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Abstract: Two-stage remote sensing image captioning (RSIC) methods have achieved promising
results by incorporating additional pre-trained remote sensing tasks to extract supplementary
information and improve caption quality. However, these methods face limitations in semantic
comprehension, as pre-trained detectors/classifiers are constrained by predefined labels, lead-
ing to an oversight of the intricate and diverse details present in remote sensing images (RSIs).
Additionally, the handling of auxiliary remote sensing tasks separately can introduce challenges
in ensuring seamless integration and alignment with the captioning process. To address these
problems, we propose a novel cross-modal retrieval and semantic refinement (CRSR) RSIC method.
Specifically, we employ a cross-modal retrieval model to retrieve relevant sentences of each image.
The words in these retrieved sentences are then considered as primary semantic information,
providing valuable supplementary information for the captioning process. To further enhance the
quality of the captions, we introduce a semantic refinement module that refines the primary seman-
tic information, which helps to filter out misleading information and emphasize visually salient
semantic information. A Transformer Mapper network is introduced to expand the representation
of image features beyond the retrieved supplementary information with learnable queries. Both
the refined semantic tokens and visual features are integrated and fed into a cross-modal decoder
for caption generation. Through extensive experiments, we demonstrate the superiority of our
CRSR method over existing state-of-the-art approaches on the RSICD, the UCM-Captions, and the
Sydney-Captions datasets

Keywords: semantic retrieving; attention mechanism; image captioning; remote sensing

1. Introduction

Remote sensing image captioning (RSIC) is a cutting-edge technology that bridges the
gap between complex geographic information captured in RSIs and human comprehension
by converting it into text-based descriptions. With the proliferation of remote sensing
data from satellites, drones, and other sources, the demand for effective and interpretable
methods to extract meaningful insights from these images has grown exponentially. RSIC
offers a transformative solution by providing human-readable and contextual descriptions
of the content within remote sensing images (RSIs), making them more accessible and
actionable for various applications [1]. As a result, RSIC has emerged as a prominent and
burgeoning research area, drawing significant attention and interest from the scientific
community [2–6].

RSIC has made remarkable strides with the adoption of the encoder–decoder sequence
as the mainstream approach. This process involves leveraging convolutional neural net-
works (CNNs) to extract essential image features, which are subsequently transformed
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into natural language descriptions using sequential models like recurrent neural networks
(RNNs) [7] or long short-term memory (LSTM) networks [8].

To improve the performance of RSIC models, attention mechanisms have been inte-
grated into the encoder–decoder framework [9–12]. By capturing intricate relationships
and dependencies between visual and textual modalities, attention mechanisms have sig-
nificantly contributed to enhancing the overall performance and interpretability of RSIC
models. To further enhance the capabilities of RSIC, researchers have introduced auxil-
iary information, giving rise to the development of two-stage methods [13–16]. These
approaches incorporate an additional stage that provides supplementary information
to the RSIC model, generally focusing on enhancing vision–language alignment by cap-
turing fine-grained semantic information. As a result, these two-stage methodologies
frequently outperform their attention-based one-stage counterparts, yielding improved
performance [17,18].

Despite the benefits of using pre-trained detectors or classifiers to obtain supplemen-
tary information, there are limitations that can hinder their overall effectiveness. Primarily,
the prowess of semantic comprehension in pre-trained detectors/classifiers is confined
within the boundaries of pre-defined semantic/class labels, which may not fully encompass
the intricacies of RSIs. Moreover, these pre-trained models are not optimized during the
sentence decoding process, making it challenging to emphasize visually salient semantic
information effectively in the generated captions. Consequently, effectively emphasizing
visually significant semantic information while discerning and filtering out misleading
semantic information becomes a complex endeavor, leading to less contextually relevant
and coherent captions [19].

Therefore, to alleviate the limitations mentioned above and to enhance the scalability
and generalization of image encoders for RSIC, this article proposes a novel cross-modal
retrieval and semantic refinement (CRSR) method. Departing from the utilization of
pre-trained detectors/classifiers, we leverage the power of the CLIP model [20], which
has demonstrated remarkable performance in various vision–language multimodal
tasks [21–23], employing it as a cross-modal retrieval tool to extract semantically rel-
evant sentences from a pool of captioning sentences as supplementary information.
Considering the consistent format of description sentences in RSIC datasets, we ini-
tially fine-tune the pre-trained CLIP model on the current RSIC datasets with a mask
strategy, which directs the focus towards semantically relevant information retrieval
in RSIs during the fine-tuning process. To address the complexity of RSIs, which often
contain complicated and varied semantic information leading to semantic-irrelevant and
conflicting retrievals, a semantic refinement module is introduced. We utilize a masked
cross-attention mechanism, incorporating the image features of the RSIs to effectively
filter out semantically irrelevant words. The introduced mask mechanism is specially
designed to handle multiple conflicting semantic information in RSIs, which can lead to
contradictory caption generation. To further utilize the image features obtained from the
CLIP model, a Transformer Mapper network is introduced. This module employs learn-
able queries to predict essential words beyond retrieved supplementary information,
expanding the representation of image features through a simple projection layer and en-
abling the model to capture semantically meaningful visual information more effectively.
Thus, the model can better comprehend the intricate details and relationships within the
RSIs. Ultimately, the refined semantic information and enriched image features are fed
into a cross-modal decoder, which generates accurate and coherent captions enriched
with contextual information and descriptive details.

The main contributions of this article can be summarized as follows:

1. We propose a new CRSR method incorporating the CLIP-based retrieval model and
a semantic refinement module that effectively addresses the limitations of existing
two-stage approaches. We firstly obtain the semantic information through a fine-tuned
retrieval model. Then, the semantic refinement module is introduced for filtering out
misleading words through a masked cross-attention mechanism.
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2. We introduce a Transformer Mapper network, which is designed to provide a com-
prehensive representation of the image features that extends beyond the retrieved
information using attention mechanisms and learnable queries for semantic prediction.
The projected image feature with learnable queries employs self-attention to capture
intricate relationships and dependencies within the image features, which provides a
particular focus on the overlooked semantic region, enabling it to effectively analyze
and understand more semantic details present in RSIs.

3. The extensive experiments conducted on three diverse datasets, RSICD, UCM-Captions,
and Sydney-Captions, provide compelling evidence to validate the superior perfor-
mance of our proposed CRSR method. We demonstrate that our approach achieves
higher captioning accuracy compared to other state-of-the-art methods on the three
benchmark datasets.

The subsequent organization of this paper is as follows. Section 2 provides an overview
of related work on RSI captioning. Section 3 presents the details of the proposed CRSR
method. Section 4 introduces the experiments and analysis conducted on three datasets.
Section 5 provides a summary of this article.

2. Related Works

In this section, we review the related works in the field of RSIC and explore the
advancements and research efforts that have been made. The following RSIC methods are
divided into two categories: one-stage methods and two-stage methods.

2.1. One-Stage Methods

The mainstream one-stage methods in RSIC have predominantly adopted the
encoder–decoder sequence architecture. Among the pioneers in this field, Qu et al. [24]
proposed a deep multimodal neural network model, which is widely recognized as
the classical encoder–decoder structure for RSIC. The model utilizes a CNN as the en-
coder to extract essential image features and an RNN as the decoder to transform these
features into natural language descriptions. Similarly, Lu et al. [2] also explored and
demonstrated the effectiveness of the encoder–decoder structure in RSIC. They fur-
ther contributed to the field by conducting a series of experiments on three benchmark
datasets released by Lu et al. [2] and Qu et al. [24]. Li et al. [25] proposed a multi-
level attention model that closely imitates human attention mechanisms, comprising
three attention structures for different areas of the image, words, and vision–semantic
interactions. Huang et al. [26] proposed a denoising-based multi-scale feature fusion
(DMSFF) mechanism to improve caption quality, which aggregates multiscale features
using denoising operations during visual feature extraction. Li et al. [27] proposed a
novel recurrent attention mechanism that integrates competitive visual features, allow-
ing for the utilization of both static visual features and multiscale features. Li et al. [28]
proposed a new truncation cross entropy (TCE) loss to reserve probability margins for
non-target words, thereby reducing the risk of overfitting and improving the generaliza-
tion capability of the model. Zhang et al. [29] introduced the global visual feature-guided
attention (GVFGA) mechanism, leading to more descriptive and contextually relevant
image captions. The introduced linguistic state (LS) and LS-guided attention (LSGA)
mechanisms further refine the fusion of visual and textual features by filtering out the
irrelevant information from the fused visual–textual feature. Hoxha et al. [30] proposed
a new decoder structure by introducing a decoder based on support vector machines
(SVMs) instead of RNNs. The SVM-based decoder proved to be effective, especially in
scenarios with limited annotated samples, and offers the advantage of reduced training
and testing time.
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Without considering the auxiliary information in RSIs, the existing encoder–decoder-
based methods mentioned above often underperform compared to the two-stage methods
in terms of the accuracy of the generated captions.

2.2. Two-Stage Methods

To further utilize the information from image features, Chen et al. [15] included
the expression of geospatial relations of geo-objects in the images. Zhang et al. [17]
proposed a novel label-attention mechanism that incorporates label information from
RSIs. A new model with an attribute attention mechanism was proposed for generating
semantic descriptions by Zhang et al. [13]. Wang et al. [14] considered a collection of
topic words representing common information across sentences using a retrieval topic
recurrent memory network that leverages a topic repository to guide sentence generation.
Wang et al. [31] introduced a new explainable word–sentence framework including a
word extractor responsible for identifying valuable words through a word classification
task, while the sentence generator organizes these words into a well-formed sentence.
A summarization-driven approach was proposed by Sumbul et al. [32] to address the
information deficiency issue in image–language mapping. Kandala et al. [33] intro-
duced an auxiliary decoder that is trained for multilabel scene classification to improve
the encoder’s training process. Zhao et al. [18] presented a fine-grained, structured
attention-based method that utilizes the structural characteristics of semantic contents.
This method achieves both image captioning and weakly supervised segmentation
within a unified framework. Ye et al. [16] proposed a novel joint-training two-stage
(JTTS) method that combines image captioning and an auxiliary multilabel classifica-
tion task into a joint training process, allowing mutual interference between tasks to
be considered. The proposed method utilizes a dynamic contrast loss function and an
attribute-guided decoder to filter the multilabel prior information and generate more
accurate image captions. Yang et al. [34] introduced a meta captioning framework, which
leverages meta learning to extract meta features from two support tasks (natural image
classification and remote sensing image classification) and transfers them into the target
task of RSIC. Zhang et al. [35] represented a multi-source interactive stair attention
mechanism that separately models the semantic information of preceding sentences
and visual regions of interest. The stair attention divides the attentive weights into
three levels, allowing for better focus on different regions in the search scope. Addi-
tionally, CIDEr-based reward reinforcement learning [36] is used to enhance the quality
of the generated sentences. Du et al. [37] proposed a Deformable Transformer with
scaled attention for multi-scale features extracted from the foreground and background
separately. Li et al. [38] introduced a semantic concept extractor with visual–semantic
co-attention for cross-modal interaction. Moreover, attentive vectors and semantic-level
relational features are utilized within a consensus exploitation (CE) block.

3. Methodology

In this section, we provide a detailed description of the proposed CRSR method.
As depicted in Figure 1, our approach utilizes the Transformer Mapper network for en-
coding visual information extracted from the image, predicting essential words through
learnable queries. Simultaneously, the semantic refinement module is employed to retrieve
and refine semantic tokens from the current input. The encoded visual features, along
with the predicted query tokens and refined semantic tokens, are combined and fed into a
Transformer-based cross-modal decoder for sentence generation.
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Figure 1. The overall structure of our CRSR model. The image features and text features are extracted
by the CLIP image encoder and text encoder from the input image and sentence pool, respectively.
Image features are transformed into a sequence of visual tokens through Transformer Mapper
network with learnable queries. Based on the cross-modal retrieval, the retrieved relevant sentences
are separated as a series of words and fed into the semantic refinement module to filter out irrelevant
words. Finally, the obtained visual tokens with query tokens and semantic tokens are both fed into a
cross-modal decoder to generate the corresponding image captions.

3.1. Semantic Refinement

Existing methods in image captioning often rely on pre-trained object detectors or
classifiers to capture semantic information, which is directly fed into the sentence decoder.
However, these approaches are limited by the pre-defined labels and lack of interaction
between the components. To alleviate these limitations, we utilize the pre-trained CLIP
model, which has been well trained on diverse and large-scale data, as the cross-modal
retrieval tool to retrieve and filter the words that are associated with the current input.

We first fine-tune the CLIP model through training on the images and captions in
the RSIC training dataset as image–text pairs. However, simply calculating the similarity
between the image features of the input image and the text features of the whole paired
caption to fine-tune the CLIP model may lead to semantic confusion problems during the
retrieval process. For instance, when processing an image with the caption “there is a small
tennis court with a wide road beside”, another sentence “there is a small white storage
tank on the lawn with a road beside” can also receive a high similarity score, even though
it carries different semantic content, causing misleading semantic information retrieval.
To address this issue, we introduce a semantic mask module during the fine-tuning process,
through which we mask semantic-irrelevant words in the caption to limit the impact of
these words during the training process. After calculating the similarity between the image
features of current input and the masked text features from the entire sentence pool, which
includes all training captions in current dataset, we retrieve the top-K semantically relevant
sentences from the sentence pool for each input image. We then decompose these sentences
into a set of words while further filtering out the semantic-irrelevant words.

Despite our precautions, there may still be instances of misleading semantic infor-
mation present, and these can certainly influence the accuracy of caption generation.
Therefore, we employ a cross-modal refinement network to further filter the decomposed
words. Specifically, for the input image, I, wI = [w1

I , . . . , wNw
I ] represents the decomposed

words, which are then mapped into a new semantic embedding space, resulting in the
semantic features denoted as Vs = [w1

s , . . . , wNw
s ], where Nw denotes the length of the

decomposed words. Next, the generated semantic features are passed into the cross-modal
refinement module, which consists of a stacked configuration of Nc Masked Transformer
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blocks. Specifically, the generated semantic features contain comprehensive information
about the input image, which may not be present in every caption among the five descrip-
tions for the image. Moreover, considering that conflicting semantic information exists in
different caption sentences, such as the words “plane” and “planes” in two captions of the
same image, like “many planes are parked between several buildings and many runways”
and “several runways are scattered in the airport while every plane is on their position”,
we implement a Masked Transformer structure. We randomly mask retrieved words with
contradictory meanings, with semantically irrelevant words masked randomly for current
input, contributing to improved semantic comprehension. Within each Transformer block,
every input semantic feature is contextually encoded via self-attention. Subsequently, the se-
mantic features are further enhanced by leveraging the interaction between the semantic
features and the image features vI through cross-attention; the ith Transformer block is
implemented as follows:

yi
s = Vi

s + MultiHead(norm(Vi
s ), Vi

s , Vi
s ) (1)

Vi+1
s = F(yi

s + MultiHead(norm(yi
s), vI , vI)) (2)

where Vi+1
s denotes the output of the ith layer of the stacked Nc Transformer blocks and

F(·) presents the feed forward layer. Accordingly, the output semantic tokens of the
final Transformer block are denoted as VNc

s = [w(Nc)i
s |Nw

i=0], which are then leveraged for
predicting the filtered semantic words.

During the training process, we address the optimization of the semantic refinement
module by treating the filter task as object prediction problems. In particular, the obtained
semantic tokens VNc

w = [w(Nc)1
s , . . . , w(Nc)Nw

s ] are passed through a projection layer to filter
out the misleading tokens by predicting the token distribution in the semantic vocabulary
of Nv + 1 words with a special token representing misleading semantic information. The re-
sulting semantic predictions are denoted as Ps = [P1, . . . , PNw ], representing the predictions
of each retrieved semantic token.

For the ith retrieved semantic token, the ground truth label is denoted as yi ∈ RNv+1,
and its objective is measured with cross-entropy loss as follows:

Lw = − 1
Nw

Nw

∑
i=0

Nv+1

∑
v=0

yi
vlog(Pi

v) (3)

3.2. Transformer Mapper

In caption tasks, the quality of the extracted image features and their representation
play a crucial role in caption generation. To leverage the benefits of image feature repre-
sentations in the well-pre-trained CLIP model, we employ the visual encoder of the CLIP
model to extract the image visual feature, denoted as vI , from the provided image I. Con-
sidering that the extracted feature vI contains dense image information with a dimension of
512, we utilize a Transformer Mapper network to map the CLIP feature to a set of k visual
vectors and yield the enriched visual tokens.

While the semantic refinement module significantly improves the quality of semantic
tokens, it is important to note that some vital information may still be overlooked at the
beginning of the semantic retrieval process. Taking inspiration from [39], we introduce a
series of learnable queries, denoted as Q = [q1, . . . , ql ]. These queries are combined with
the extracted image features and sent into the Transformer Mapper module for predicting
omitted semantic information from the image features and guiding the projected visual
features to encompass more than just partial semantic tokens.

Specifically, our Transformer Mapper module consists of a projection layer followed
by a stacked configuration of Nr Transformer blocks with multi-head attention. Initially,
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we obtain the k visual vectors VI = [v1
I , . . . , vk

I ] through the application of the projection
layer, denoted as P:

v1
I , . . . , vk

I = P(vI) (4)

Then, the learnable queries and the k visual vectors are combined as WI = [v1
I , . . . , vk

I ,
q1, . . . , ql ]. And we proceed to implement the stacked Nr Transformer blocks; the ith
Transformer block operates as

xi
I = Wi

I + MultiHead(norm(Wi
I), Vi

I , Vi
I ) (5)

Wi+1
I = xi

I + MLP(norm(xi
I)) (6)

where norm denotes the layer normalization, MultiHead(·) represents the multi-head
attention mechanism utilized in each Transformer block, and MLP(·) is an MLP with two
cascaded FC-ReLU-dropout units.

W̃I = [ṽ1
I , . . . , ṽk

I , q̃1
I , . . . , q̃l

I ] denotes the final outputs of the Transformer Mapper
module, in which Q̃I = [q̃1

I , . . . , q̃l
I ] predicts the omitted words. For the ground truth set

of omitted words y, assuming that prediction queries of the number l is greater than the
ground truth word count No. To establish a bipartite matching between these two sets,
we employ the Hungarian algorithm for the permutation of prediction query set with the
lowest cost, which is calculated as follows:

α̃ = argmin
No

∑
i

yilog(q̃ij) (7)

LQ = −
No

∑
i=0

yilog(q̃ĩj
) (8)

Through minimizing the cost α̃, the prediction queries and ground truth words are
matched pairs. Here, ĩj denotes the current matched query of the ground truth word yi
after the overall matching process. For all matched pairs, its objective is measured with
cross-entropy loss LQ, and the ground truth of the unmatched queries is also set as Nv + 1,
followed by the settings in semantic refinement module.

By expanding the extracted visual features and harnessing learnable queries for
omitted semantic information beyond the retrieval process via the attention mecha-
nism, the Transformer Mapper network effectively handles the intricacies of visual
information, enabling the acquisition of more contextually relevant and well-structured
visual representations.

3.3. Cross-Modal Decoder

After obtaining the enriched visual tokens ṼI with query tokens Q̃I from the visual
encoder and the refined semantic tokens Ṽs from the semantic refinement module, we
now focus on integrating these representations into the Transformer-based cross-modal
decoder for sentence generation. To be specific, the target caption of the current input
image is denoted as S = [s0, . . . , sL−1], where L is the word number of the sentence.
The sentence S is then passed through the word embedding layer, which converts
input words into dense vector representations denoted as S̃0 = [s̃0

0, . . . , s̃0
L−1], which

is represented as the initial “Input Embed” in Figure 2. In each Transformer block,
a multi-head attention layer is utilized to capture the attention between the dense vector
representations and current input embedding with the concatenated tokens W̃I = [ṼI , Q̃I ]
and semantic tokens Ṽs, respectively. After the attention layer, both features are combined
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and fused through a fusion layer. At t time step, the ith cross-modal Transformer block
is implemented as follows:

zi
t = multihead(s̃i

t, S̃i
0:t, S̃i

0:t) (9)

atti
(I)t = multihead(zi

t, W̃I , W̃I) (10)

atti
(s)t = multihead(zi

t, Ṽs, Ṽs) (11)

atti
( f )t = Fusion(concat(atti

(I)t, atti
(s)t)) (12)

where atti
( f )t represents the fusion of cross-modal visual features and semantic features,

and Fusion refers to the projection layer. Then, the caption vectors are combined with the
fusion visual semantic features atti

( f )t and passed through the feed forward layer with the
sigmoid function to obtain the weight γ. Finally, the output of the ith Transformer block
s̃i+1

t is calculated as follows:

γ = Sigmoid(Fusion(concat(zi
t, atti

( f )t))) (13)

s̃i+1
t = s̃i

t + norm(γzi
t + (1 − γ)atti

( f )t) (14)

Accordingly, the generated caption token of the final Transformer block at time t is
denoted as s̃Nd

t and used to predict the ct+1 word of the decoded sentence C = [c1, . . . , cL−1].

Figure 2. The structure of the ith cross-modal transformer block of the decoding module. The “M-H
Att” denotes the multi-head attention layer. The “Input Embed” denotes the input of the ith block.

For caption generation, we train the proposed model by optimizing cross-entropy loss:

Lc = −
L−1

∑
t=0

log(pθ(st|s0:t−1)) (15)

where θ represents the training parameters, st ∈ S is the target caption, as mentioned earlier,
and pθ(st|s0:t−1) is the predicted probability of generating token st given the preceding
tokens s0:t−1.
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The overall objective of our CRSR model is given by the combination of the proxy
objective in the semantic refinement module Lw , the query loss LQ in Transformer Mapper,
and sentence generation loss Lc:

L = Lw + LQ + Lc (16)

4. Experiments and Analysis

In this section, we present the experimental evaluation of our method and discuss
the results. We start by introducing the publicly available datasets that were used in our
experiments, as well as the evaluation metrics commonly employed in the field. Then,
we provide details of the implementation setup, including the model configuration and
training procedure. Additionally, we perform a series of ablation experiments to evaluate
the individual contributions of each module in our method and to compare the performance
with the state-of-the-art approaches.

4.1. Datasets

In our experiments, we utilized three publicly available RSIC datasets: RSICD, UCM-
Captions, and Sydney-Captions. These datasets were used to evaluate the performance of
our proposed method.

4.1.1. RSICD

The RSICD dataset, introduced in [2], is the largest publicly available dataset for re-
mote sensing image captioning. It consists of 10,921 images collected from various mapping
platforms, such as Google Earth, Baidu Map, MapABC, and Tianditu. The images in the
dataset are 224 × 224 pixels and cover 30 different scene categories. Initially, the dataset
provided 24,333 unique sentences as captions for the images. To increase the amount of in-
formation in the dataset, the captions were expanded by randomly duplicating the existing
sentences, resulting in a total of 54,605 captions, with each image having five descriptions.

4.1.2. UCM-Captions

The UCM-Captions dataset [24] is derived from the UC Merced land-use dataset [40].
It comprises 2100 high-resolution aerial images, with 100 images per scene and a total of
21 scenes. The images have a resolution of 256 × 256 pixels. Each image in the dataset is
accompanied by five descriptions, resulting in a total of 10,500 sentences for the dataset.

4.1.3. Sydney-Captions

The Sydney-Captions dataset is based on the Sydney dataset [41] and was introduced
in the same study [24]. The dataset consists of 613 high-resolution RSIs acquired from
the Sydney area of Google Earth. The images are cropped to a size of 500 × 500 pixels,
with a pixel resolution of 0.5 m. For each image in the dataset, five different descriptions
are provided, resulting in a total of 3065 sentences.

4.1.4. Datasets Alignment

To ensure a fair comparison and align with the settings used in the papers that
introduced the datasets [2,24], we divided the data into three sets: training, evaluation,
and testing. Following a standard practice of allocating 80% of the data for training, 10%
for evaluation, and the remaining 10% for testing. For this study, we utilized an updated
version of the three benchmark datasets provided by [25]. The key details and modifications
made to the datasets are shown in Table 1. With the error descriptions and words removed,
the vocabulary size was also changed.
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Table 1. Datasets Comparison.

Datasets Categories Mean Caption Length Vocab Size (before) Vocab Size (after) Image Numbers

Sydney-Captions 21 11.5 315 298 2100
UCM-Captions 7 13.2 231 179 613

RSICD 30 11.4 2695 1252 10,000

4.2. Evaluation Metrics

We utilized a comprehensive set of nine evaluation metrics to evaluate the perfor-
mance of our proposed method and assess the quality of the generated sentences. These
metrics include BLEU-n (n = 1, 2, 3, 4), Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE_L), Metric for Translation Evaluation with Explicit Ordering (METEOR),
Consensus-Based Image Description Evaluation (CIDEr), Semantic Propositional Image
Caption Evaluation (SPICE), and Sm.

BLEU-n: The Bilingual Evaluation Understudy [42] is a widely used metric originally
developed for evaluating machine translation systems. It measures the co-occurrence
of n-grams (contiguous sequences of n words) between the generated sentences and the
reference (ground truth) sentences. The value of n can be chosen as 1, 2, 3, or 4, representing
unigrams, bigrams, trigrams, and four-grams, respectively.

ROUGE_L: The ROUGE_L metric [43] is a widely used evaluation metric in the fields
of automatic summarization and machine translation. It measures the F-measure of the
longest common subsequence (LCS) between the generated sentences and the reference
(ground truth) sentences. The LCS represents the longest sequence of words that appears in
both the generated and reference sentences. By computing the F-measure based on the LCS,
it provides an indication of how well the generated sentences capture the key information
and content of the reference sentences.

METEOR: This method is a widely used metric for evaluating the quality of machine
translation output [44]. It measures the similarity between a generated sentence and a
reference sentence by considering word-to-word matches and aligning the words in both
sentences. The final METEOR score is calculated as the harmonic mean of precision and
recall, providing a balanced evaluation of the generated sentence quality.

CIDEr: This metric is specifically designed for evaluating image captioning tasks [45].
It takes into account the term frequency-inverse document frequency (TF-IDF) weights of
n-grams in both the generated and ground truth sentences. By applying TF-IDF weights,
CIDEr captures the importance of specific n-grams in the context of the entire corpus
of captions. It considers not only the presence of relevant n-grams but also their rarity
across the dataset. This allows CIDEr to provide a more comprehensive evaluation of the
generated captions, taking into account both the accuracy of the generated descriptions
and their distinctiveness compared to other captions.

SPICE: SPICE metric [46] constructs tuples from both the candidate (generated) cap-
tions and reference captions and then calculates the F-score based on the matching tuples.
Unlike traditional n-gram-based metrics, SPICE focuses on capturing the semantic meaning
of captions rather than relying on specific word sequences. It represents objects, attributes,
and relationships in a graph-based representation, which makes it less sensitive to the
specific choice of n-grams.

Sm: Sm is a metric proposed in the 2017 AI Challenger competition to evaluate
the quality of generated sentences. It is the arithmetic mean of four popular evaluation
metrics: BLEU-4, METEOR, ROUGE_L, and CIDEr. We also take the SPICE metric into
consideration:

Sm =
1
5
(BLEU−4 + METEOR + ROUGE_L + CIDEr + SPICE) (17)

4.3. Experimental Details

In our CRSR model, the visual encoder, semantic refinement module, and sentence
decoder are constructed with Nr = 6, Nc = 3, and Nd = 6 Transformer blocks with a
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hidden state size of 512. The projection length of the visual mapper network is set to
k = 10 for three datasets. In the semantic retrieval and query prediction task, we extract
high-frequency nouns and adjectives from the ground truth sequences of the datasets to
serve as labels for filtering and prediction. To ensure meaningful and representative labels,
we consider the variations in dataset sizes and the occurrence of words within the captions.
Specifically, we select words that appear more than 15, 50, and 50 times in the Sydney, UCM,
and RSICD datasets, respectively. The frequency of word appearances is calculated based
on the condition that a word must appear at least three times within each image’s five
captions. And the query length l for predicting omitted words is set as the average length
of the overall overlooked words in the current dataset. For the Sydney, UCM, and RSICD
datasets, l is set to 4, 2, and 7.

During training, we employ beam search decoding with a beam size of three. The mod-
ulating factor α for the semantic refinement loss is set to α = 0.1. The entire architecture is
optimized for 20 epochs with a batch size of 16. The Adam optimizer [47] is employed with
a learning rate of 4 × 10−5 (warmup: 20,000 iterations). The experiments are conducted on
a Tesla V100 GPU using PyTorch version 1.13.1.

4.4. Experiments on Image Encoder

In this section, we investigate the efficiency of different image features extracted
from the pre-trained image extractors and explore the impact of varying projection
lengths in the Transformer Mapper network. We conducted these experiments on all
three datasets, RSICD, UCM-Captions, and Sydney-Captions, to evaluate the impact of
different feature extractors and Transformer Mapper projection length on the overall
caption generation performance.

4.4.1. Different Image Feature Extractors

We performed a comprehensive comparison of different image feature extractors in
the CLIP model. Specifically, we evaluated the performance of the following feature extrac-
tors: RN50, RN50x4, RN101, ViT-B/16, and ViT-B/32 [20]. The results of the comparison
experiments under different image feature extractors are shown in Table 2. The best results
are highlighted in bold.

Table 2. Comparison results of different image feature extractors.

Dataset Model B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Sydney-Captions

RN50 0.7827 0.7241 0.6775 0.6369 0.4141 0.7351 2.7790 0.4614 1.0053
RN50x4 0.7826 0.7226 0.6701 0.6265 0.3984 0.7260 2.7286 0.4680 0.9895
RN101 0.7935 0.7284 0.6792 0.6358 0.3951 0.7230 2.7214 0.4789 0.9908

ViT-B/16 0.7756 0.7137 0.6612 0.6146 0.3958 0.7303 2.8420 0.4670 1.0100
ViT-B/32 0.7994 0.7440 0.6987 0.6602 0.4150 0.7488 2.8900 0.4845 1.0397

UCM-Captions

RN50 0.8959 0.8425 0.7941 0.7491 0.4794 0.8425 3.8020 0.5253 1.2797
RN50x4 0.9034 0.8553 0.8137 0.7751 0.4994 0.8472 3.7401 0.5448 1.2813
RN101 0.9026 0.8559 0.8097 0.7638 0.4853 0.8544 3.8206 0.5179 1.2884

ViT-B/16 0.8928 0.8451 0.7981 0.7520 0.4919 0.8587 3.7753 0.5277 1.2811
ViT-B/32 0.9060 0.8561 0.8122 0.7681 0.4956 0.8586 3.8069 0.5201 1.2899

RSICD

RN50 0.8063 0.7029 0.6178 0.5458 0.3911 0.7027 2.9708 0.5085 1.0238
RN50x4 0.8056 0.7025 0.6173 0.5458 0.3909 0.7011 2.9630 0.5133 1.0228
RN101 0.7998 0.6981 0.6122 0.5392 0.3921 0.6993 2.9863 0.5130 1.0260

ViT-B/16 0.8136 0.7077 0.6207 0.5484 0.3956 0.7052 3.0062 0.5190 1.0349
ViT-B/32 0.8192 0.7171 0.6307 0.5574 0.4015 0.7134 3.0687 0.5276 1.0537

For the RSICD and Sydney-Captions datasets, different image feature extractors
significantly affect the experiment results. The best CIDEr score obtained for the RSICD
dataset is 3.0687, while the best SPICE score is 0.5276 when ViT-B/32 is used as the feature
extractor. Similarly, for the Sydney-Captions dataset, our model achieves the best BLEU1-4,
METEOR, ROUGE-L, and SPICE scores based on ViT-B/32. What is remarkable is that even
when employing other feature extractors, our model maintains state-of-the-art performance,
showcasing its robustness and effectiveness across different image feature representations.
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This demonstrates the adaptability and generalization capabilities of our model, which can
deliver competitive results regardless of the feature extractor used.

Thus, based on these comprehensive results, ViT-B/32 stands out as the preferred
choice for image feature extraction in our model, as it consistently delivers outstanding
performance across the overall three datasets, ensuring optimal caption generation results.

4.4.2. Transformer Mapper Projection Lengths

By varying the projection length in the Transformer Mapper network, we can effec-
tively control the intricacies of the visual information that the model can capture. To in-
vestigate the impact of different projection lengths on caption generation performance, we
conducted experiments with projection lengths of 5, 10, 15, and 20.

The results, as shown in Table 3, clearly demonstrate that the choice of projection
length in the Transformer Mapper network has a significant impact on the model’s caption
generation performance. The best results of different length settings are highlighted in bold.
Among the tested lengths, setting the projection length to 10 consistently yields the best
results on all three datasets. This indicates that a projection length of 10 strikes an optimal
balance between capturing relevant visual features and managing the complexity of the
visual information. When the projection length is too short (e.g., 5), the model’s visual
representation lacks sufficient context and detail, leading to a degradation in caption quality.
Conversely, when the projection length is too long (e.g., 15 or 20), the model may become
overwhelmed with excessive visual information, leading to a scattered and less-focused
representation, which also negatively impacts caption generation performance.

Table 3. Comparison results of different project lengths.

Dataset Length B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Sydney-Captions

5 0.7715 0.7130 0.6666 0.6300 0.4068 0.7372 2.8260 0.4596 1.0119
10 0.7994 0.7440 0.6987 0.6602 0.4150 0.7488 2.8900 0.4845 1.0397
15 0.7886 0.7220 0.6662 0.6187 0.3991 0.7232 2.7212 0.4557 0.9836
20 0.7829 0.7148 0.6549 0.6068 0.4007 0.7261 2.7861 0.4756 0.9991

UCM-Captions

5 0.8851 0.8345 0.7911 0.7502 0.4871 0.8424 3.7313 0.5010 1.2624
10 0.9060 0.8561 0.8122 0.7681 0.4956 0.8586 3.8069 0.5201 1.2899
15 0.8924 0.8410 0.7976 0.7574 0.4899 0.8531 3.7736 0.5272 1.2802
20 0.9034 0.8580 0.8144 0.7689 0.4860 0.8471 3.7945 0.4990 1.2791

RSICD

5 0.8050 0.6978 0.6072 0.5309 0.3957 0.7065 2.9726 0.5164 1.0245
10 0.8192 0.7171 0.6307 0.5574 0.4015 0.7134 3.0687 0.5276 1.0537
15 0.8110 0.7070 0.6205 0.5471 0.3973 0.7083 3.0261 0.5208 1.0399
20 0.8054 0.7038 0.6203 0.5500 0.4030 0.7114 3.0364 0.5193 1.0440

By setting the projection length to 10, the model is allowed to effectively capture
contextually meaningful visual representations and avoid overwhelming amounts of infor-
mation, enabling it to generate more accurate and coherent captions. This emphasizes the
importance of selecting an appropriate projection length to ensure optimal performance
in the caption generation task and highlights the effectiveness of the Transformer Mapper
network in handling visual information at a moderate granularity level.

4.5. Ablation Studies

In this section, we conduct an ablation study to investigate how each design in
our CRSR model influences the overall performances on the RSICD, UCM-Captions,
and Sydney-Captions datasets.

baseline model: In the baseline model (denoted as “bs”), we use a Transformer-based
encoder–decoder structure, which utilizes only CLIP features as visual inputs and does not
incorporate any supplemented semantic information. This serves as the foundation for our
CRSR model, which incorporates additional components and modifications to enhance its
performance.



Remote Sens. 2024, 16, 196 13 of 20

bs+m: This denotes the baseline model with the Transformer Mapper network added
to the visual encoder. The modification aims to enhance the visual encoding process,
resulting in a more comprehensive and informative visual representation.

bs+mq: “mq” signifies the Transformer Mapper network with the inclusion of query
prediction for additional semantic information. This guides the generated visual tokens to
focus more on the critical regions of the image.

bs+sr: “sr” denotes the semantic refinement module, which introduces the retrieved
words and the filtering of semantic tokens to our model.

bs+mq+sr: This denotes that both the Transformer Mapper network with learnable
queries and the semantic refinement module are introduced into the baseline model.
With the addition of both modules, our model can generate captions that have a more
accurate and comprehensive structure.

We analyzed the effect of each submodule in combination with the experimental
results. The results demonstrate the impact of each submodule on the overall performance
of our model. The best results among three datasets are highlighted in bold.

As shown in Table 4, the comparison between the baseline model and “bs+m” model
underscores the significance of incorporating the projection and attention mechanism of
the Transformer Mapper network. This inclusion leads to increased BLEU1-4 and Sm scores
across all three datasets, indicating that the model effectively captures the relationships
and dependencies within the visual features. The BELU-4 scores increased by 0.67%, 2.07%,
and 2.23% in the Sydney-Captions, UCM-Captions, and RSICD datasets, respectively. We
observed more significant improvements in the larger dataset, which indicates that the
Transformer Mapper network is particularly effective in capturing complex relationships
and dependencies within the visual features when dealing with larger and more diverse
datasets. The larger dataset provides a richer and more diverse set of visual information,
benefiting from the self-attention mechanism of the Transformer Mapper network. As a
result, the model can better understand the spatial and contextual information present
in the images, leading to more accurate and informative captions. This highlights the
scalability and generalization capabilities of the Transformer Mapper network, making it a
valuable addition to the caption generation model for larger and more challenging datasets.

Table 4. Ablation study results on the three datasets.

Dataset Model B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Sydney-Captions

bs 0.7697 0.6914 0.6219 0.5584 0.3817 0.6933 2.4097 0.4283 0.8943
bs+m 0.7754 0.6985 0.6297 0.5651 0.3894 0.7042 2.4429 0.4261 0.9055

bs+mq 0.7947 0.7200 0.6546 0.5932 0.4019 0.7265 2.6237 0.4461 0.9583
bs+sr 0.7873 0.7088 0.6425 0.5857 0.4035 0.7217 2.6867 0.4542 0.9704

bs+mq+sr 0.7994 0.7440 0.6987 0.6602 0.4150 0.7488 2.8900 0.4845 1.0397

UCM-Captions

bs 0.8295 0.7660 0.7184 0.6747 0.4467 0.7820 3.5171 0.4898 1.1821
bs+m 0.8434 0.7870 0.7414 0.7010 0.4639 0.8068 3.5358 0.5072 1.2029

bs+mq 0.8623 0.8145 0.7703 0.7287 0.4694 0.8246 3.4941 0.5001 1.2034
bs+sr 0.8918 0.8457 0.8015 0.7602 0.4909 0.8531 3.7335 0.5109 1.2697

bs+mq+sr 0.9060 0.8561 0.8122 0.7681 0.4956 0.8586 3.8069 0.5201 1.2899

RSICD

bs 0.7823 0.6729 0.5837 0.5090 0.3899 0.7012 2.8694 0.5076 0.9954
bs+m 0.8038 0.6943 0.6045 0.5313 0.3890 0.6964 2.8975 0.5063 1.0041

bs+mq 0.8068 0.6978 0.6090 0.5352 0.3894 0.6985 2.9658 0.5095 1.0197
bs+sr 0.7977 0.6906 0.6018 0.5288 0.3952 0.6956 2.9830 0.5189 1.0243

bs+mq+sr 0.8192 0.7171 0.6307 0.5574 0.4015 0.7134 3.0687 0.5276 1.0537

Comparing the results of “bs+m” and “bs+mq”, the additional inclusion of learnable
queries significantly enhances the model’s performance. By fusing the projected image
features with learnable queries that predict critical semantic information, the attention
mechanism further improves the extraction of semantically relevant features in the image.
The overall metric scores exhibit great improvements on the Sydney-Captions and RSICD
datasets, with Sm scores increasing by 5.28% and 1.56%, respectively, while there are
relatively smaller improvements on UCM-Captions. This discrepancy can be attributed
to the shorter query length of UCM-Captions compared to the other two datasets, which



Remote Sens. 2024, 16, 196 14 of 20

could limit the potential for additional improvements. Given that the retrieval results on
UCM-Captions already include enough semantic information, setting a longer query length
for repeated semantic information is not necessary.

With the added semantic refinement module, the experimental results of “bs” and
“bs+sr” in Table 4 demonstrate notable improvements in caption generation. Incorporating
the retrieval and filtering of semantic tokens results in improved metric scores across
all three datasets. For instance, in the largest dataset, RSICD, BLEU-4, SPICE, and Sm
scores increased by 1.98%, 1.13%, and 2.89%, respectively. In the UCM-Captions and
Sydney-Captions datasets, there is even greater improvement with the semantic refinement
module. Specifically, in UCM-Captions, SPICE and Sm scores are 1.49% and 7.03% higher,
respectively. In Sydney-Captions, SPICE and Sm scores improved by 2.59% and 7.61%,
compared to the baseline model. These results demonstrate the effectiveness of the semantic
retrieval and refinement module in refining generated captions and enhancing overall
performance.

Integrating both the Transformer Mapper network and the semantic refinement mod-
ule into the model, the results of “bs+m+sr” in comparison to “bs+m” and “bs+sr” further
affirm the cumulative benefits of both submodules. Notably, within the RSICD and Sydney-
Captions datasets, there are significant improvements in BLEU1-4, CIDEr, and Sm metrics.
Moreover, the CIDEr, SPICE, and Sm scores in the UCM-Captions dataset also exhibit
compelling enhancements, showcasing the effectiveness of these combined submodules
across diverse datasets.

4.6. Comparison with Other Methods

In this section, we conduct extensive comparative experiments with seventeen state-of-
the-art methods to demonstrate the effectiveness of our proposed CRSR method. The over-
all experiments result of three datasets are shown in Tables 5–7. The best results among
three datasets are highlighted in bold.

Table 5. Comparison results on the Sydney-Captions dataset.

Dataset B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Soft-Att [2] 0.7322 0.6674 0.6223 0.5820 0.3942 0.7127 2.4993 - -
Hard-Att [2] 0.7591 0.6610 0.5889 0.5258 0.3898 0.7189 2.1819 - -

Up-Down [48] 0.8180 0.7484 0.6879 0.6305 0.3972 0.7270 2.6766 - -
MLAM [25] 0.7900 0.7108 0.6517 0.6052 0.4741 0.7353 2.1811 0.4089 0.8809
Re-ATT [27] 0.8000 0.7217 0.6531 0.5909 0.3908 0.7218 2.6311 0.4301 0.9529

GVFGA + LSGA [29] 0.7681 0.6846 0.6145 0.5504 0.3866 0.7030 2.4522 0.4532 0.9091
SVM-D CONC [30] 0.7547 0.6711 0.5970 0.5308 0.3643 0.6746 2.2222 - -

FC-ATT [13] 0.8076 0.7160 0.6276 0.5544 0.4099 0.7114 2.2033 0.3951 0.8355
SM-ATT [13] 0.8143 0.7351 0.6586 0.5806 0.4111 0.7195 2.3021 0.3976 0.8593

SAT (LAM-TL) [17] 0.7425 0.6570 0.5913 0.5369 0.3700 0.6819 2.3563 0.4048 0.8698
Adaptive (LAM-TL) [17] 0.7365 0.6440 0.5835 0.5348 0.3693 0.6827 2.3513 0.4351 0.8746

struc-att [18] 0.7795 0.7019 0.6392 0.5861 0.3954 0.7299 2.3791 - -
JTTS [16] 0.8492 0.7797 0.7137 0.6496 0.4457 0.7660 2.8010 0.4679 1.0260

Meta-ML [34] 0.7958 0.7274 0.6638 0.6068 0.4247 0.7300 2.3987 - -
SCST [35] 0.7643 0.6919 0.6283 0.5725 0.3946 0.7172 2.8122 - -
DTFB [37] 0.8373 0.7771 0.7198 0.6659 0.4548 0.7860 3.0369 0.4839 1.0855
CASK [38] 0.7908 0.7200 0.6605 0.6088 0.4031 0.7354 2.6788 0.4637 0.9780

ours 0.7994 0.7440 0.6987 0.6602 0.4150 0.7488 2.8900 0.4845 1.0397

Regarding the Sydney-Captions dataset, our proposed CRSR model exhibits com-
petitive performance when compared with state-of-the-art methods. Notably, it achieved
the highest SPICE scores, although it lags slightly behind the DTFB method in overall
performance. This achievement is significant given that the Sydney-Captions dataset is
relatively small, consisting of only 613 RSIs, in comparison to other datasets. This limited
data size might have contributed to the relatively lower scores obtained by our model.
As shown in Table 5, despite this limitation, our model still gained a competitive score of
1.0397 for the comprehensive metric Sm compared with the overall methods.
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Table 6. Comparison results on the UCM-Captions dataset.

Dataset B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Soft-Att [2] 0.7454 0.6545 0.5855 0.5250 0.3886 0.7237 2.6124 - -
Hard-Att [2] 0.8157 0.7312 0.6702 0.6182 0.4263 0.7698 2.9947 - -

Up-Down [48] 0.8356 0.7748 0.7264 0.6833 0.4447 0.7967 3.3626 - -
MLAM [25] 0.8864 0.8233 0.7735 0.7271 0.5222 0.8441 3.3074 0.5021 1.1806
Re-ATT [27] 0.8518 0.7925 0.7432 0.6976 0.4571 0.8072 3.3887 0.4891 1.1679

GVFGA + LSGA [29] 0.8319 0.7657 0.7103 0.6596 0.4436 0.7845 3.3270 0.4853 1.1400
SVM-D CONC [30] 0.7653 0.6947 0.6417 0.5942 0.3702 0.6877 2.9228 - -

FC-ATT [13] 0.8135 0.7502 0.6849 0.6352 0.4173 0.7504 2.9958 0.4867 1.1339
SM-ATT [13] 0.8154 0.7575 0.6936 0.6458 0.4240 0.7632 3.1864 0.4875 1.1435

SAT (LAM-TL) [17] 0.8208 0.7856 0.7525 0.7229 0.4880 0.7933 3.7088 0.5126 1.2450
Adaptive (LAM-TL) [17] 0.857 0.812 0.775 0.743 0.510 0.826 3.758 0.535 1.2734

struc-att [18] 0.8538 0.8035 0.7572 0.7149 0.4632 0.8141 3.3489 - -
JTTS [16] 0.8696 0.8224 0.7788 0.7376 0.4906 0.8364 3.7102 0.5231 1.2596

Meta-ML [34] 0.8714 0.8199 0.7769 0.7390 0.4956 0.8344 3.7823 - -
SCST [35] 0.8727 0.8096 0.7551 0.7039 0.4652 0.8258 3.7129 - -
DTFB [37] 0.8230 0.7700 0.7228 0.6792 0.4439 0.7839 3.4629 0.4825 1.1705
CASK [38] 0.8900 0.8416 0.7987 0.7575 0.4931 0.8578 3.8314 0.5227 1.2925

ours 0.9060 0.8561 0.8122 0.7681 0.4956 0.8586 3.8069 0.5201 1.2899

In the case of the UCM-Captions dataset, our CRSR model outperforms existing meth-
ods, achieving the highest scores in most of the metrics, with the exception of SPICE and
CIDEr, where it remains competitive. A substantial improvement is observed in our model’s
BLEU1-4 scores compared to the previous state-of-the-art methods. Furthermore, the Sm
metric score remains highly competitive when compared to the CASK method, demon-
strating the capability to generate more descriptive and contextually relevant captions of
our method.

Table 7. Comparison results on the RSICD dataset.

Dataset B − 1B − 1B − 1 B − 2B − 2B − 2 B − 3B − 3B − 3 B − 4B − 4B − 4 MMM RRR CCC SSS SmSmSm

Soft-Att [2] 0.6753 0.5308 0.4333 0.3617 0.3255 0.6109 1.9643 - -
Hard-Att [2] 0.6669 0.5182 0.4164 0.3407 0.3201 0.6084 1.7925 - -

Up-Down [48] 0.7679 0.6579 0.5699 0.4962 0.3534 0.6590 2.6022 - -
MLAM [25] 0.8058 0.6778 0.5866 0.5163 0.4718 0.7237 2.7716 0.4786 0.9924
Re-ATT [27] 0.7729 0.6651 0.5782 0.5062 0.3626 0.6691 2.7549 0.4719 0.9529

GVFGA + LSGA [29] 0.6779 0.5600 0.4781 0.4165 0.3285 0.5929 2.6012 0.4683 0.8815
SVM-D CONC [30] 0.5999 0.4347 0.3355 0.2689 0.2299 0.4557 0.6854 - -

FC-ATT [13] 0.6671 0.5511 0.4691 0.4059 0.3225 0.5781 2.5763 0.4673 0.8700
SM-ATT [13] 0.6699 0.5523 0.4703 0.4068 0.3255 0.5802 2.5738 0.4687 0.8710

SAT (LAM-TL) [17] 0.6790 0.5616 0.4782 0.4148 0.3298 0.5914 2.6672 0.4707 0.8946
Adaptive (LAM-TL) [17] 0.6756 0.5549 0.4714 0.4077 0.3261 0.5848 2.6285 0.4671 0.8828

struc-att [18] 0.7016 0.5614 0.4648 0.3934 0.3291 0.5706 1.7031 - -
JTTS [16] 0.7893 0.6795 0.5893 0.5135 0.3773 0.6823 2.7958 0.4877 0.9713

Meta-ML [34] 0.6866 0.5679 0.4839 0.4196 0.3249 0.5882 2.5244 - -
SCST [35] 0.7836 0.6679 0.5774 0.5042 0.3672 0.6730 2.8436 - -
DTFB [37] 0.7581 0.6416 0.5585 0.4923 0.3550 0.6523 2.5814 0.4579 0.9078
CASK [38] 0.7965 0.6856 0.5964 0.5224 0.3745 0.6833 2.9343 0.4914 1.0012

ours 0.8192 0.7171 0.6307 0.5574 0.4015 0.7134 3.0687 0.5276 1.0537

Furthermore, on the RSICD dataset, which is the largest among the three datasets, our
CRSR model continues to deliver remarkable performance. It achieves the highest scores in
all evaluated metrics, outperforming the previous state-of-the-art methods. Notably, our
model exhibits a substantial improvement of 13.44% in the CIDEr metric over the CASK
method, which obtained the second-highest score. Moreover, there is a significant increase
in all other evaluated metrics, reaffirming the CRSR model’s superiority in generating
high-quality captions for RSIs.



Remote Sens. 2024, 16, 196 16 of 20

4.7. Analysis of Training and Testing Time

In the context of practical applications, algorithmic efficiency holds paramount
importance. For a comprehensive evaluation of the efficiency of our approach, we
measured key parameters, including training time, testing time, and the total number of
parameters with the Sm metric. The comparison was conducted between the baseline
model and our proposed method using the RSICD dataset, and the results are presented
in Table 8.

Table 8. Comparison of the training and testing time on the RSICD dataset.

Model Training Time/Epoch(s) Testing Time/Epoch(s) Params(M) Sm

bs 375 40 52.02 0.9954
bs+mq+sr(ours) 414 45 67.26 1.0537

Analyzing the results from the comparative experiments, it is evident that our method,
incorporating a Transformer Mapper and semantic refinement module, leads to an increase
in the number of parameters compared to the baseline model. Despite this increment
in parameters, the performance gains in caption generation are substantial. Therefore,
when weighing the time cost against performance factors, our method exhibits a favorable
trade-off, incurring a relatively small increase in time cost for a significant improvement in
performance.

4.8. Qualitative Analysis
4.8.1. Generated Captioning Results

As illustrated in Figure 3, we demonstrate several generated captions from all three
datasets to conduct a qualitative analysis of our proposed CRSR method. In each row of
the figure, we present the image with the ground truth (GT) sentences, the description
generated by the baseline model (base) used in Ablation Studies, the description generated
by our CRSR method (ours), the retrieved words (retr) based on CLIP, and the missing
words (miss) that will be predicted by the learnable queries. To highlight the contributions
of our CRSR method, the words that are uniquely generated by our model are marked in
blue. Additionally, we identify and mark incorrect words, and words should be filtered
from the retrieved words in red.

Comparing the captions generated by the baseline model with our CRSR method,
we can observe that our approach effectively captures more precise and intricate in-
formation from the input image. As depicted in Figure 3, our model generates more
comprehensive details, particularly concerning the overall scene categories, the quantity
of objects, and the descriptive words that articulate relationships within the scene. For in-
stance, in the first image of the first row, generated by our CRSR method, it accurately
identifies “baseball field” and proceeds to generate descriptions like “many houses”,
“surrounded”, and “sands” in the subsequent images of the same row. In addition, our
model demonstrates its capacity to filter out misleading retrieved words and reconstruct
missing words based on the prediction queries. To illustrate, in the first image of the
second row and the second image of the third row, the retrieved words “closed” and
“square” are effectively filtered out by our model. Moreover, in the subsequent images
of the second row, our model generates missing words such as “yellow”, “near”, and
“road”. The retrieved words, when appropriately filtered and integrated into the cap-
tioning process, enhance the overall coherence and relevance of the generated captions.
In addition, the presence of missing words in our generated captions showcases the
reconstruction ability of the Transformer Mapper module.
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Figure 3. Captioning results of the baseline model and our proposed CRSR method. The “GT”
denotes the ground truth captions. The “base” denotes the description generated by the baseline
model. “ours” denotes the description generated by our CRSR method. “retr” denotes the retrieved
words from the sentence pool, while “miss” denotes the overlooked words during retrieval. Blue
words denote the scene uniquely captured by our model compared with baseline model. Red words
denote the incorrectly generated words in description and retrieved words.

4.8.2. Visualization of Attention Weights

We provide visualizations of attention weights in Figure 4, offering insights into
the attention mechanism of our CRSR model during caption generation. The y-axis in
this figure represents the words retrieved through our retrieval method, while the x-axis
corresponds to the generated captions. This visualization allows us to understand how
the model prioritizes the retrieved semantic tokens, observing how the model filters out
irrelevant words while utilizes existing words to generate more relevant captions.

It can be seen from Figure 4 that the model concentrates on the corresponding words
when generating the caption sequence due to the introduction of semantic information.
Notably, it accurately focuses on terms like “road” and “residential” when the same words
are implemented. Furthermore, the presence of semantic tokens leads to heightened
attention towards pertinent words during generation, as exemplified by “across”, “dense”,
and “neatly”. The incorporation of semantic information significantly influences attention
and word prioritization during caption generation, which ensures that the generated
captions are more aligned with the visual content of the input images, resulting in increased
accuracy and relevance.
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Figure 4. Visualized attention matrix between the semantic tokens and the captioning of the input images.

5. Conclusions

In this article, we introduce the CRSR image captioning method for RSIs, incorporating
two distinct modules for enhanced caption generation. The semantic refinement module
systematically organizes semantic information. We initially leveraged the powerful CLIP
model, fine-tuned on RSIC datasets, for retrieving relevant words from the sentence pool,
providing valuable supplementary information for RSIs. Subsequently, we further refined
and filtered primary semantic information using a masked-attention strategy. Additionally,
within the Transformer Mapper network, we introduce learnable queries to enhance the
model’s understanding of semantically relevant information and extend the representation
of image features through a projection mechanism. The comprehensive experiment results
from both quantitative and qualitative evaluations validate the superiority of our method
over existing state-of-the-art approaches in RSIC.

However, there are still challenges and limitations in our method that need to be
addressed in future research. Training the retrieval model separately from the captioning
model introduces the risk of semantic misalignment between the retrieved words and the
actual content of the RSIs. Moreover, the semantic refinement module still introduces some
errors with contradictory semantic information during the refinement process, resulting in
incorrect captions. To overcome these challenges, future research will focus on exploring
improvements in the current retrieval method and semantic refinement module to better
align the retrieval and captioning models.
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