UAV dataset. (a) Instance number distribution
and (b) instance size distribution.

According to Figure 2a, the number of person samples is the largest, and the numbers
of other vehicle and DontCare samples are the smallest. Figure 2b shows that the resolution
of most of the instances is less than two-tenths of the resolution of the infrared image, and
even some of the instances have one-tenth of the resolution of the original image, which is
because there is the largest number of people instances in the dataset. To better understand
the relationship between instance resolution and infrared image resolution, it is necessary
to view several typical sample infrared images from the dataset. Sample images of different
road objects are shown in Figure 3.

Figure 3. Sample HIT-UAV images containing different objects: (a) cars and other vehicles on a road,
(b) cars and bicycles in a parking lot. (c) cars and people on a roadside, (d) people in a playground,
(e) cars and other vehicles at a crossroad, and (f) cars in a parking lot.
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It can be seen in Figure 3 that the HIT-UAV dataset contains a variety of people, cars,
bicycles, and other vehicles in complex scenarios, where people and bicycle targets are
much smaller than cars and other vehicles. Regardless of the varying sizes between the
different classes, it can be seen that they occupy few pixels in the infrared image, most of
which belong to the category of small objects. Therefore, this dataset is suitable for testing
the performance of our model.

2.1.2. DroneVehicle

The DroneVehicle dataset is a collection of UAV remote sensing images provided by
Zhu et al. [24]. To produce this dataset, they used the DJI M200 UAV platform with a
Zenmuse XT 2 longwave infrared camera, which uses a VOx uncooled imaging sensor with
a resolution of 640 × 512, and the UAV platform was also equipped with a CMOS visual
camera. So, this dataset provides visible and infrared dual-mode image data that can be
used for the automatic detection, classification, and localization of road vehicles. Its data
volume is relatively large, containing 28,439 pairs of visible and infrared images in the
daytime and darkness (with and without lights), five types of targets: cars, trucks, buses,
vans, and freight cars, and different scenarios such as parking lots, urban roads, overpasses
and other types of parking lots. It has different shooting angles and different flight altitudes
from 80 m to 120 m. We selected infrared images from the dataset and converted its oriented
bounding-box (OBB) labels [26] into horizontal bounding box (HBB) labels [27] because
only the rotating target labels were provided in the original dataset. There may be one or
more target instances in an infrared image, so it is necessary to understand the distribution
of different target instances in the dataset. The distribution of the target instances used for
training is shown in Figure 4.

Figure 4. Distribution of target instances in the DroneVehicle dataset: (a) instance number distribution
and (b) instance size distribution.

Figure 4a shows that, within the dataset, cars have the largest number of target
instances, and vans had the smallest. In terms of instance size, most instances are less than
one-tenth the overall size of images in terms of length and width. Some example pictures
are shown in Figure 5.

As can be seen in Figure 5, the DroneVehicle dataset includes five types of road target
instances with relatively small sizes in different scenarios, making it very suitable for
evaluating the performance of our model.

After analyzing the structural characteristics of the UAV remote sensing dataset, we
found that the road objects in infrared remote sensing images are not only smaller but
also have lower contrast. Therefore, we pre-processed the datasets using the Adaptive
Contrast Enhancement [28] algorithm to improve the contrast of the images and then
designed the detection model ERGW-net that can detect small road objects in infrared
remote sensing images.
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Figure 5. Sample DroneVehicle images containing road objects: (a) freight cars at night, (b) cars and
buses on a road, (c) different vehicles on an overpass, (d) cars and freight cars on an overpass, (e) cars
and buses in a parking lot, and (f) cars and buses at a crossroad.

2.2. Methods

The ERGW-net consists of a backbone, neck, and head. The backbone leverages
modified CSPDarknet53 [29] with a new block called iRepblock, which combines the
advantages of InceptionNet [30] and ResNet [31] to improve feature acquisition while
decreasing computational demands. The neck fuses and categorizes the infrared image
features, and a new loss function is provided at the head to improve the network’s ability
to process small road objects from aerial infrared images. The overall structure of the
ERGW-net is shown in Figure 6.

The backbone, neck, and head structures of the ERGW-net are given on the right side
in Figure 6, and the left half gives a schematic of the main module’s basic structure from
the right-side part, where some different colored modules are from YOLOv8. In this paper,
we propose the iRepblock of backbone, the ERC block of neck, and the loss function of
the head.
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Figure 6. Overall ERGWnet structure.

2.2.1. Backbone

The role of the backbone is to extract features from images. To improve the overall
performance of the backbone, we propose a new Rep-style backbone structure based on
modified CSPDarknet53 [29] from YOLOv8. In other words, we provide a Rep-style capa-
bility that supports the modified CSPDarknet53 by orchestrating ResNet, InceptionNet, and
efficient RepVGG ConvNet capabilities [32]. Our Rep-style method reduces the parameter
dimension with its improved RepConV (iRepConV) structure and increases the efficiency of
feature extraction with its improved Repblock (iRepblock) module using several iRepConV
structures. To understand the orchestration process, it is necessary to first understand the
architectures of iRepConV and iRepblock, as shown in Figure 7.

Figure 7. Improved RepConV and Repblock: (a) improved RepConV and (b) improved Repblock.
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As shown in Figure 7a, there are several types of neural network modules such as batch
normalization (BN) [33] and 1 × 1 Conv2d. To solve the problem of gradient vanishing, we
imitate a ResNet by transmitting inputs directly to the output layer with the addition of a
BN module. A 1× 1 Conv2d is used for dimension reduction and rectified linear activation,
which greatly reduces computational costs. Several iRepConVs comprise an iRepblock,
and the number of iRepConVs, n, varies according to the task. In this case, n = 2. With
these preparations, we change the original structure of the modified CSPDarknet53 and
use iRepblock to reduce the number of parameters, without decreasing the performance,
to obtain a new backbone structure named Rep-style network. In this way, we are able to
obtain the most useful features from infrared images where the target is not obvious. The
specific structure is shown in Figure 8.

Figure 8. Structure of the improved darknet.

In Figure 8, it can be seen that the Rep-style network retains the CBS structure and
SPFF structure of the modified CSPDarknet53, thus retaining the original advantages.
iRepblock is used in the latter half of feature extraction to achieve the purpose of reducing
the parameters and improving the performance.

2.2.2. Neck

To improve the multiscale feature fusion efficiency of the network and achieve a
balance between network parameters and detection accuracy, this paper designs a new
neck structure with Efficient-RepConV (ERC) based on YOLOv8. The ERC improves net-
work’s feature fusion capabilities by leveraging the advantages of ResNet and InceptionNet
with combining transpose, conv, and upsampling operations for better road small object
recognition (Figure 9).

Figure 9. Structure of the improved neck and ERC blocks: (a) ERC unit and (b) ERC block.

As illustrated in Figure 9a, the ERC residual network avoids the vanishing gradient
problem by directly passing inputs to the output, and a 1 × 1 Conv2d supplies dimensional
reduction and rectified linear activation. Subsequently, BN and Sigmoid activation [34] are
used to obtain the ERC unit. Each unit is the basis for constructing a transposition-based
ERC block (Figure 9b), and the number depends on the training situation. In this study, four
ERC units constitute a block that leverages the upsampling and C2f structure of YOLOv8.
As a result, multiscale feature fusion improves with detection accuracy. Considering the
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mutual constraints between parameter reduction and detection accuracy, we put ERCblock
on the feature-output side of the neck, and the specific structure of the improved neck is
shown in Figure 10.

Figure 10. Structure of the improved neck.

According to Figure 10, it can be seen that the ERC block takes advantage of the
positional advantages in the neck structure, not only outputting feature information to
head1 but also affecting head2 and head3 with the feature information outputted to the
CBS. This optimization of the neck structure plays an important role in processing infrared
images with low contrast and few features. The effect of the improved neck on the detection
of road small objects is given in the ablation experiment section.

2.2.3. Loss Function of the Head

Due to the small sizes of most road objects found in UAV aerial images, general
deep learning detectors have low accuracy, which is exacerbated by the absence of color
and texture features in infrared images. To solve this problem, we redesigned the loss
function of the head and constructed its intersection over union (IoU) calculation method.
Traditional IoU calculation methods are less useful, especially with the presence of overlaps
and occlusions [35]. In the traditional IoU calculation, when the detection area of a small
target changes slightly relative to the ground truth, the calculated IoU and the loss function
change greatly, which reduces the detection accuracy, so we provide a novel Gaussian–
Wasserstein Points (GWPIoU) calculation method based on Wasserstein [35] and minimum
points distances [36].

The GWPIoU method consists of NWDIoU and MPDIoU, where NWDIoU is used to
solve the problem of detecting small targets with a statistical approach, and the problem
of overlapping targets is solved using MPDIoU. To make it easier to understand the rela-
tionship between traditional IoUs, NWDIoUs, and MPDIoUs, we give the corresponding
schematic diagrams in Figure 11. The NWDIoU [29] calculation is as follows:

NWD(Na, Nb) = exp(−

√
W2

2(Na, Nb)

c
), (1)

where W2
2(Na, Nb) is the Gaussian distribution distance matrix and c is a constant that is

generally related to the dataset.
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Figure 11. Schematic diagram of traditional IoU, NWDIoU, and MPDIoU.

The MPDIoU calculation [36] increases the detection rate of occluded or overlapped
small objects as they relate to the coordinates of the prediction area, ground truth region,
and image length and width. This is calculated as follows:

MPDIoU =
A∩ B
A∪ B

− d2
1

w2 + h2 −
d2

2

w2 + h2 (2)

where A is the ground truth region, B is the prediction region, and d1 and d2 are the
distances corresponding to the upper-left and lower-right corners of regions A and B,
respectively, which are calculated as follows:

d2
1 =

(
xB

1 − xA
1
)2

+
(
yB

1 − yA
1
)2

d2
2 =

(
xB

2 − xA
2
)2

+
(
yB

2 − yA
2
)2.

(3)

The GWPIoU formula is as follows:

GWPIoU = αGWIoU + βMDPIoU, (4)

where α is a constant whose value range is (0–1), which is chosen based on the dataset. The
smaller an object, the larger the value of α (0.9 in this paper). Similarly, β is a constant with
a value of 0.1 in this paper. According to the loss function theory, LGWPIoU is calculated
as follows:

LGWPIoU = 1 − GWPIoU. (5)

Section 3 relates the results and analyses of all these components.

3. Results

The computer used for the experiment was an Intel Core i5-13400 with 32 GB memory
and an NVIDIA GeForce RTX 3060 GPU. The validation experiments were divided into
comparison and ablation types, where the comparisons were used to verify the effectiveness
of the proposed algorithm compared with others, and the ablation tests were conducted to
verify the effectiveness of individual modules.

To verify the effectiveness of the ERGW-net in different scenarios, this paper carries
out algorithm validation experiments using the DroneVehicle and HIT-UAV datasets. In
order to reduce the negative impact of low-contrast infrared images on object detection,
we preprocessed the datasets for contrast enhancement using the Adaptive Contrast En-
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hancement [28] method. The preprocessed infrared images with high contrast were more
suitable for subsequent experiments.

3.1. Evaluation Metrics

In this section, to evaluate the road object detection capability of the ERGW-net, the
following variables are introduced and defined.

3.1.1. Precision

Precision measures the number of true positives in a detection result and is specified
by the following formula [37]:

P =
TP

TP + FP
(6)

where P is the precision of road object detection, TP is the number of true positives in the
detected set, and FP is the number of false positives.

3.1.2. Average Precision (AP)

The detection accuracy of our algorithm for a particular class of road targets was
measured using AP [38], calculated by averaging the overall precision of detection. The
mathematical expression is as follows:

AP =
1
m∑m

i Pi, (7)

where AP is the average detection accuracy of a particular class of road targets, m is a
positive sample among n road samples belonging to the same class, and Pi is the probability
of the detection precision for each positive sample.

3.1.3. Mean Average Precision (mAP)

mAP measures the overall detection precision of different classes in a dataset. AP
measures the detection precision of one class, and there are generally several classes in the
dataset. Thus, mAP has the following expression:

mAP =
1
c

c

∑
j

APj (8)

where c is the number of road object classes in the dataset, and APj is the average detection
accuracy of one of the classes.

3.1.4. mAP50

Bounding box regression and object position estimation tasks are parts of the larger
road object detection effort, and the precision of the bounding box is measured using the
IoU. The mAP value when IoU = 0.5 is referred to as mAP50, which is what we used to
measure algorithmic effectiveness.

3.2. Comparative Experiments

In this study, the performance of the proposed algorithm was compared with that of
other target detection algorithms, including Faster R-CNN [39], YOLOv5 [40], YOLOv7 [41],
and YOLOv8 [42]. These experiments verified the superiority of ERGW-net over other
algorithms for road small target detection.

3.2.1. Results on the HIT-UAV Dataset

To verify the detection performance datasets with a small number of samples, the
ERGW-net and the other algorithms were tested on the HIT-UAV dataset. We trained the
different algorithms on the dataset for 300 epochs and obtained the corresponding training
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results. The mAP50 variation curves of the different algorithms from the training phase are
illustrated in Figure 12.

Figure 12. mAP50 variation curves of different algorithms during training on the HIT-UAV dataset.

According to the variation in the curves of different algorithms in Figure 12, the
corresponding curve of our proposed algorithm trends above the others, indicating that it
has better training performance.

The results of the comparative experiments are listed in Table 1. According to Table 1,
compared with other target detection algorithms, the ERGW-net had the highest mPA50,
reaching more than 80% on the HIT-UAV dataset. When we analyze the AP50 of different
classes, we find that all the classes have the highest accuracy except BC. This is because
e-bicycles have different types and sizes in real life, and their infrared image features vary
a lot. At the same time, there are not many corresponding improvements in the detection
network, which causes the AP50 of BC to not be the highest. Visualized images of the
detection results are shown in Figure 13.

Figure 13. Detected HIT-UAV targets: (a) cars and another vehicle, (b) cars, (c) cars, (d) other vehicle,
(e) a person and cars, (f) people and DontCare, (g) a person, a car, and bicycles, and (h) cars and
bicycles, and (i) people and cars.
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Table 1. Results of the comparative experiment on the HIT-UAV dataset.

Different Methods, Classes Person Car Bicycle Other Vehicles DontCare mAP50

Faster RCNN 20.5 80.4 51 35.6 40 45.5

YOLOV5 91.2 98 85.9 77.1 37.1 78

YOLOV7 90.4 97.5 92.1 78.1 26.3 77.5

YOLOV8 90.4 97.9 87.9 71.7 29.7 75.5

Ours 91.2 98 88.9 83.4 45.7 81.5

According to Figure 13, it can be seen that our proposed algorithm does a great job
when detecting different targets in a variety of scenarios.

3.2.2. Results on the DroneVehicle Dataset

When faced HIT-UAV with small sample sizes, some of the detection features of the
ERGW-net cannot be reflected in the experimental results. Hence, to obtain more detailed
performance, we need a dataset with a large sample size: the DroneVehicle dataset.

Using the DroneVehicle dataset, the mAP50 variation curves of the different algorithms
during training are shown in Figure 14.

Figure 14. mAP50 variation curves of different algorithms during training on the DroneVehicle
dataset.

Based on the variation in the curves of the different algorithms in Figure 14, the
experimental results are listed in Table 2.

Table 2. Results of the comparative experiment on the DroneVehicle dataset.

Different Methods, Classes Car Truck Bus Van Freight Car mAP50

Faster RCNN 80.4 53.2 73.5 47.5 46.9 60.3

YOLOV5 96 73 94.1 59.3 71.4 78.8

YOLOV7 96.7 73.4 95 64.4 70.0 79.8

YOLOV8 96.5 73.6 94.8 64.4 72.5 80.4

Ours 96.9 77.9 96.1 66.8 74.8 82.5

According to Table 2, it can be seen that the proposed algorithm obtains superior
mAP50 scores on the DroneVehicle dataset compared with the other algorithms, reaching
higher than 80%. Some of the visual detection results are shown in Figure 15.
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Figure 15. Detected DroneVehicle targets: (a) stopped cars, (b) cars, buses, and trucks, (c) cars and a
freight car, (d) cars and a bus, (e) buses in a parking lot, (f) cars and a bus on urban highway, (g) cars,
a van, and trucks, and (h) cars on overpasses, and (i) cars and a truck.

From Figure 15, it can be observed that the proposed algorithm accurately detects
multiple road targets in different environments.

3.3. Ablation Experiment

Next, we report on the effectiveness of the different modules comprising the ERGW-
net for road target detection. Because the ERGW-net contains three new modules (i.e., the
LGWPIoU loss function, ERC block, and Repblock), one module at a time was discarded to
check for differences in the results (Table 3).

Table 3. Results of the ablation experiment on the DroneVehicle dataset.

iRepblock ERC Block LGWPIoU mAP50 on DroneVehicle

X X 80.1

X X 79.2

X X 78.4

X X X 82.5
Xmeans ERGW-net contains this module, blank means it does not.

Table 3 shows that the mAP50 of the ERGW-net on the DroneVehicle dataset decreased
from 82.5% to 78.4% after removing the LGWPIoU loss function. Similarly, it dropped from
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82.5% to 79.2% after removing the ERC module and from 82.5% to 80.1% after removing
iRepblock. Therefore, the LGWPIoU loss function contributes the most to small target
detection accuracy improvement, whereas iRepblock contributes the least.

4. Discussion

According to the experimental results, it can be seen that the algorithm proposed
in this paper has good performance on the HIT-UAV and DroneVehicle datasets. The
following summary of the discussion points is provided:

• During model training, the degree of fluctuation in the training curves on the HIT-UAV
dataset was larger than that on the DroneVehicle dataset, indicating that the large
sample dataset was more suitable for training.

• The mAP50 score of the proposed algorithm on both datasets was greater than 80%,
but it still has space for improvement; hence, we plan to improve the algorithm in
future work.

• To understand which bounding boxes were used to make predictions, in this paper, we
used class activation maps (CAM) [43–45] to help overcome the black-box rationale of
deep learning models. The CAM of different classes from the DroneVehicle datasets are
shown in Figure 16. The redder color indicates the higher classification contribution
and the bluer color represents the lower classification contribution

Figure 16. CAMs of different classes from the DroneVehicle datasets: (a1,a2,a3) moving cars on the
road, (b1,b2,b3) cars, vans and freight cars, (c1,c2,c3) stopped cars.

• It can be seen from the CAM results on the DroneVehicle dataset that the ERGW-net
achieves accurate localization results for small road targets from different infrared
aerial images and categorizes them into different classes with high efficiency.
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• In order to comparatively analyze the CAM visualization results of ERGW-net on the
different datasets, Figure 17 shows the CAM visualization results of the algorithm on
the HIT-UAV dataset for different classes.

Figure 17. CAMs of different classes from the HIT-UAV datasets: (a1,a2,a3) cars on the road,
(b1,b2,b3) people and bicycles, (c1,c2,c3) cars in parking lot.

• Figure 17 illustrates that the algorithm’s CAM results on the HIT-UAV dataset are not
as good as those on the DroneVehicle dataset. This is because the number of samples
is small and the feature information of small targets such as bicycles and people is not
obvious in the HIT-UAV dataset.

• In order to understand the false recognition rate of the ERGW-net between different
classes during target detection, the confusion matrix of the algorithm on different
datasets is given in Figure 18.

• Figure 18a shows that there is a higher probability that some background objects such
as streetlights or small thermal targets are recognized as people, which is up to 0.46.

• Because there was no corresponding object called “DontCare” in the real world, and
the number of relevant samples was very small in the HIT-UAV dataset, the mAP50 of
“DontCare” is quite low.

• Because some of the traffic facilities and small houses have similar imaging features to
car in the infrared image, it can be seen in Figure 18b that there is a higher probability
that some of the objects in the background will be detected as car.

• According to Figure 18b, it is known that sometimes a truck is recognized as a
freight_car; meanwhile, a freight_car is also detected as a truck. This is because
a truck and a freight_car have relatively similar features except for the shape ratio.
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• Compared with similar research, the number of classes detected using our method
based on UAV infrared images is more than that of the other methods, and the
proposed loss function in this method has some value for subsequent small object
detection research.

Figure 18. Normalized confusion matrix of the ERGW-net in different datasets: (a) HIT-UAV and
(b) the DroneVehicle datasets.

5. Conclusions

To realize the potential value of UAVs and thermal infrared technology to provide
continuous road-target detection 24 h/day, this paper proposed the ERGW-net. Leveraging
the advantages of InceptionNet, ResNet, and YOLOv8, our novel high-efficiency backbone,
neck, and head constructions leveraged LGWPIoU loss function to improve the overall
detection accuracy of small road targets. Comparison experiments were carried out on
the latest HIT-UAV and DroneVehicle datasets to measure the performance of our model
and compare it with other state-of-the-art methods. All were used to classify road targets
into a variety of classes (e.g., small cars, lorries, pedestrians, bicycles, and buses) and to
produce visualizations of the results using CAMs. The mAP50 accuracy results of our
model exceeded 80%, which is higher than any previous method. The effects of each part
of the proposed model were analyzed with an ablation experiment, showing that the loss
function contributed the most.

Author Contributions: T.A. and J.L. are co-first authors with equal contributions. Conceptualization,
T.A. and J.L.; methodology, T.A.; validation, Y.Z.; writing, T.A. and Y.Z.; investigation, W.L. and N.G.;
supervision, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the 14th Five-Year Plan Funding of China, grant number
50916040401, and in part by the Fundamental Research Program, grant number 514010503-201.

Data Availability Statement: The HIT-AUV dataset mentioned in this paper is openly and freely
available at https://pegasus.ac.cn/ (accessed 24 September 2023). The drone vehicle dataset used in
this study is freely available at https://github.com/VisDrone/DroneVehicle/blob/master/README.
md (accessed 24 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, J.R.; Gen, M. Accelerating genetic algorithms with GPU computing: A selective overview. Comput. Ind. Eng. 2019, 128,

514–525. [CrossRef]
2. Pennisi, S. The Integrated Circuit Industry at a Crossroads: Threats and Opportunities. Chips 2022, 1, 150–171. [CrossRef]
3. Hao, Y.; Xiang, S.; Han, G.; Zhang, J.; Ma, X.; Zhu, Z.; Guo, X.; Zhang, Y.; Han, Y.; Song, Z.; et al. Recent progress of integrated

circuits and optoelectronic chips. Sci. China Inf. Sci. 2021, 64, 201401. [CrossRef]

https://pegasus.ac.cn/
https://github.com/VisDrone/DroneVehicle/blob/master/README.md
https://github.com/VisDrone/DroneVehicle/blob/master/README.md
https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/10.3390/chips1030010
https://doi.org/10.1007/s11432-021-3235-7


Remote Sens. 2024, 16, 25 18 of 19

4. Lee, C.Y.; Lin, H.J.; Yeh, M.Y.; Ling, J. Effective Remote Sensing from the Internet of Drones through Flying Control with
Lightweight Multitask Learning. Appl. Sci. 2022, 12, 4657. [CrossRef]

5. Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring:
A Systematic Review. Remote Sens. 2022, 14, 3205. [CrossRef]

6. Zhang, J.Z.; Guo, W.; Zhou, B.; Okin, G.S. Drone-Based Remote Sensing for Research on Wind Erosion in Drylands: Possible
Applications. Remote Sens. 2021, 13, 283. [CrossRef]

7. Wavrek, M.T.; Carr, E.; Jean-Philippe, S.; McKinney, M.L. Drone remote sensing in urban forest management: A case study. Urban
For. Urban Green. 2023, 86, 127978. [CrossRef]

8. Wang, X.T.; Pan, Z.J.; Gao, H.; He, N.X.; Gao, T.G. An efficient model for real-time wildfire detection in complex scenarios based
on multi-head attention mechanism. J. Real Time Image Process. 2023, 20, 4. [CrossRef]

9. Liu, H.M.; Jin, F.; Zeng, H.; Pu, H.Y.; Fan, B. Image Enhancement Guided Object Detection in Visually Degraded Scenes. IEEE
Trans. Neural Netw. Learn. Syst. 2023. [CrossRef]

10. Zhang, T. Target Detection for Motion Images Using the Improved YOLO Algorithm. J. Database Manag. 2023, 34, 3. [CrossRef]
11. Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV

imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [CrossRef]
12. La Salandra, M.; Colacicco, R.; Dellino, P.; Capolongo, D. An Effective Approach for Automatic River Features Extraction Using

High-Resolution UAV Imagery. Drones 2023, 7, 70. [CrossRef]
13. Fakhri, S.A.; Satari Abrovi, M.; Zakeri, H.; Safdarinezhad, A.; Fakhri, S.A. Pavement crack detection through a deep-learned

asymmetric encoder-decoder convolutional neural network. Int. J. Pavement Eng. 2023, 24, 2255359. [CrossRef]
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