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Abstract: A thorough evaluation of the recently released Global Satellite Mapping of Precipitation
(GSMaP) is critical for both end-users and algorithm developers. In this study, six products from three
versions of GSMaP version 8, including real time (NOW-R and NOW-C), near real time (NRT-R and
NRT-C), and post-real time (MVK-R and MVK-C), are systematically and quantitatively evaluated
based on time-by-time observations from 2167 stations in mainland China. Among each version,
both products with and without gauge correction are adopted to detect the gauge correction effect.
Error quantification is carried out on an hourly timescale. Three common statistical indices (i.e.,
correlation coefficient (CC), relative bias (RB), and root mean square error (RMSE)) and three event
detection capability indices (i.e., probability of detection (POD), false alarm ratio (FAR), and critical
success index (CSI)) were adopted to analyze the inversion errors in precipitation amount and
precipitation event frequency across the various products. Additionally, in this study, we examine
the dependence of GSMaP errors on rainfall intensity and elevation. The following main results can
be concluded: (1) MVK-C exhibits the best ability to retrieve rainfall on the hourly timescale, with
higher CC values (0.31 in XJ to 0.47 in SC), smaller RMSE values (0.14 mm/h in XJ to 0.99 mm/h in
SC), and lower RB values (−4.78% in XJ to 16.03% in NC). (2) Among these three versions, the gauge
correction procedure plays a crucial role in reducing errors, especially in the post-real-time version.
After being corrected, MVK-C demonstrates an obvious CC value improvement (>0.3 on the hourly
timescale) in various sub-regions, increasing the percentage of sites with CC values above 0.5 from
0.03% (MVK-R) to 28.47% (MVK-C). (3) GSMaP products generally exhibit error dependencies on
precipitation intensity and elevation, particularly in areas with drastic elevation changes (such as
1200–1500 m and 3000–3300 m), where the accuracy of satellite precipitation estimates is significantly
affected. (4) CC values decreased with an increasing rainfall intensity; RB and RMSE values increased
with an increasing rainfall intensity. The results of this study may be helpful for algorithm developers
and end-users and provide a scientific reference for different hydrological applications and disaster
risk reduction.

Keywords: GSMaP; precipitation evaluation; error characteristics; hourly; mainland China

1. Introduction

Precipitation is a critical component of the hydrological cycle, with direct impacts on
natural ecosystems, water resource allocation and utilization, disaster monitoring, and
other aspects [1,2]. Accurate monitoring of precipitation is essential for socioeconomic
development and human survival [3,4]. Traditional ground-based rain gauges work by
directly measuring the total amount of rainfall that falls on the ground with a high accuracy
and applicability, allowing for easy data transmission and providing a high temporal
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resolution. However, limitations include insufficient spatial representativeness, difficult
and costly data collection, inconsistent monitoring instruments and data quality, and other
existing issues [5].

To address the aforementioned issues, researchers have used various methods to
obtain more widely distributed precipitation data, such as radar detection [6,7], numerical
simulation, and satellite remote sensing [8]. Compared to meteorological station observa-
tions, weather radars can detect precipitation within their radiation range with a wider
coverage and a high resolution [9]. However, observations based on radar are highly
affected by terrain and their coverage is still very limited. In addition, the construction of a
weather radar station is costly [10]. Numerical simulations establish a predictive model
based on physical mechanisms and the interaction of various meteorological elements
in the atmosphere. However, these models are often influenced by many factors, such
as physical mechanisms, initial conditions, and model parameters, making it difficult to
accurately predict ground precipitation [11,12].

Satellite precipitation estimates (SPEs) have the advantages of a wide coverage, a
high temporal resolution, and multi-source fusion, and are less affected by weather con-
ditions [13]. Additionally, satellite precipitation sensors are the only means to achieve
comprehensive near-real-time coverage of the Earth [13]. However, different satellite pre-
cipitation estimations have different characteristics regarding their retrieval algorithms,
sensors, spatiotemporal resolution, and coverage area [13]. Although in recent years
the continuous updates and improvements of global satellite precipitation data products
have led to an increased accuracy and reliability for practical applications [14–16], the
estimated precipitation values obtained through SPEs are still subject to errors and uncer-
tainties [16,17]. Therefore, accuracy verification is necessary before using SPEs to ensure
data reliability.

In 2014, the Global Precipitation Mission (GPM) was implemented, which carried
a more advanced dual-frequency precipitation radar (DPR) and a GPM microwave im-
ager (GMI) to more accurately detect solid and trace precipitation (<0.5 mm/h) [18,19].
GSMaP is a high-resolution global precipitation product developed by the Japan Aerospace
Exploration Agency (JAXA) under the GPM program. It integrates GPM satellite sensor
observation data and continually improves the fusion inversion algorithm based on TRMM
to enhance the accuracy and spatiotemporal resolution of the data [20,21]. In December
2021, JAXA released Global Satellite Mapping of Precipitation Version 8 (GSMaP V8), with
many new features. These features include the expansion of the data retrieval scope to the
global level in the new version’s passive microwave (PMW) algorithm, better inversion
of strong terrain rainfall, adoption of a new normalization module to homogenize rainfall
estimates, and implementation of histogram matching to reduce errors based on PMW and
infrared echo detection [22]. Kubota, Aonashi, Ushio, Shige, Yamaji, Yamamoto, Hirose,
and Takayabu [22] reported improved results after preliminary verification using ground
radar data adjusted for rain gauges in Japan’s land areas. GSMaP satellite precipitation data
products are divided into three versions (i.e., real-time, near-real-time, and post-real-time
versions) based on the length of the data inversion lag time and the different input data
resources used by the algorithms. Different versions of products are designed to meet the
needs of different applications. For example, the spatiotemporal changes in instant extreme
weather events such as typhoons and floods need real-time or near-real-time data with a
shorter inversion latency [23,24]. However, due to the time costs of the inversion algorithm
and the collection and processing of different input data, the near-real-time version often
only contains limited input data. This limitation results in more universal errors and
uncertainties compared to post-real-time satellite precipitation product data [18,19].

These GSMaP products with different input data sources, retrieval algorithms, and cor-
rection technologies may have different performances [25]. Therefore, accuracy validation
is necessary before applying different versions of GSMaP products in hydro-meteorological
research. Liu et al. [26] compared the performance of NRT-R and NOW-R in captur-
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ing the Henan rainstorm event and found that NRT-R performed better than NOW-R.
Mega et al. [21] compared NRT-R, MVK-R, and MVK-C in Japan and found that the RMSE
of these three products gradually decreased. Hsu et al. [27] compared NRT-R and NRT-C in
Taiwan, and Chen et al. [28] validated MVK-R and MVK-C in China and confirmed that the
gauge correction algorithm used in the MVK-C system effectively reduced the systematic
bias of MVK-R under various terrain conditions. However, on the hourly scale, few studies
have focused on the intercomparison between the in three GSMaP versions with different
latency times.

Currently, numerous scholars at home and abroad have conducted extensive error
evaluations of different versions of GSMaP products in various regions and at different
timescales. Based on existing research (Table A1), on the one hand, most studies tend to
focus on exploring the NRT-R, MVK-R, and MVK-C products. MVK-C has a relatively
low relative average error [29,30] and performs well at various altitudes [18], while NRT-R
tends to exaggerate the intensity of floods [31], often missing mild or moderate rainfall
events, leading to errors in the assessment of total rainfall scores [32]. It also has significant
elevation-angle-related errors [18], but has a high accuracy in detecting typhoon precipita-
tion [33]. NRT-C performs better than NRT-R and is a more reliable near-real-time satellite
precipitation product [34], and both NOW-R and NRT-C have some predictability for flood
events [35]. On the other hand, the time resolution of GSMaP products is 0.5 h or 1 h. Most
studies tend to focus on daily or monthly scales, and few studies have focused on the error
characteristics on sub-daily timescales (e.g., hourly). Further, with the continuous updates
of GSMaP, the error characteristics of the six precipitation products from the three versions
still remain unclear.

Based on hourly precipitation data from 2167 ground stations in mainland China, this
study aims to systematically and quantitatively evaluate the precipitation inversion and
event-capturing ability of six products from the three versions of GSMaP V8. To compare
the results with existing research, we conducted error evaluations of GSMaP V8 on both
hourly and daily timescales. The results can help us better understand the applicability
and limitations of SPEs in mainland China and provide scientific support for end-user data
selection, algorithm upgrades, and improvements of the products.

The rest of this paper is organized as follows: Section 2 describes the data and methods
used in the study, including the study area, datasets, and methods. Section 3 evaluates the
spatiotemporal accuracy of different GSMaP products at different timescales. Section 4 is
the discussion section. Section 5 summarizes the main research results of this paper.

2. Data and Methodology
2.1. Study Area

Mainland China is located in eastern Asia (between 73◦33′ and 135◦05′E and 3◦51′

and 53◦33′N). Mainland China’s topography is both intricate and diverse, characterized
by a stepped distribution from west to east. The eastern regions feature a relatively flat
terrain, whereas the western areas present more complex landscapes [36,37]. Rainfall is
abundant along the southeast coast of China and gradually decreases as it moves inland
to the northwest. Based on the previous literature [38,39], considering factors such as
elevation, mountain ranges, and annual cumulative precipitation, this research divides
mainland China into seven distinct sub-regions (Figure 1), including in-land Xinjiang (XJ),
the Qinghai–Tibetan Plateau (TP), northwestern China (NW), northeastern China (NE),
northern China (NC), southeastern China (SC), and the Yungui Plateau (YP). Meteorological
observation stations are densely concentrated in the southeastern region, while they are
sparser in the northwest [40]. These stations supply a substantial volume of measured
precipitation data, which establishes favorable objective conditions for further validating
the precision and dependability of the SPEs [18].
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Figure 1. (a) Digital elevation model (DEM) and (b) locations of meteorological stations in
mainland China.

2.2. Datasets
2.2.1. Ground Reference Dataset

Hourly observation data from surface meteorological stations were obtained from the
China Meteorological Data Service Centre (CMDC, http://data.cma.cn, accessed on 1 Jan-
uary 2023). This product provides various meteorological elements, including temperature,
pressure, humidity, wind, and precipitation. All precipitation data from the stations under-
went rigorous quality control, including screening for extreme values, internal consistency
checks, spatial consistency filtering, and missing value detection [40]. Hourly precipitation
data from December 2021 to November 2022 were selected from the observation data. A
total of 2167 stations without missing data were used to validate the accuracy of the GSMaP
precipitation product. It should be noted that the evaluation is not completely independent.
This is due to the utilization of daily observations from about 700 gauges within the NOAA
CPC Unified Gauge-Based Analysis of Global Daily Precipitation’s dataset in producing
NOW-C, NRT-C, and MVK-C. However, these correction algorithms operate on a daily
scale; their potential impact on the evaluation results may be somewhat constrained.

2.2.2. Satellite-Based GSMaP Products

GSMaP is a project proposed by JAXA [41] (https://www.gportal.jaxa.jp, accessed
on 1 January 2023). This project provides high-quality near-real-time global precipitation
data products with a spatial resolution of 0.1 degrees (~10 km) and coverage of nearly the
entire globe (60◦S–60◦N). In order to obtain a higher spatial and temporal resolution of
precipitation, the GSMaP product incorporates data from several satellite sensors including
passive microwave sensors and infrared radiometers. To meet the needs of different users,
GSMaP has three versions: real time, near real time, and post-real time. Each version
contains two products which are uncorrected and corrected by ground-based observations,
including GSMaP real-time products (referred to as NOW-R and NOW-C for brevity),
near-real-time products (referred to as NRT-R and NRT-C for brevity), and post-real-time
products (referred to as MVK-R and MVK-C for brevity). General characteristics, like name,
delay time, spatiotemporal resolution, and other information, of the used GSMaP data are
listed in Table 1. The specific introduction of GSMaP products for each version is as follows:

http://data.cma.cn
https://www.gportal.jaxa.jp
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Table 1. Summary of the GSMaP products used in this study [41].

Data Name Abbreviation Latency Resolution Gauge Correction

GSMaP_NOW NOW-R 0 h 0.1◦ half hour None

GSMaP_NOW_G NOW-C 0 h 0.1◦ half hour Correction by
empirical coefficients

GSMaP_NRT NRT-R 4 h 0.1◦ hourly None

GSMaP_NRT_G NRT-C 4 h 0.1◦ hourly Correction by
empirical coefficients

GSMaP_MVK MVK-R 3 days 0.1◦ hourly None

GSMaP_Gauge MVK-C 3 days 0.1◦ hourly Corrected by daily
rain gauges

GSMaP incorporates passive microwave (PMW) [42] retrievals provided by the Cli-
mate Prediction Center (CPC) and infrared retrievals based on a microwave-infrared joint
algorithm [43], which includes back and forward deformation techniques and Kalman
filtering. PMW retrievals include the GPM microwave imager, advanced microwave scan-
ning radiometer (AMSR), advanced microwave scanning radiometer for EOS (AMSR-E),
and special sensor microwave/imager (SSM/I).

NOW-R (Global Rainfall Map, Real-time version) uses passive microwave observations
(GMI, AMSR2, and AMSU direct reception data near Japan) from the past half hour and
extrapolates the rainfall data in the future using cloud motion vectors from geostationary
satellites, allowing users to estimate real-time hourly precipitation maps every half hour. To
further improve the accuracy of NOW-R, the GSMaP team performs error correction based
on statistical parameters of ground rain gauges from the past 30 days [21,27,44], resulting
in the NOW-C product which is a gauge-corrected version.

NRT-R (Global Rainfall Map in Near Real Time) [32,43] calculates cloud motion vectors
based on consecutive geostationary infrared images, propagates the precipitation rate
forward in time, and then corrects the precipitation rate using Kalman filtering immediately
after receiving raw data. It is a near-real-time precipitation product with a time lag of about
2 h. Based on NRT-R, the NRT-C product is further corrected using statistical parameters of
ground rain gauges from the past 30 days. The gauge correction procedure is the same as
that of NOW-R.

MVK-R [43] (Global Satellite Mapping of Precipitation Microwave–IR Combined
Product) integrates passive microwave radiometer data and infrared radiometer data and
uses Kalman filtering techniques to merge more satellite data to improve the precipitation
estimation accuracy. Compared to NRT-R, MVK-R has a higher precipitation estimation
accuracy but a lower real-time performance, with a time lag of about 3 days [21]. To
further improve the precipitation accuracy, the MVK-C product is obtained by correcting
precipitation errors using the global-scale CPC daily precipitation product provided by the
NOAA [21]. By incorporating ground observation data into the precipitation estimation
process, the MVK-C product can better capture spatial and temporal changes in ground
precipitation [28].

More detailed information about GSMaP can be found in the “JAXA GLOBAL RAINFALL
WATCH User’s Guide” at https://sharaku.eorc.jaxa.jp/GSMaP/guide.html (accessed on 1
January 2023).

2.3. Validation Methods

Multiple statistical evaluation indicators were selected to assess the precipitation
estimation capabilities of the three versions and six precipitation products of GSMaP at
different timescales. These indicators can be divided into two categories: precipitation
amount indicators and categorical indicators. Precipitation amount indicators reflect the
degree of agreement and error characteristics of precipitation amounts between SPEs and
ground observation data at different timescales, and include the Pearson correlation coeffi-
cient (CC), relative bias (RB), and root mean square error (RMSE). The CC represents the

https://sharaku.eorc.jaxa.jp/GSMaP/guide.html
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consistency between SPEs and ground observation data, with values ranging from −1 to 1.
The RB describes the systematic deviation between SPEs and ground observation data.
The RMSE is used to evaluate the overall error and accuracy of SPEs, with values ranging
from 0 to +∞. Categorical indicators reflect the ability of SPEs to capture precipitation
events, including the probability of detection (POD), false alarm ratio (FAR), and critical
success index (CSI) [45]. The values of all categorical indicators range from 0 to 1. The POD
represents the ability of satellite precipitation data to accurately capture actual precipitation
events. The FAR reflects the false precipitation event detection of satellite precipitation
data. The CSI is a function of the POD and FAR and represents the overall proportion
of precipitation events correctly detected by SPEs [46]. The calculation method of each
indicator and their optimal values are shown below (Table 2) [46,47].

Table 2. Statistical metrics for evaluating SPPs.

Metric Categories Statistical Metrics Formula Optimal Value

Continuous Metrics

Correlation Coefficient (CC) CC = ∑N
i=1 (RS−RS)(RC−RC)√

∑N
i=1 (RS−RS)

2
+∑N

i=1 (RC−RC)
2 1

Relative Bias (RB) RB = ∑N
i=1 (RS−RC)

∑N
i=1 RC

× 100% 0

Root Mean Square Error (RMSE) RMSE =
√

1
N ∑N

i=1 (RS − RC)
2 0

Categorical Metrics

Probability of Detection (POD) POD = H
H+M 1

False Alarm Ratio (FAR) FAR = F
H+F 0

Critical Success Index (CSI) CSI = H
H+F+M 1

Note: N denotes the number of simples; i denotes the ith data; Rs denotes satellite precipitation; Rc denotes station
precipitation; Rs and Rc denote mean values of Rs and Rc, respectively. H (hit) is the number of times precipitation
was observed and both the observed and satellite-observed precipitation exceeded the 0.1 mm/h threshold. M
(miss) is the number of times precipitation was observed but the observed precipitation exceeded the threshold
while satellite-observed precipitation did not. F (false alarm) is the number of times the observed precipitation
was below the threshold while the satellite-observed precipitation reached or exceeded the threshold.

3. Results
3.1. Accuracy Evaluation of GSMaP at Hourly Timescales

To investigate the fitting degree of satellite precipitation data to precipitation variation
measured by surface meteorological stations at the hourly timescale, the precipitation
amount statistics (i.e., CC, RB, and RMSE) were calculated at each gauge point and then
shown as boxplots for the seven sub-regions in mainland China (Figure 2).

Overall, the error performance of MVK-C is superior to other products, boasting
higher CC values (from 0.31 in XJ to 0.47 in SC), smaller RMSE values (from 0.14 mm/h
in XJ to 0.99 mm/h in SC), and smaller RB values (from −4.78% in XJ to 16.03% in NC).
In contrast, NOW-R demonstrates the poorest performance, with lower CC values (from
0.08 in XJ to 0.24 in SC), higher RMSE values (from 0.50 mm/h in XJ to 2.55 mm/h in SC),
and higher RB values (from 68.70% in NE to 288.74% in XJ).

As expected, the three algorithm versions performed significantly differently, with the
post-real-time version of the product performing the best, followed by the near-real-time
version and the real-time version performing the worst. Regarding the CC, the six SPEs
generated by the three algorithms exhibit consistent trends in CCs across the seven sub-
regions, generally displaying low CC values. MVK-C has the highest CC values (0.31–0.47),
followed by MVK-R (0.18–0.33), NRT-C (0.15–0.34), and NRT-R (0.18–0.33). However,
NOW-C (0.08–0.27) and NOW-R (0.16–0.24) possess the lowest CC values. Among these,
MVK-R, NRT-R, and NRT-C perform similarly, with the difference in CC values between
regions being less than ± 0.01. In terms of the RB, significant precipitation overestimation
is observed for all products, especially for the real-time version. Compared to the real-time
version, the near-real-time version and the post-real-time version exhibit relatively fewer
overestimations. In detail, NOW-C and NOW-R have high RB values, with mean values
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ranging from 60 to 300% across regions. This phenomenon indicates that these two products
have the most significant amount of overestimations of precipitation. The overall trend in
the RMSE values in different regions is opposite to the CC values, which vary from 0.17 to
2.69 mm/h in different regions.
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the median, the dot represents the mean, and the black circles show mean anomalies.

The differences were compared between regions. Based on the RB values, SPEs
perform relatively better in the NE region (Figure 2e), SC region (Figure 2k), and YP region
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(Figure 2q). For example, the mean RB values of MVK-C, MVK-R, NRT-C, and NRT-R are all
within ±10% (Table A2). Of course, the performance of SPEs varies across different regions;
for example, in region XJ, all SPEs perform poorly (e.g., RB values up to 96.38% for MVK-R
and 88.09% for NRT-R). Based on the CC values, the SPEs perform best in the SC region
(Figure 2a) (the mean value of SPEs can reach more than 0.32) and the worst in the XJ region
(Figure 2s) (the mean value of SPEs is around 0.16), and the most significant corrective
effect is found in the NC region (Figure 2j) in comparison with the other six regions. Based
on the RMSE values, the corrections are better in the NW region (Figure 2i), TP region
(Figure 2o), and the worst in NE region (Figure 2f), and the real-time and near-real-time
versions even exhibit an increase in errors after correction.

To analyze the performance of gauge correction procedures in different algorithms, we
compared the performance of two versions (uncorrected and corrected by ground-based
observations) of the product using the same algorithm. Through this analysis, it was found
that the SPE with ground gauge correction had an improved accuracy, higher CC values,
and significantly lower RB and RMSE values.

There were significant differences in the ability of the gauge correction program to
correct errors in the different algorithms. The most significant improvement in accuracy
was seen in the post-real-time algorithm products (MVK-R and MVK-C), where measured
daily rainfall data from CPC sites were used for error correction in the MVK-C product.
Except for the YP region (Figure 2p), the average CC value of MVK-C in the remaining sub-
regions is higher than the CC value of corresponding MVK-R by more than 0.1. Meanwhile,
the average RB values in the corrected NC region (Figure 2b), NW region (Figure 2h),
TP region (Figure 2n), and XJ region (Figure 2t) are also significantly decreased, and this
decrease is more than 25% in each region. For example, the RB value of MVK-R in the
NW region (Figure 2h) decreases from 56.42% to 11.35% in MVK-C. However, the gauge
correction procedure did not produce positive results in all regions. For example, in the NE
region (Figure 2e), SC region (Figure 2k), and YP region (Figure 2q), the mean RB values
of the post-real-time version not only did not decrease but also increased after calibration.
The increase in the RB value of the corrected SPE (MVK-C) reached about 4% compared to
the uncorrected SPE (MVK-R).

In the case of near-real-time versions, the gauge correction algorithm is effective
in reducing the overestimation error present in NRT-R. As some examples, the average
RB value decreased by 6.10% in the YP region (Figure 2q) and 107.24% in the XJ region
(Figure 2t), and the average decrease in the RMSE value of NRT-C compared to NRT-R is
about 0.053 mm/h for all regions. However, in the NE region (Figure 2h) and the SC region
(Figure 2k), the RB value increases slightly for NRT-C (corrected product).

For real-time versions, the correction effect of CC values is similar to that of the near-
real-time versions. The RB values show a decreasing trend in the NW region (Figure 2h),
TP region (Figure 2n), and XJ region (Figure 2t), with decreases in the corrected values of
0.19%, 11.91%, and 212.57%, respectively. The RMSE values were reduced by an average
of 0.0025 mm/h. The real-time version has the best timeliness, but this also implies at the
same time a streamlining of the algorithm, which directly leads to a loss of about 0.07 in
the CC value of the data.

Figure 3 shows the spatial distribution of the three metrics (CC, RB, and RMSE) on an
hourly scale between 2167 stations and satellite precipitation products in mainland China.
Overall, the metrics show obvious regional characteristics, with large differences in the
southeast and northwest. Figure A1 shows the Probability Density Function (PDF) of CC,
RB, and RMSE for each product and clearly presents the distribution of each product in
terms of CC, RB, and RMSE to help us quantitatively understand Figure 3.

Spatially, it is affected by factors such as topography, climate change, and precipitation.
The significance of the CC values decreased gradually from east to west and from south to
north. The correction procedure is well represented in the post-real-time version. MVK-C
(Figure 3d) has the highest CC values and the most significant correction effect in mainland
China. However, in the real-time and near-real-time versions, the correction procedure had
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a limited effect. In Figure A1, the peak of the CC in post-real time versions (Figure A1a,d)
is shifted to the right, which is consistent with what the spatial distribution map exhibits,
whereas the shift in the peak CC in real-time versions (Figure A1g,j) and near-real-time
versions (Figure A1m,p) is not obvious.
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The spatial distribution patterns of the RMSE and CC values are similar, being higher in
the southeast and lower in the northwest. The performance between the different products
shows significant differences; taking 1.5 mm/h as the threshold, only 30% (Figure A1) of the
sites have RMSE values below 1.5 mm/h for NOW-C (Figure 3r) and NOW-R (Figure 3o),
whereas more than 80% (Figure A1) of the sites for the other four products have values
within this threshold range. Here, NOW-C and NOW-R present significant errors, consistent
with the results presented in Figures 2 and A1.

Based on the RB values, NOW-C (Figure 3q) and NOW-R (Figure 3n) showed a general
overestimation, while the other four products produced more underestimations in the
southern region and overestimations in the northern region. Among the SPEs, MVK-C
(Figure 3e) has the smallest RB value, with 45.22% (Figure A1e) of the sites within ±10%,
followed by NRT-C (Figure 3k), with 32.53% (Figure A1k) of the sites within this range.
NOW-R and NOW-C show a significant decline, with only 0.026% and 0.007% of values
within this range. The RB values show overestimation in most regions, especially in regions
with sharp elevation increases or decreases, where the number of overestimated sites
increases significantly. MVK-C (Figure 3b) effectively corrects the overestimation of MVK-R
(Figure 3b) in the northern part of SC, the western part of the NC zone, and most of XJ,
but there are still localized areas of low correlation (e.g., the southern part of the YP, the
southern part of SC). However, NOW-R is corrected for an elevated overestimation in the
SC region, which is consistent with the results in Figure 2. Interestingly, all SPEs in YP area
were underestimated.

To more directly and objectively compare and analyze the differences in the accuracy
characteristics of the six precipitation products of the three GSMaP algorithms, the CC,
RMSE, and STD (standard deviation) were calculated based on the hourly precipitation
data measured at the meteorological stations, which are expressed in Figure 4. The root
coordinate of the plot represents the magnitude of the STD value (black dashed line), the
corner coordinate represents the CC value (yellow dashed line), and the blue dashed line
represents the RMSE value. The closer the point representing the SPE is to the standard
point labeled in the red circle, the higher the accuracy of its reflection.

According to the results shown in the Taylor diagrams, there are obvious differences
among the three types of algorithms, with the post-real-time version performing the best,
followed by the near-real-time version, and the real-time version performing the worst.
Among products utilizing the same algorithm, the post-real-time version has the most
effective gauge correction, whereas the gauge correction effect of the near-real-time and
real-time versions is relatively similar before and after correction, consistent with the results
presented in Figure 2. Overall, MVK-C performs the best among the six products, and
the distance between MVK-C and the station data in the Taylor diagram is much closer
than that of other products. MVK-R, NRT-R, and NRT-C are located relatively close to each
other except for the XJ region, indicating that their associated metrics (i.e., CC, RMSE, and
STD) perform similarly. NOW-C and NOW-R perform worse than the other products in
all regions.

The CC values between SPEs and station data are not significant in different regions,
which may be due to the limited resolution and accuracy of SPEs to accurately capture heavy
precipitation variations on hourly scales. The RMSE values all range from 0.12 mm/h
to 10.18 mm/h, and this value is affected by precipitation and observation conditions.
However, surprisingly, in the NE, SC, and TP regions, the performance of NOW-R is
better than that of NOW-C, which may be due to the excessive correction of ground rain
gauges [48]. It is worth noting that in the XJ (Figure 4g) region, the accuracy of all corrected
data is better than that of uncorrected data, which shows the necessity of SPEs for correcting
algorithms at the XJ region’s sites.

Figure 5 displays the scatter density plots of the six different products’ rainfall data
in mainland China. The x-axis in each subplot represents ground station data, while
the y-axis represents the values of the six SPEs. Bright yellow indicates a high density,
and deep blue indicates a low density. We observe that scatter points generally cluster
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around 0.01 mm/h to 0.1 mm/h, particularly in NRT-R (Figure 5c). Around 0.2 mm/h
to 0.3 mm/h, there are some outliers, distributed on both sides of the standard baseline
in near real-time versions (Figure 5c,d) and post-real-time versions (Figure 5a,b), with
most above the standard baseline in real-time versions (Figure 5e,f). Overall, in mainland
China, near real-time versions (Figure 5c,d) and post-real-time versions (Figure 5a,b) show
good consistency with station data, with CC values exceeding 0.85 and an RB between
5% and 13%. Real-time data (Figure 5e,f) also exhibit CC values above 0.8, with RB values
of 108.91% and 128.00%, indicating a notable overestimation. Station corrections within
the same product version are well represented. Comparing MVK-R with MVK-C, post-
correction CC values increased from 0.86 to 0.96, RB values decreased from 12.99% to
5.59%, and RMSE values decreased from 0.03 mm/h to 0.01 mm/h, with MVK-C scatter
points closer to the standard baseline (Figure 5b). Comparing NRT-R with NRT-C, CC
values increased from 0.85 to 0.88, RB values decreased from 12.56% to 9.77%, and RMSE
values remained unchanged. ComparingIW(R) with NOW-C, although the RB and RMSE
values did not significantly improve after correction, CC values increased from 0.80 to 0.85.
Additionally, we observe that MVK-R, NRT-R, and NRT-C exhibit similar indicators and
scatter distributions, consistent with the results in Figure 4.
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3.2. The Ability to Capture Hourly Scale Precipitation Events

The ability of SPEs to capture hourly scale precipitation events in different regions
was evaluated based on categorical indicators (i.e., POD, FAR, and CSI) (Figure 6). Overall,
SPEs have a limited ability to accurately capture actual precipitation events from satellite
precipitation data on an hourly scale, generally ranging from 0.22 to 0.77, a finding that
is consistent with the results of previous studies [5,28,49,50]. Meanwhile, there are more
precipitation misreporting phenomena, and the FAR values are all greater than 0.43. The
event detection ability is limited, and the CSI values are generally around 0.2, with the
highest value not exceeding 0.35.
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A comparison of the different regions showed that the POD and CSI values decreased
gradually from east to west, while the opposite was true for the FAR. Specifically, in the
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eastern regions (NC, NE, NW, and SC), the POD generally remained around 0.4, FAR values
ranged from 0.35 to 0.75, and CSI values ranged from 0.2 to 0.35. In the western regions
(TB, TP, and XJ), the overall values of POD and CSI decreased by about 0.1 and the FAR
increased by about 0.2. This phenomenon may be related to the topographic complexity
and the density of stations. The SPEs are most capable of recognizing precipitation events
in the SC region, where the six satellite precipitation products have high CSI (>0.25) and
POD (average POD > 0.4) values and low FAR values. The obvious advantage of SPEs
in SC may be related to the fact that, on the one hand, remote sensing satellites are more
likely to capture high-intensity precipitation events and can easily ignore low-intensity
precipitation [51,52], and on the other hand, the ground stations in SC are more densely
distributed and the sample size is higher than that in other regions (Figure 1).

A comparison of the performance of two products of the same algorithm in SPEs
(uncorrected SPE and corrected SPE) reveals that the POD values (Figure 6a) of the ground-
station-corrected products have improved. This suggests that the ground-gauge-corrected
algorithm helps improve the product’s ability to capture precipitation events, which is
largely attributed to the improvement in missed precipitation events. This performance is
most prominent in the TP and YP regions (Figure 6a) with more complex terrains, where
the POD value of MVK-C is more than twice the POD value of MVK-R. Except for MVK-
C, the other satellite precipitation products (near-real-time and real-time versions) show
less fluctuation in the POD values in different regions. It is noteworthy that there are
signs of elevated FAR values in the precipitation products corrected by ground stations
(Figure 6b), and this phenomenon may be related to the following two aspects: the gauge
correction algorithm focuses on rainfall correction, which is performed using the statistical
parameters of the ground-observed rainfall over the past period, which ignores the issue of
the frequency of rainfall events.

3.3. Error Dependence on Elevation and Precipitation Intensity

Based on the results of previous sections, we found that error characteristics of GSMaP
SPEs seem to be related to the changes in elevation and precipitation intensity. Therefore,
this section analyzes the dependence of precipitation product errors on altitude (Figure 7)
and precipitation intensity (Figure 8), respectively.
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Overall, the CC values (Figure 7a) between SPEs and gauge observations decrease as
the altitude increases. When there was a significant increase/decrease in altitude, the CC
values simultaneously showed a significant increase/decrease. Specifically, the CC values
of all SPEs showed a decreasing trend from 0 m to 2400 m. The slope of the decrease in
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CC values of MVK-C, NOW-R, and NOW-C is larger than that of MVK-R, NRT-R, and
NRT-C between 0 m and 2400 m. When the altitude was greater than 3300 m, the CC
values decreased with increasing altitude, which may be due to the limited sample size at
high altitudes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 24 
 

Except for MVK-C, the other satellite precipitation products (near-real-time and real-time 
versions) show less fluctuation in the POD values in different regions. It is noteworthy 
that there are signs of elevated FAR values in the precipitation products corrected by 
ground stations (Figure 6b), and this phenomenon may be related to the following two 
aspects: the gauge correction algorithm focuses on rainfall correction, which is performed 
using the statistical parameters of the ground-observed rainfall over the past period, 
which ignores the issue of the frequency of rainfall events. 

3.3. Error Dependence on Elevation and Precipitation Intensity 
Based on the results of previous sections, we found that error characteristics of 

GSMaP SPEs seem to be related to the changes in elevation and precipitation intensity. 
Therefore, this section analyzes the dependence of precipitation product errors on altitude 
(Figure 7) and precipitation intensity (Figure 8), respectively. 

 
Figure 7. Error dependence in the (a) CC, (b) RB, and (c) RMSE on elevation. 

 
Figure 8. Error dependence in (a) CC, (b) RB, and (c) RMSE on precipitation intensity. 

Overall, the CC values (Figure 7a) between SPEs and gauge observations decrease as 
the altitude increases. When there was a significant increase/decrease in altitude, the CC 
values simultaneously showed a significant increase/decrease. Specifically, the CC values 
of all SPEs showed a decreasing trend from 0 m to 2400 m. The slope of the decrease in 

Figure 8. Error dependence in (a) CC, (b) RB, and (c) RMSE on precipitation intensity.

Similar to the CC, the RMSE values for SPE (Figure 7c) exhibit a general decreasing
trend at 1200–1500 m and 3000–3300 m where the elevation increases sharply. This temporal
variation is more easily observed in the post-real-time versions (NOW-R and NOW-C) from
2700 m to 3300 m.

Between 600 m and 1500 m, it can be observed that the uncorrected SPEs (MVK-R,
NRT-R, and NOW-R) show an increasing overestimation magnitude, evidenced by the
increasing positive RB values in Figure 7b. After correction, the elevation-dependent
overestimation phenomenon is mitigated in the corrected SPEs (MVK-G, NRT-C, NOW-C).

From 1500 m to 2400 m, the RB values of SPEs gradually decrease and fluctuate slightly.
The RB values of SPEs (except MVK-C) suddenly increase in the range of 2400–3000 m
and then decrease sharply in the range of 3000–3300 m, with the decrease ranging from
50% for NRT-C to 90% for NOW-R. The reason for this phenomenon may be that most
of the stations between 2400 and 3300 m are located in the eastern part of the Tibetan
Plateau, where there is a sharp increase in altitude. The good performance of MVK-C in the
range of 2400–3300 m suggests that the gauge correction program plays a role in correcting
altitude-dependent precipitation errors. At high altitudes (3300–4800 m), the RB values
generally show an increasing trend, especially for NOW-C, where the RB values increase
by more than 50%.

As shown in Figure 8, when the rainfall intensity is less than 1 mm/h, the CC value of
the SPE decreases as the rainfall intensity increases, while the RB and RMSE values show
an increasing trend. When the rainfall intensity is between 3 mm/h and 6 mm/h, although
the CC values decrease with increasing rainfall intensity, the magnitude of the decrease
is small. Meanwhile, RB and RMSE values continue to increase, and this phenomenon
may be attributed to the limited number of samples with rainfall greater than 3 mm/h. All
corrected products outperform the uncorrected products across various rainfall intensities.
Among them, MVK-C product exhibits the most significant improvement, while NRT-C
and NOW-C show limited improvement compared to their respective uncorrected SPEs
(NRT-R and NOW-R).

Specifically, the performance of SPEs varies at different rainfall intensities, with MVK-
C showing superiority at most rainfall intensities, having the highest CC and the lowest
RMSE and RB. This is particularly evident when the rainfall intensity exceeds 2 mm/h, as
MVK-C effectively corrects the overestimation of the RB. In terms of the CC, RMSE, and
RB, MVK-R, NRT-R, and NRT-C perform similarly at different rainfall intensities. However,
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across different metrics, NRT-C consistently demonstrates a superior calibrated product,
especially in terms of reducing the overestimation of the RB compared to MVK-R and
NRT-R. NOW-R and NOW-C exhibit poor performances across all rainfall intensities.

4. Discussion
4.1. Performance Comparison between Hourly and Daily Scales

Based on meteorological station data, in this study, we conducted a systematic quanti-
tative evaluation of the datasets of the three versions of the GSMaP product’s algorithms
on the hourly scale in mainland China. The main reason for choosing an hourly scale
is that hourly scale data are important for monitoring precipitation sub-daily scale pre-
cipitation changes; they are also important data for rapid flooding and wet/dry change
studies [30,53,54].

We discuss the performance of the GSMaP product on the daily scale to check the
consistency of GSMaP’s performance on different timescales on the one hand and to
facilitate a comparison with the results of existing daily scale evaluation studies on the
other hand.

Here, we compare the SPEs by their ability to capture both rainfall amount and rainfall
frequency. In terms of rainfall amount, compared with the hourly scale, we find that
all versions of GSMaP have an overall higher reliability and stability on the daily scale,
a phenomenon that is consistent with the findings of many previous studies [18,55,56].
Specifically, firstly, compared with the hourly scale, the CC values of the GSMaP products
in the daily scale are all improved with an increase of more than 0.2, and the differences
in CC values between different products become larger (Figure 9). The trend in the STD
and RMSE values among products is the same as that at the hourly scale. Secondly, on the
daily scale, MVK-C is still the best performer among all the products, with high CC values
(0.54 in XJ to 0.73 in TP), low RMSE values (3.74 in XJ to 13.08 in NC), and STD values
closer to the actual observations. Third, the corrected product outperforms the uncorrected
product in the different versions of the algorithm, and we find that the error correction is
better on the daily scale than on the hourly scale, with a larger CC value improving more.
In the post-real-time version (MVK-R and MVK-C), MVK-C is significantly better than
MVK-R, which suggests that the post-real-time version has a better error correction effect.
However, this correction effect is not found in the near-real-time version and the real-time
version, suggesting a limited correction effect in these versions. On the regional scale and on
the daily scale, MVK-R, NRT-R, and NRT-C performances are still very similar, except for in
the XJ region. However, compared to the hourly scale, the variability between the MVK-R
product and the other two products has increased. On the daily scale, the overcorrection in
the real-time version is more significant, and the NOW-R product outperforms NOW-C in
all regions except TB (Figure 9e) and XJ (Figure 9g). In addition, although the SPEs show
a more pronounced differentiation in all regions (Figure 9), the differentiation in the XJ
region (Figure 9g) was the strongest.

In terms of the ability to capture precipitation frequency, the ability to identify pre-
cipitation events for each version of the algorithm’s SPEs on the daily scale is significantly
improved compared to the hourly scale. We calculated the mean values of all products
for different metrics across the study area and found that the mean value of the POD
improved from 0.42 (Figure 5a) to 0.72 (Figure 10a), the mean value of the FAR decreased
from 0.64 (Figure 5b) to 0.32 (Figure 10b), and the mean value of the CSI improved from
0.23 (Figure 5c) to 0.50 (Figure 10c). On the daily scale, all products reached POD val-
ues of above 0.6, while on the hourly scale, only GSMaP-Guage reached this threshold.
This suggests that the ability of GSMaP to identify precipitation events improves as the
timescale accumulates.
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This is mainly due to the fact that the accumulation of precipitation makes the identifi-
cation of precipitation frequency easier. Specifically, on the daily scale, a precipitation event
is considered to be effectively captured by GSMaP if precipitation is actually present at any
hour of a given day for one hour or more. However, on the hourly scale, a precipitation
event can only be judged as effectively captured if precipitation actually occurs in the
corresponding hour and GSMaP captures precipitation for that corresponding hour.

On the hourly scale, we find that the FAR values of the products before and after cali-
bration are relatively close to each other for different versions (Figure 5b); however, the FAR
values under different versions on the daily scale not only decrease on the regional scale,
but also the advantage of the calibrated products gradually appears. The phenomenon that
the FAR of the corrected product appears to decrease under the same algorithm further
indicates that the correction of GSMaP is carried out on a daily scale. Compared with the
hourly scale, the POD values of all the products, except GSMaP-Guage, are substantially
improved (0.23 for NOW-C in NE to 0.43 for MVK-R in TP) (Figure 10), which indicates
that the POD values of GSMaP-Guage have reached a more desirable state on the hourly
scale. In terms of CSI values, GSMaP-Guage shows the most significant improvement
(0.23 in XJ to 0.39 in TP), while all other products show an improvement of around 0.2.
Consistent with the hourly scale, the differences in the capturing of precipitation events
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between the different classes of products on the daily scale are not significant. The POD
and CSI decrease gradually from east to west, while the opposite is true for the FAR. In
particular, from the hourly scale to the daily scale, the most significant enhancement is
observed in the TP region, where the POD values are all above 0.35 (except for MVK-C),
the FAR values are all above 0.32, and the CSI values are all above 0.31.
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4.2. Uncertainty

We evaluate precipitation products and rainfall observations in mainland China. The
following uncertainties may exist during the evaluation of error characteristics: spatial
representation differences caused by uneven spatial distribution of observation sites; the
density of observation stations is higher in the southeastern (SC), eastern (NC), and north-
eastern (NE) regions of mainland China, while the stations in the northwestern (XJ) and
Tibetan (TP) regions are sparser (Figure 1); and the spatial heterogeneity of rainfall obser-
vation stations may affect the validation results to some extent. To avoid this effect, we
only analyzed the grid of the station’s location in our study, which is the main method
used in most current studies. However, this can also lead to differences in the number of
grids involved in the evaluation and their locations within different sub-areas. In addition,
the station-measured precipitation data reflect the precipitation at the location of the mon-
itoring station, while the GSMaP product data reflect the average precipitation within a
spatial area of 0.1◦ × 0.1◦ [22,41,57]. This is a common problem in the current quantitative
evaluation of remote sensing precipitation errors [58–60]. We did not consider this spatial
difference, which also has an impact on the evaluation results.

5. Conclusions

Three algorithms of GSMaP products, which contain six uncorrected/corrected prod-
ucts, were systematically and quantitatively evaluated based on hourly observations at
2167 stations in mainland China. In this evaluation, we systematically analyzed the capa-
bility of SPEs in terms of inversion of precipitation and frequency of precipitation events
on an hourly scale for the period from 1 December 2021 to 30 November 2022 and further
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analyzed the dependence of SPE errors on rainfall intensity and elevation. The main results
are summarized below:

(1) The three versions of the GSMaP algorithm products show significant performance dif-
ferences in terms of precipitation and precipitation event detection capabilities. The post-
real-time versions (MVK-C and MVK-R) have the best performance, with high CC val-
ues and relatively low RB (−4.78–96.378%) and RMSE values (0.14 mm/h–1.32 mm/h).
The near-real-time versions (NRT-R and NRT-C) have a slightly worse performance
(CC: 0.15–0.34; RB: −19.15–88.09%; RMSE: 0.17 mm/h–1.33 mm/h), while the real-
time versions (NOW-R and NOW-C) have the worst performance (CC: 0.09–0.25;
RB: 68.70–288.74%; RMSE: 0.26 mm/h–2.70 mm/h). This phenomenon of better
performances for longer delays and more complex algorithms is in line with our
expectations. In terms of spatial distribution, SPEs perform worst in the XJ region
and best in the SC region. The phenomenon of better performances in the eastern
regions (i.e., SC, NC, and NE) than in the western regions (i.e., XJ and TP) is present
for all products.

(2) In terms of the ability to invert hourly rainfall, MVK-C performs the best, with a
higher CC value (0.31 for XJ to 0.47 for SC), a smaller RMSE value (0.14 mm/h for XJ
to 0.99 mm/h for SC), and a lower RB value (−4.78% for XJ to 16.03% for NC). MVK-R,
NRT-C, and NRT-R have slightly lower performances, while NOW-C and NOW-R
have the worst performances and lowest correlations. In the NC, NE, NW, and SC
regions, the POD usually was around 0.4, the FAR was between 0.35 and 0.75, and
the CSI was between 0.2 and 0.35. Compared with the above regions, the POD and
CSI in TB, TP, and XJ regions decreased by about 0.1, and the FAR increased by about
0.2. The ability of different SPEs to retrieve the frequency of precipitation events on a
daily timescale increased with the increase in timescales, and the POD values were
greater than 0.6, FAR values were less than 0.5, and CSI values were greater than 0.3.

(3) The correction algorithm plays an important role in reducing errors and improving the
ability to capture precipitation events. The corrected product performs significantly
better than the uncorrected version, exhibiting higher CC values and lower RB and
RMSE values in most sub-regions. Comparisons between the different versions
show that the post-real-time version has the best correction. For example, MVK-C is
corrected by CPC site data, showing a significant improvement in CC values in all
sub-regions (hourly timescales greater than 0.3), and the proportion of sites with CC
values greater than 0.5 increased from 0.03% (MVK-R) to 28.47% (MVK-C). However,
the correction algorithms had a limited effect (about 0.01) on the near-real-time and
real-time versions, probably due to the limited number of trajectory observations
included in the corresponding correction procedures.

(4) All of the SPEs produced significant errors depending on the precipitation intensity
and elevation. In terms of elevation errors, the CC values of the SPEs decreased
with increasing elevation. In areas with drastic altitude changes (1200–1500 m and
3000–3300 m), the accuracy of SPEs was significantly affected. In terms of rainfall
intensity, CC values decreased with an increasing rainfall intensity, RB and RMSE
values increased with an increasing rainfall intensity, and all calibrated products
outperformed the uncalibrated SPEs at all rainfall intensities.
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Appendix A

Table A1. List of previous studies on GSMaP evaluation from 2019 to 2023.

GSMaP Products Version Finest Evaluation Timescale Reference

MVK-R, MVK-C - Daily China [28]
MVK-C - Daily China [29,61,62]

NRT-R, MVK-R, MVK-C Version 7 Daily China [18]
NRT-R, NRT-C Version 7 Daily China [34]

MVK-C Version 7 Daily Pingtang River Basin [16]
NOW-R,MVK-R, MVK-C, NRT-R, NRT-C Version 7 Hourly Yellow River source region [35]

NRT-R, NRT-C, MVK-C - Daily Xijiang River Basin [31]
MVK-C Version 6 Daily Yingjing catchment [63]

NOW-R, NOW-C, MVK-R, MVK-C,
NRT-R, NRT-CNRT-C Version 8 Hourly Indonesian Maritime Continent [55]

NRT-R, MVK-R,MVK-C Version 6 Daily Hanjiang River Basin [15]
MVK-R Version 7 Daily Ardabil Province, Iran [14]

Table A2. CC, RB, and RMSE of different SPEs and gauges based on the mean values of hourly
precipitation over seven sub-regions.

Region MVK-R MVK-C NRT-R NRT-C NOW-R NRT-C

CC

NC 0.31 0.46 0.31 0.33 0.24 0.27
NE 0.31 0.44 0.31 0.32 0.23 0.25
NW 0.33 0.44 0.31 0.33 0.20 0.23
SC 0.34 0.47 0.33 0.34 0.23 0.24
TP 0.25 0.39 0.24 0.25 0.16 0.17
YP 0.32 0.41 0.30 0.31 0.20 0.21
XJ 0.18 0.31 0.18 0.15 0.09 0.09

RB (%)

NC 43.26 16.03 35.87 22.26 154.84 162.16
NE 3.19 7.17 7.93 9.84 68.69 122.28
NW 58.24 11.70 52.21 12.51 135.96 133.77
SC 2.62 6.37 0.14 3.11 95.14 136.19
TP 42.25 9.20 39.73 13.38 138.23 126.32
YP 8.49 11.23 7.38 0.48 89.36 129.02
XJ 96.38 20.78 88.09 39.04 288.74 76.17

RMSE (mm/h)

NC 1.13 0.79 1.12 1.06 1.96 1.87
NE 0.83 0.67 0.88 0.90 1.39 1.62
NW 0.70 0.48 0.73 0.62 1.36 1.29
SC 1.32 0.99 1.33 1.32 2.55 2.69
TP 0.62 0.36 0.66 0.56 1.37 1.24
YP 1.09 0.81 1.13 1.07 2.20 2.34
XJ 0.23 0.14 0.23 0.17 0.50 0.26

https://gportal.jaxa.jp/gpr/?lang=en
http://data.cma.cn
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