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Abstract: The spatiotemporal patterns and shifts of net ecosystem productivity (NEP) play a piv-
otal role in ecological conservation and addressing climate change. For example, by quantifying
the NEP information within ecosystems, we can achieve the protection and restoration of natural
ecological balance. Monitoring the changes in NEP enables a more profound understanding and
prediction of ecosystem alterations caused by global warming, thereby providing a scientific basis for
formulating policies aimed at mitigating and adapting to climate change. The accurate prediction of
NEP sheds light on the ecosystem’s response to climatic variations and aids in formulating targeted
carbon sequestration policies. While traditional ecological process models provide a comprehen-
sive approach to predicting NEP, they often require extensive experimental and empirical data,
increasing research costs. In contrast, machine-learning models offer a cost-effective alternative for
NEP prediction; however, the delicate balance in algorithm selection and hyperparameter tuning is
frequently overlooked. In our quest for the optimal prediction model, we examined a combination of
four mainstream machine-learning algorithms with four hyperparameter-optimization techniques.
Our analysis identified that the backpropagation neural network combined with Bayesian optimiza-
tion yielded the best performance, with an R2 of 0.68 and an MSE of 1.43. Additionally, deep-learning
models showcased promising potential in NEP prediction. Selecting appropriate algorithms and
executing precise hyperparameter-optimization strategies are crucial for enhancing the accuracy of
NEP predictions. This approach not only improves model performance but also provides us with new
tools for a deeper understanding of and response to ecosystem changes induced by climate change.

Keywords: machine-learning algorithms; hyperparameter optimization; remote sensing; Southeast
Asia; net ecosystem productivity

1. Introduction

Net ecosystem productivity (NEP) refers to the residual part of net primary pro-
ductivity after subtracting the consumption of photosynthetic products by heterotrophic
respiration [1]. As an indicator of ecosystem productivity, NEP plays a pivotal role in the
surface carbon cycle, offering an intuitive reflection of vegetation productivity in natural
environments. It serves as a critical metric in characterizing the land ecosystem’s response
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to climate change and directly impacts the global carbon cycle and climate stability [2,3].
A positive NEP suggests that the ecosystem assimilates more carbon from the atmosphere
than it releases, acting as a carbon sink, vital in offsetting carbon emissions from indus-
trialization and urbanization. In contrast, a negative NEP might result from ecosystem
degradation, wildfires, or changes in land use, turning it into a carbon source. There-
fore, accurately predicting the spatiotemporal variations of land NEP is crucial for devising
effective climate change mitigation strategies and ensuring the continuous contribution of
ecosystems to regional and global carbon sinks [4,5].

For a long time, terrestrial NEP has predominantly been measured based on experi-
mental methods [6]. With the progression of computer technology and numerical modeling,
the methodologies for predicting NEP transformed as vegetation ecological process mod-
els became widely adopted [7–10]. In recent years, with the emergence of big data and
machine-learning technologies, there have been breakthroughs in the prediction methods
for NEP. Utilizing machine-learning algorithms, such as random forests and deep learning,
researchers can extract information about NEP from extensive remote-sensing, meteoro-
logical, and ecological datasets [11–13]; but given the limitations in data-driven model
structures, there can be a loss in the detailed representation of certain critical ecological
processes and internal ecosystem variations, leading to discrepancies in simulation re-
sults [14–16]. These discrepancies could be between the model outputs and actual scenarios
or among different model outcomes. Secondly, while machine-learning approaches offer
new possibilities for NEP prediction and excel in numerical simulation accuracy, they
introduce their challenges, notably the scale effect. When predicting NEP on a larger scale
using machine learning, there is a risk of overlooking or smoothing out phenological and
environmental variations significant on smaller scales [17,18]. On a global scale, machine-
learning models might be influenced by inconsistent spatial intensities of observational
data, resulting in a deviation from actual scenarios [19]. Furthermore, some scientists
have already applied traditional machine-learning methods, such as random forests, to
predict NEP on a global scale. However, variations in machine-learning algorithms and
tuning strategies can produce differing results. Specifically, there is limited research on
applying deep-learning algorithms in this area. Therefore, constructing and comparing
deep-learning models with traditional machine-learning models for iterative optimiza-
tion might be the most anticipated outcome in regionally precise NEP prediction [20–23].
For regions rich in ecosystem productivity, constructing regional multi-machine-learning
algorithm models based on appropriate observation points and long-term data, compar-
ing various hyperparameter-optimization combinations, and further optimizing model
performance could lead to an optimal model for accurately inverting regional NEP.

The objectives of our research are: (1) Utilize machine-learning algorithms, specifically
random forest, support vector regression, backpropagation neural network, and convolu-
tional neural network, fine-tuned with hyperparameter-optimization strategies like random
search, grid search, Bayesian optimization, and genetic algorithms to process long-term
NEP observations and remote-sensing data. This is to accurately predict the annual NEP
in Southeast Asia, linking algorithm selection and optimization directly to the predictive
accuracy of our model. (2) Determine the most effective model for NEP prediction in
Southeast Asia by analyzing the performance of each algorithm–strategy combination,
ensuring that the chosen model captures the unique phenological signatures of the region’s
ecosystems. (3) Validate our model by comparing its NEP predictions against international
studies, establishing its effectiveness in capturing regional ecosystem productivity. These
steps are devised to fulfill the hypothesis that different machine-learning approaches will
yield varied NEP predictions in Southeast Asia, from which the optimal solution will be
systematically derived.
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2. Data and Methods
2.1. Study Area Overview

The study area is Southeast Asia (92◦E–140◦E, 10◦S–28◦26′N), comprising the Indo-
China Peninsula and the Malay Archipelago (Figure 1). The northern part of the Indochina
Peninsula is mountainous, while the southern part is relatively flat. The Malay Peninsula
and the Malay Archipelago are predominantly hilly and mountainous. To the north, South-
east Asia borders China; to the east, it faces the Pacific Ocean; to the south, it overlooks
Australia across the sea; and to the west, it gazes upon the Indian Ocean. It comprises
Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thai-
land, and Vietnam, covering approximately 4.49 million square kilometers. Most Southeast
Asian countries are situated near the equator, resulting in relatively stable annual tempera-
tures and abundant precipitation, predominantly characterized by tropical rainforest and
monsoon climates [24].
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Figure 1. Land cover and FLUXNET Sites in South east Asia.

2.2. Data and Pre-Processing

In this study, the prediction of NEP was conducted based on the relationship
‘NEP = −NEE’ [25,26]. NEE is a comprehensive indicator encompassing the net carbon
contribution of all biological activities and soil respiration in an ecosystem to the atmo-
sphere [27,28]. Positive values indicate that the ecosystem acts as a carbon source, while
negative values signify it as a carbon sink. We set NEE as the target feature, with the fea-
ture variables being sensible heat flux (H), latent heat flux (LE), longwave radiation (LW),
shortwave radiation (SW), vapor pressure deficit (VPD), atmospheric pressure (PA), air
temperature (TA), precipitation (P), wind speed (WS), and normalized difference vegetation
index (NDVI). These features were chosen as they play pivotal roles in the carbon cycling
processes between ecosystems and the atmosphere [29–32]. Accordingly, we collated daily
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data from four FLUXNET observation sites in Southeast Asia (Figure 1) spanning from
2003 to 2016, totaling ten types of observational data, which included one target feature
and nine feature variables, detailed in Table 1, resulting in 4,333 records. After handling
missing values, invalid values (−9999), and extreme values (i.e., values outside the 1% and
99% quantiles for each observational dataset of the site), 4181 valid records remained. As
the vegetation index plays a crucial role in vegetation productivity, we collected NDVI
values corresponding to the observation site locations and periods using GEE, establishing
it as the tenth feature variable.

Table 1. Dataset.

Parameter Data Type
Original
Spatial

Resolution (m)
Data Type

NEE, H, LE, SW, LW,
VPD, PA, TA, P, WS CSV / FLUXNET2015 Dataset 1

NDVI CSV / MCD43A4.061 2

NEE, H, LE, SW, LW,
VPD, PA, TA, P, WS tif 11,132 ERA5 Monthly Aggregates 3

NDVI tif 11,132 MCD43A4.061 2

NEP tif / NIES 4

NEP tif /
National Earth System Science Data

Center National Science and
Technology Infrastructure of China 5

1 https://fluxnet.org/data/fluxnet2015-dataset/ (accessed on 22 August 2023), 2 https://developers.google.com/
earth-engine/datasets/catalog/MODIS_061_MCD43A4 (accessed on 13 September 2023), 3 https://developers.
google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR (accessed on 13 Septem-
ber 2023), 4 https://www.nies.go.jp/doi/10.17595/20200227.001-e.html (accessed on 15 September 2023),
5 http://www.geodata.cn/data (accessed on 15 September 2023).

Given the significant ecological changes in Southeast Asia since the onset of the
new millennium, we opted to predict the NEP for this area from 2001 to 2020 [33,34].
We batch-acquired monthly remote-sensing image data for the ten variables over 20 years
(2001–2020) via the GEE platform. The resolution was standardized to 11,132 m, with
geographical coordinates set to WGS1984. Additionally, we collated annual NEP raster
products produced by NIES and GEODA for comparative validation (Table 1).

2.3. Methods

In studying the carbon exchange of ecosystems, we possess a continuous sequence of
4181 observational records, which capture critical natural condition indicators including
NEE, H, LE, LW, SW, VPD, PA, TA, P, WS, and NDVI. Given the dataset’s spatiotempo-
ral richness and inherent complexity, we meticulously selected machine-learning models
tailored to each aspect of our objectives. To predict the annual NEP with high precision,
we employ random forest (RF) for its robustness in noisy, high-volume data and its en-
semble approach that aggregates multiple decision trees to improve prediction accuracy.
Support vector regression (SVR) is utilized for its ability to capture complex, nonlinear
relationships which is crucial for modeling the intricate interactions present within our me-
teorological data, aiding in the identification of the most optimal model for NEP prediction.
A backpropagation neural network (BPNN) is integrated to approximate the multifaceted
functional relationships between climatic indicators and carbon exchange, offering nuanced
insights into the interplays of variables. This choice is driven by the need to understand
the detailed interactions within our dataset to ensure the selection of the best model. Fur-
thermore, the convolutional neural network (CNN) is introduced to harness its strength in
processing time-sequential data, aligning with the temporal continuity of our observations,
and autonomously extracting spatiotemporal features, ensuring the model’s predictions
are robust and comprehensive. Each algorithm’s deployment is strategically chosen to
address specific objectives, ensuring that our methodology is not just a collection of tools

https://fluxnet.org/data/fluxnet2015-dataset/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A4
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A4
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://www.nies.go.jp/doi/10.17595/20200227.001-e.html
http://www.geodata.cn/data
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but a suite of purpose-driven analyses that provide clarity and depth to our understanding
of ecosystem carbon exchange. The comprehensive research framework of this study is
depicted in Appendix A.

2.3.1. Random Forest Algorithm (RF)

As a contemporary ensemble learning method within machine learning, RF has been
extensively deployed for various issues, particularly regression problems. Its foundational
principle hinges on constructing and amalgamating the estimative prowess of multiple
decision trees to approximate intricate data distributions [35,36]. In regression scenarios,
the operational mechanism of random forests primarily manifests in two facets: initially,
bootstrapping techniques are employed to extract numerous sample subsets from the
original data, with each subgroup independently training an individual decision tree.
Subsequently, only a random fraction of features are computed during each node split to
infuse further diversity and circumvent the overfitting inherent in solitary decision trees.
This stochastic feature selection strategy ensures each tree possesses a unique construction
modality, amplifying the model’s generalization capacity. When conducting estimations,
the random forest averages the estimative values from all decision trees, culminating in a
more robust result [37].

2.3.2. Support Vector Regression (SVR)

SVR, a regression form of the support vector machine, aspires to identify a hyperplane
that maximizes the margin between data points and the decision boundary, thereby furnishing
a reliable solution for regression problems [38,39]. In traditional regression techniques, the
objective is to minimize the discrepancy between estimated and actual values. Conversely, SVR
intends to ensure the error does not surpass a predetermined threshold ε while concurrently
striving to minimize the model’s complexity. This approach can be perceived as striking a
balance between estimation error and model intricacy. At the heart of SVR is mapping data to
a higher-dimensional feature space, wherein a linear optimal hyperplane is sought. To realize
this aim, SVR harnesses the kernel trick to implicitly compute the dot product in the feature
space within the original data domain, sidestepping computational intricacies [40]. The choice
of kernel function is pivotal to SVR’s efficacy, with prevalent kernels encompassing linear,
polynomial, and radial basis function kernels. Through its unique strategy of maximizing
margins and the kernel trick, SVR proffers an efficient, dependable solution to regression
challenges, boasting commendable generalization capabilities.

2.3.3. Backpropagation Neural Network (BPNN)

BPNN represents a deep-learning algorithm, offering a robust framework for tackling
intricate nonlinear relationships. At its core, it estimates through forward propagation
and updates weights via backpropagation to minimize the discrepancy between estimated
and actual values [41]. In the context of regression, BP neural networks endeavor to
identify a continuous function mapping, deriving continuous outputs from input feature
spaces. Each layer within the network encompasses several neurons that undergo nonlinear
transformations through activation functions, such as Sigmoid, ReLU, and others, thereby
bolstering the model’s expressive capacity. The retrograde weight updates in the model are
accomplished via the gradient descent method, which computes the partial derivatives of
the loss function for each weight, adjusting the weights subsequently to diminish errors [42].
Against deep learning, BPNN can be equipped with multiple hidden layers, thereby
discerning advanced patterns and features intrinsic to the data [43]. Training profound
BPNNs may necessitate supplementary techniques, such as early stopping, regularization,
dropout, and batch normalization, to avert overfitting and expedite convergence.

2.3.4. Convolutional Neural Network (CNN)

CNN is a cornerstone architecture in deep learning, initially conceived for handling
data with grid-like structures, such as image classification. CNN captures local and global
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data features by stacking multiple convolutional layers. Each convolutional layer acts as a
feature extractor, capable of detecting specific patterns in the data. As the network delves
deeper, these detections become increasingly abstract and intricate, facilitating profound
data recognition [44,45]. However, CNN’s prowess is not confined to classification tasks;
it also manifests substantial potential in regression problems. Owing to its depth and
parameter-sharing properties, CNN adeptly encapsulates and represents intricate data
distributions, bolstering continuous value estimation. For regression tasks, the output layer
of a CNN is typically designed to produce one or multiple continuous values rather than
classification labels, with the loss function pivoting from classification errors to estimation
errors, such as mean squared error [46–48]. While CNNs have achieved monumental
success in image recognition, their applicability and potential in regression challenges also
merit keen attention and further exploration.

2.3.5. Hyperparameter-Optimization Strategy

Hyperparameter tuning is a pivotal step to ensure the optimal performance of a
model. In this study, we incorporate four hyperparameter-optimization strategies, namely
random search (RS), grid search (GS), Bayesian optimization (BO), and genetic algorithms
(GA). RS is a strategy that randomly selects hyperparameters. It operates independently
of previously evaluated hyperparameter combinations, randomly choosing a new set of
hyperparameters during each iteration. The merit of this approach lies in its simplicity
and straightforward implementation, with the ability to sidestep local optima, potentially
pinpointing favorable hyperparameter combinations in a relatively brief span [49].

In contrast, GS adopts a more structured approach, conducting an exhaustive search
within a predefined hyperparameter space and evaluating each conceivable combina-
tion [50]. While potentially time-consuming, it ensures the identification of the optimal
hyperparameter set within the stipulated range.

Conversely, BO employs a more intricate strategy, leveraging probabilistic models
to predict which hyperparameter combinations might yield superior results, prioritizing
searches in these realms [50]. Its primary advantage is its ability to intelligently pinpoint
hyperparameter combinations for evaluation, securing optimal solutions in fewer iterations.

Inspired by biological evolution, GA deploys strategies like selection, crossover, and
mutation to navigate the hyperparameter space [50]. Characterized by their ability to
maintain a population of hyperparameter combinations and gravitate towards optimal
solutions based on performance, genetic algorithms are particularly apt for complex, non-
continuous, and ill-defined hyperparameter realms.

3. Results
3.1. Application of Multi-Algorithm Predictions for Annual NEP in Southeast Asia
3.1.1. Results of Random Forest Algorithm

In this study, the RF algorithm was combined with four hyperparameter-optimization
strategies, each determined through cross-validation to achieve an optimal model per-
formance. For ease of comparison, the hyperparameters, including the number of trees
(Trees), maximum depth of the tree (Depth), minimum number of samples required to
split an internal node (Min split), and minimum number of samples required to be at a
leaf node (Min leaf), as well as the hyperparameter-optimization strategies’ number of
iterations (N_ITER), cross validation (CV), and population size (PS) are presented in Table 2.
It can be observed that different optimization strategies yield various hyperparameter
combinations, reflecting the characteristics and preferences of each strategy when searching
the hyperparameter space.

Figure 2 comprehensively shows the validation comparison between the observed and
model-predicted values obtained using the four hyperparameter-optimization strategies: RS,
GS, BO, and GA. We observed that the predictions from the RS, GS, and BO strategies are
consistent with the actual values (with R2 values ranging between 0.68 and 0.7 and MSE
values between 1.43 and 1.47). However, the results from the GA strategy are more dispersed,
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with an R2 value of 0.22 and MSE of 3.5. After comparing the performance of R2 and MSE, we
believe that the model results obtained using the RS strategy are the most reliable.

Table 2. Optimal hyperparameter results of RF algorithm combined with four hyperparameter-
optimization strategies.

Optimization
Strategy Trees Depth Min split Min leaf N_ITER CV PS

RS 200 20 5 1 100 3 /
GS 500 40 10 4 / 3 /
BO 122 12 2 1 100 3 /
GA 100 None 2 1 50 / 20
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3.1.2. Results of the Support Vector Regression Algorithm

To delve deeper into the performance of the SVR algorithm combined with the four
hyperparameter-optimization strategies, we employed the cross-validation method, en-
suring that each optimization strategy could achieve its optimal performance. To visually
present the model’s key hyperparameters, we consolidated the kernel function (Kernel),
epsilon-insensitive loss (epsilon), and regularization parameter (C) along with the opti-
mization strategy hyperparameters: number of iterations (N_ITER), cross validation (CV),
and population size (PS), and presented them in tabular form (Table 3). Among them, the
kernel function describes the mapping mechanism of data in high-dimensional space; the
epsilon-insensitive loss defines a permissible error range; errors beyond this range are only
considered, while C, as a regularization parameter, determines the model’s error tolerance.
The various optimization strategies demonstrated distinct characteristics and tendencies
during their search process in the parameter space.
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Table 3. Optimal hyperparameter results of SVR algorithm combined with four hyperparameter-
optimization strategies.

Optimization
Strategy Kernel Epsilon C N_ITER CV PS

RS RBF 1.0 10.0 100 3 /
GS RBF 1.0 10.0 / 3 /
BO RBF 1 × 10−6 0.2208 100 3 /
GA RBF 1.0 10.0 50 / 10

Figure 3 provides a detailed representation of the observed versus predicted values
validated by the four hyperparameter-optimization strategies, RS, GS, BO, and GA, as
applied in the support vector regression model. The RS, GS, and GA strategies demon-
strated an outstanding prediction accuracy, yielding an R2 of 0.6816 and an MSE of 1.4368.
In contrast, the BO strategy lagged slightly, with its R2 at 0.5946 and an MSE of 1.8296.
Considering both the R2 and MSE metrics, we believe that within the framework of the SVR
algorithm, the models derived from the RS, GS, and GA strategies consistently showcase a
high predictive capability, accurately capturing variations in the target features. In contrast,
the BO strategy appears slightly less effective.
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3.1.3. Results of the BP Neural Network Algorithm

In this section, we present the results of the BPNN algorithm fine-tuned with the
four hyperparameter-optimization strategies. Each hyperparameter-optimization strat-
egy underwent cross-validation to ensure the model’s reliability. This step ensures that
the hyperparameters we obtained exhibit optimal performance across the entire dataset.
Table 4 provides a detailed listing of the critical hyperparameter choices under various
optimization strategies, including the units hidden (UH), dropout rate (DR), learning rate
(LR), activation (Act), and optimizer (Opt). Concurrently, parameters related to the opti-
mization strategy, such as max trials (MT) and early stopping (ES), were also considered.
As observed from Table 4, different hyperparameter-optimization strategies resulted in
varied hyperparameter combinations, reflecting each strategy’s unique characteristics and
preferences when searching within the parameter space.

Table 4. Optimal hyperparameter results of the BPNN algorithm combined with four hyperparameter-
optimization strategies.

Optimization
Strategy UH DR LR Act Opt MT ES

RS 128 0.1 0.004 ReLU Adam 100 10
GS 64 0.4 0.0078 ReLU Adam 200 10
BO 96 0.3 0.006 ReLU Adam 200 10
GA 64 0.4 0.0078 ReLU Adam 200 10

Several insights emerged after a detailed analysis of the loss function curves under
the BPNN algorithm across the four hyperparameter-optimization strategies. For the RS
strategy, the curve showed a swift decline in training loss from 3.25 to 2.00 within the initial
two iterations, followed by a more gradual decrease. The validation loss was significantly
reduced in the first five iterations, but subsequent fluctuations hinted at mild overfitting.
Notably, the two loss curves intersected during the 20th, 24th, and 28th iterations, with a
loss value ranging from 1.6 to 1.7 (Figure 4a). Under the BO strategy, the training loss curve
exhibited a pronounced decline and stabilized after the 8th iteration. The initial decline
in validation loss was followed by fluctuations, frequently intersecting with the training
curve after the 25th iteration, which suggests a comparable model performance on both the
training and validation datasets (Figure 4c). On the other hand, for both the GS and GA
strategies, the training loss consistently declined. In contrast, the validation loss remained
volatile, rarely intersecting (Figure 4b,d), indicating the relatively weaker performance of
models trained under these strategies, with more significant discrepancies. The analysis
of the loss function curves shows that different hyperparameter-optimization strategies
exhibit varying performance characteristics under the BPNN algorithm. The RS strategy
performs well in early iterations but might present mild overfitting later. The BO strategy’s
model performs similarly on training and validation data, albeit with slight overfitting in
some iterations. Conversely, the GS and GA strategies require further optimization, given
their relatively weaker model performance and the continued fluctuations observed in their
validation loss.

We interpreted the degree of precise alignment between the model predictions and
observed values of the BPNN algorithm combined with four different hyperparameter-
optimization strategies using the two metrics, R2 and MSE. The RS, BO, and GA approaches
displayed similar model performances among these strategies. Their R2 values consistently
remained around 0.68, while the MSE ranged between 1.43 and 1.44, which suggests that
these three strategies achieved relatively stable and accurate prediction results, as depicted
in Figure 4e,h,g. In contrast, with an R2 value of 0.67, the GS strategy was slightly lower
than the other three. Its MSE value stood at 1.47, indicating marginally higher prediction
errors, as shown in Figure 4f. Upon comparing the predictive performances of the four
strategies, it is evident that despite minor discrepancies in specific metrics, they generally
offered relatively accurate predictions. Notably, the BO strategy stood out among the four



Remote Sens. 2024, 16, 17 10 of 22

for its exceptional stability and accuracy in model prediction, making it the most promising
predictive strategy in this context.
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3.1.4. Results of the Convolutional Neural Network Algorithm

This section presents the optimization outcomes achieved by combining the CNN
algorithm with the four hyperparameter-optimization strategies. Cross-validation was
also applied to each hyperparameter-optimization strategy to ensure the robustness of
the models. Subsequently, we have enumerated the key hyperparameters determined
under each optimization strategy (Table 5), namely units hidden (UH), dropout rate (DR),
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learning rate (LR), activation (Act), and optimizer (Opt). In addition, parameters directly
related to the optimization strategies, such as max trials (MT) and early stopping (ES),
were also considered. By observing the optimal hyperparameters, it is evident that each
hyperparameter-optimization strategy led to unique hyperparameter combinations, shed-
ding light on each strategy’s distinct characteristics and tendencies during their exploration
in the parameter space.

Table 5. Optimal hyperparameter results of CNN algorithm combined with four hyperparameter-
optimization strategies.

Optimization
Strategy UH DR LR Act Opt MT ES

RS 32 0.1 0.0038 ReLU Adam 50 10
GS 64 0.3 0.006 ReLU Adam 200 10
BO 128 0.4 0.001 ReLU Adam 50 10
GA 32 0.3 0.0071 ReLU Adam 200 10

We meticulously examined the loss function curves of models derived from four
hyperparameter-optimization strategies under the CNN algorithm. The training and
validation loss curves for all four strategies showed gradual convergence. The RS and BO
strategies performed better (Figure 5a,c). The validation loss curves for these two strategies
sharply dropped from around 2.5 and entered a fluctuating state after the 10th and 5th
training epochs, respectively. The validation and training loss curves overlapped multiple
times by the end of the 30th epoch for RS and the 25th epoch for BO. The GS strategy’s
validation loss curve showed more significant fluctuations in the early stages and had
difficulty approaching the training loss curve (Figure 5b), indicating potential overfitting or
other issues that warrant further analysis. The GA strategy’s validation loss curve exhibited
continuous fluctuations during the first 40 training epochs. Between the 20th and 30th
epochs, the validation loss overlapped with the training loss multiple times, which might
suggest a relatively stable learning phase for the model at this stage. However, this does not
necessarily indicate good generalization capabilities (Figure 5d). Moreover, the persistent
fluctuations might imply overfitting at certain stages of the model’s training.

This study used the coefficient of determination R2 and the mean squared error (MSE)
to analyze the relationship between the simulated and actual values generated by the
model. Upon observing the results from the four strategies, it was evident that the RS and
GA strategies displayed closely related performances in model simulations. Their R2 values
were 0.70 and 0.69, respectively, with MSE ranging between 1.34 and 1.37, which suggests
that these two strategies achieved relatively robust and accurate simulation outcomes
(Figure 5e,h). On the other hand, the GS and BO strategies had an R2 value of around 0.67,
slightly lower than the former two strategies, and their MSE reached 1.46, indicating a
slightly higher error in simulations for these two strategies (Figure 5f,g). When considering
the simulation effects of all four strategies, it is notable that despite minor differences
in specific evaluation metrics, they all provided relatively accurate simulation results,
especially the RS strategy.
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3.2. Selection of the Optimal Prediction Model for Southeast Asia’s NEP

In this section, we compared the predictive results obtained by integrating the 4
machine-learning algorithms with the 4 hyperparameter-optimization strategies, which
yielded 16 models. By inputting Southeast Asia’s time-series remote sensing feature vari-
ables, we obtained the annual NEP of Southeast Asia from 2001 to 2020 for each model.
For our comparative analysis, we specifically looked at the NEP of Southeast Asia in 2010.
Models based on the RF algorithm combined with the four hyperparameter-optimization
strategies showed consistent results (Figure 6a–d). They adequately represented the vegeta-
tion spatial differentiation in Southeast Asia. Conversely, models derived from the SVR
algorithm in conjunction with the four hyperparameter-optimization strategies struggled
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to accurately represent the actual regional NEP (Figure 6e–h), indicating that the SVR
algorithm’s generalization capability for this specific problem might be limited. The BPNN
algorithm combined with the four optimization strategies demonstrated promising results,
capturing the influence of factors such as land cover, topography, and human activity on
the NEP (Figure 6i–l). While the CNN algorithm, combined with the four optimization
strategies, had spatial results broadly consistent with those from the BPNN algorithm, there
were discrepancies. Specifically, the CNN results indicated that the NEP in agricultural areas
(like the rice fields in Thailand’s central plains) was greater than zero (Figure 6m–p), which
contradicts our understanding. In conclusion, among the analyzed algorithms, the RF and
BPNN algorithms proved to be the most proficient in simulating the NEP of Southeast Asia.Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 24 
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Figure 6. Predicted NEP results for Southeast Asia (2010) using four machine-learning algorithms in
combination with four hyperparameter-optimization strategies: the RF algorithm with the RS strategy
(a), RF algorithm with the GS strategy (b), RF algorithm with the BO strategy (c), RF algorithm with
the GA strategy (d), SVR algorithm with the RS strategy (e), SVR algorithm with the GS strategy (f),
SVR algorithm with the BO strategy (g), SVR algorithm with the GA strategy (h), BPNN algorithm
with the RS strategy (i), BPNN algorithm with the GS strategy (j), BPNN algorithm with the BO
strategy (k), BPNN algorithm with the GA strategy (l), CNN algorithm with the RS strategy (m),
CNN algorithm with the GS strategy (n), CNN algorithm with the BO strategy (o), CNN algorithm
with the GA strategy (p).

Based on our detailed analysis of models generated by pairing each machine-learning
algorithm with the four hyperparameter-optimization strategies, we identified the best-
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performing combinations for each algorithm: RF with RS, SVR with both GS and RS (or
GA), BPNN with BO, and CNN with RS. We then employed these four optimal models
to predict the monthly NEP for Southeast Asia (Figure 7). Notably, the models resulting
from the RF algorithm combined with the RS strategy, the BPNN algorithm combined
with the BO strategy, and the CNN algorithm combined with the RS strategy produced
NEP estimates that were closely aligned. In contrast, the NEP predictions from the SVR
algorithm (when paired with the GS, RS, or GA strategies) were considerably lower than
the other three models, which exhibited a more chaotic monthly pattern throughout the
year. Additionally, the RF algorithm combined with the RS strategy showed a significant
disparity between the highest and lowest NEP values throughout the year. Since a large
part of Southeast Asia comprises tropical rainforests, we expect relatively consistent NEP
values throughout the year. However, the model’s output contradicts this expectation.
Considering the performance of all 16 models and their capabilities in simulating the NEP
of Southeast Asia, we are inclined to believe that the combination of the BPNN algorithm
with the BO strategy offers the most reliable and accurate results.
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Figure 7. Monthly predicted NEP of Southeast Asia using the four optimal machine-learning al-
gorithms in combination with hyperparameter-optimization strategies. The BPNN algorithm with
the BO strategy, CNN algorithm with the RS strategy, RF algorithm with the RS strategy, and SVR
algorithm with the GS strategy.

3.3. Validation of the Rationality of the Optimal Prediction Model for NEP in Southeast Asia

The model predictions based on the BPNN algorithm and the BO strategy for NEP
at a regional scale align closely with the results from the GEODA and NIES products.
The annual NEP size strongly correlates with land cover and ecosystem types. Generally,
forest ecosystems act as carbon sinks, grassland ecosystems lie between carbon sinks
and carbon sources, while farmland ecosystems predominantly serve as carbon sources.
Specifically, areas like the tropical rainforests of the Indochinese Peninsula and the Malay
Archipelago demonstrate higher NEP values, with multi-year NEP values often exceeding
300 gC/m2. In contrast, natural shrublands, grasslands, and plantation ecosystems show
multi-year NEP values typically ranging from 0 to 200 gC/m2. Farmland ecosystems
predominantly exhibit multi-year NEP values between −100 and 0 gC/m2 (Figure 8a–c).
The NEP data for Southeast Asia provided by GEODA indicate that forest ecosystems
largely have NEP values above 400 gC/m2. Natural shrublands, natural grasslands, and
plantation ecosystems have multi-year NEP values ranging from 0 to 300 gC/m2, while
farmland ecosystems show multi-year NEP values essentially between −200 and 0 gC/m2



Remote Sens. 2024, 16, 17 15 of 22

(Figure 8d–f). On the other hand, NIES’s NEP data also demonstrate forest ecosystem
NEP values consistently above 400 gC/m2, with some reaching considerably higher values.
Natural shrublands, grasslands, and plantation ecosystems exhibit multi-year NEP values
between 0 and 400 gC/m2. Farmland ecosystems generally show multi-year NEP values
between -200 and 0 gC/m2, with some areas dropping below −200 gC/m2 (Figure 8g–i).
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Figure 8. Comparison of the NEP results predicted by the BPNN algorithm combined with the BO
strategy, with GEODA and NIES NEP data products. The BPNN algorithm combined with the BO
strategy predicted NEP in Southeast Asia for the years 2001 (a), 2009 (b), and 2018 (c). GEODA’s
NEP data product for Southeast Asia for the years 2001 (d), 2009 (e), and 2018 (f). NIES’s NEP data
product for Southeast Asia for the years 2001 (g), 2009 (h), and 2018 (i).

We compared our predictions year-by-year, based on the BPNN algorithm combined
with the BO strategy, with the annual NEP values provided by NIES and GEODA. As
predicted by our model, the average yearly NEP for Southeast Asia stood at 162.49 gC/m2.
The highest value was registered in 2012 at 166.48 gC/m2, while the lowest was in 2016,
recording 156.17 gC/m2. In the same timeframe, the NIES NEP product had an average
annual value of 399.24 gC/m2. Its peak value was in 2008, reaching 455.12 gC/m2, and its
lowest was in 2018, dropping to 352.54 gC/m2. Meanwhile, the average NEP for Southeast
Asia from the GEODA product during the same period was 268.43 gC/m2. The highest
value for GEODA was observed in 2014, at 290.03 gC/m2, while its lowest came in 2010,
with a value of 255.37 gC/m2. All three sets of results or data products suggest a gradual
decline in the NEP for Southeast Asia over the past two decades (Figure 9).
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Figure 9. Comparison of the NEP predicted by the BPNN algorithm combined with the BO strategy
for Southeast Asia from 2001 to 2020 with GEODA and NIES NEP products.

Every NEP prediction exhibits disparities due to differences in model algorithms and data
sources. We conducted a correlation analysis between our optimal model’s multi-year NEP
predictions for Southeast Asia and the NEP data products from GEODA and NIES. We analyzed
these three spatial predictive outcomes pairwise and found a relatively high correlation between
the optimal model’s prediction and the NIES results. Most areas in the Indochina Peninsula,
Malay Peninsula, Kalimantan Island, and the Philippine Archipelago demonstrated a moderate-
to-strong correlation (Figure 10a). However, the spatial correlation of the optimal model’s NEP
prediction with the GEODA data product was slightly weaker than the former, with several
regions across the entire domain showing a high degree of uncertainty (Figure 10b).
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Figure 10. Correlation analysis comparison of three NEP prediction results in Southeast Asia from
2001 to 2020. Correlation between the prediction results of the BPNN algorithm combined with
the BO strategy and the NIES product (a), correlation between the prediction results of the BPNN
algorithm combined with the BO strategy and the GEODA product (b), and correlation between
GEODA and NIES data products (c).

The NEP predictions for Southeast Asia by NIES and GEODA also exhibited consid-
erable spatial uncertainties (Figure 10c). Such disparities might originate from variations
in data consistency, methodologies, simulation scales, or perhaps optimizations in estima-
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tion methods, including the selection of algorithms and hyperparameter tuning [24,27].
These elements underscore the intrinsic uncertainties in regional-scale NEP predictions.

4. Discussion
4.1. Comparison of the Performance of Different Machine-Learning Algorithms

This study compared the model-fitting effects of four machine-learning algorithms,
each combined with different hyperparameter-optimization strategies. Judging by the
performance metrics R2 and MSE, deep-learning algorithms like BPNN and CNN generally
outperformed the results of RF and SVR algorithms. Notably, the model fitted using
CNN combined with the random search strategy performed exceptionally well, with an
R2 of 0.7036 and an MSE of 1.3376. However, a significant shift was observed when
we applied these models to actual feature target inversion. We deeply analyzed and
interpreted the gridded results of the model-inverted feature targets, especially considering
the spatial representation of NEP in different ecosystems, such as the carbon balance
characteristics and spatial distribution trends in forests, grasslands, shrubs, and farmlands.
Theoretically, original tropical forests, shrubs, and wild grasslands in Southeast Asia should
act as carbon sinks, i.e., NEP > 0 [51–53]. Given the extensive farmland in this region,
especially vast paddy fields emitting substantial greenhouse gases during their growth,
and considering factors like field management and land conversion under the premise of
climate change, many scientific studies have deemed the farmlands in this region as carbon
sources, i.e., NEP < 0 [54,55]. Surprisingly, the model fitted using the CNN algorithm
predicted NEP values in farmlands that were almost all greater than 0, with most above
20 gC/m2, which significantly differs from theoretical expectations and results from similar
data products. In contrast, the model fitted using the BPNN algorithm combined with the
Bayesian optimization strategy demonstrated a robust performance in terms of R2 and MSE
but, more importantly, could reflect the spatial patterns of NEP in different ecosystems
more accurately. Additionally, its spatial distribution is closely aligned with international
products of a similar kind. After weighing both the predictive accuracy of the model
and its practical application effects, we ultimately chose the model fitted using the BPNN
algorithm combined with the BO strategy as the most suitable model.

Comparing the simulation results of the BPNN and CNN algorithms, we found that the
former is more consistent with reality, especially in farmland ecosystems like rice paddies.
We also analyzed potential factors that might lead to discrepancies in the simulation results
of these two algorithms. Firstly, the difference in the structural design of the algorithms
could be a reason. CNNs, with their convolutional layers, are designed to capture local
patterns in the input data. In contrast, BPNN, being a fully connected network, aims to
learn features from a global perspective. Given this difference, these two structures might
exhibit distinct behaviors when processing the same dataset. Another influencing factor
could be the activation function. Both algorithms employ the ReLU activation function,
which behaves differently over various intervals. During different training phases, if the
initialization or updates of weights for specific neurons result in negative outputs, ReLU
would set them to zero, leading to some parts of the model becoming “inactive” during
training. Due to the structural differences, CNNs and BPNNs might react differently in such
scenarios. Furthermore, the nature of the data itself might also contribute to the observed
discrepancies. CNNs are primarily designed to handle static data, like images. At the same
time, BPNNs, owing to their fully connected nature, might be better suited to capture the
characteristics of temporal data, thereby reflecting the actual scenario more accurately.

4.2. Comparison of Multiple Hyperparameter-Optimization Methods

The selection of hyperparameters plays a pivotal role in the performance of machine-
learning models. To ensure the optimal performance of each algorithm, we employed four
distinct hyperparameter-optimization strategies: random search (RS), grid search (GS),
Bayesian optimization (BO), and genetic algorithm (GA). Each strategy possesses unique
strengths. However, the combination of BPNN and BO exhibited a superior performance
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in this study. Bayesian optimization is a global optimization method grounded in prob-
abilistic models. It adeptly selects new parameter combinations in every iteration based
on existing results. Compared to traditional GS and RS methods, BO is more efficient as it
harnesses accumulated knowledge from prior iterations to guide subsequent searches, thus
averting redundant computations. Additionally, BO strikes an impeccable balance between
exploration and exploitation, which means it can venture into new regions of the parameter
space while leveraging known information to enhance the model performance [56,57].

In this study, the model combining BPNN with the BO strategy demonstrated an
exceptional performance in both R-squared and MSE metrics, achieving an R-squared
of 0.6825 and an MSE of just 1.4326. This outcome significantly surpasses the results
obtained from the other three hyperparameter-optimization strategies. Even more crucially,
when applying this model to the inversion of feature variable grid data, it vividly depicts
the carbon balance characteristics and spatial distribution trends of different ecosystems,
aligning closely with international counterparts. Consequently, the model integrating
BPNN and BO outshined all of our experiments. It showcased an exemplary performance
during the model training process and in practical applications.

4.3. Integrating Machine Learning and Ecological Process Models for a New Perspective in
NEP Prediction

Models built using machine-learning algorithms often have many parameters and
intricate structures, which require substantial data and computational resources for their
training. Achieving an optimal model performance necessitates hyperparameter tuning,
which typically involves multiple rounds of model training and validation, further com-
pounding computational intricacy. However, their forward propagation (i.e., predictions)
is typically swift once these models are adequately trained [58,59]. Vegetation ecological
process models, on the other hand, are rooted in explicit physiological and environmental
processes, typically involving a set of differential equations. Although these models may
appear structurally more straightforward, their parametrization and calibration can be
intricate, requiring vast amounts of field observation data [60,61]. Moreover, as these
models are often time-stepped, they may necessitate extended durations for simulating
long time-series data. From a computational complexity standpoint, machine-learning
models demand more resources during the training phase but are quicker in the prediction
phase. In contrast, vegetation ecological process models might be more time-consuming
during simulations, especially for extended time-series data.

Machine-learning models are data-driven, implying they do not necessarily adhere
to ecological and biophysical principles, leading to the models producing non-physical or
non-ecological predictions in certain scenarios. For instance, a machine-learning model
might discern relationships between certain features and NEP without any ecological
justification. Conversely, vegetation ecological process models are constructed based on a
profound understanding of plant growth, photosynthesis, and respiration processes [62,63].
Thus, their predictions typically have clear ecological and biophysical interpretations,
which grants these models an advantage in explaining and understanding ecosystem
processes. From the standpoint of computational principle validity, vegetation ecological
process models, underpinned by explicit ecological and biophysical foundations, excel in
interpreting ecosystem processes. While machine-learning models can discern intricate
relationships from data, they might lack ecological or plant growth principle interpretations
for these relationships [64,65].

Our study demonstrates the unique advantages of machine-learning models in the
annual prediction of NEP in Southeast Asia. Often, the choice of method and model for
predicting regional-scale NEP depends on the research objectives, available data resources,
and interpretability requirements of the model. We believe that, based on the strengths
and weaknesses of machine-learning algorithm models and vegetation ecological process
models, constructing an innovative integrated model will be the direction of subsequent
research. Such an integrated model would not only emphasize the precision of machine-
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learning algorithms in data-driven prediction but also incorporate the core characteristics of
vegetation ecological process mechanisms, offering a novel perspective for NEP prediction.

5. Conclusions

In conclusion, our study advances the field of ecological modeling by demonstrating
the effectiveness of integrating advanced machine-learning algorithms with hyperparameter-
optimization strategies to enhance the prediction of NEP in Southeast Asia. Specifically, the
BPNN algorithm, when fine-tuned with BO, emerged as a powerful tool, reinforcing the value
of sophisticated computational techniques in ecological research. Moreover, this work provides
a methodological foundation for incorporating machine learning into traditional ecosystem
analysis, pointing towards a new horizon in predictive accuracy and reliability. The promising
results from deep-learning network models, particularly in complex data-driven contexts,
advocate for a paradigm shift from conventional models to more agile, robust, and nuanced
analytical frameworks. This study suggests a roadmap for future research to explore the synergy
of data-driven and process-based models. Such integration has the potential to unlock deeper
insights into ecosystem dynamics, offering a comprehensive toolkit for scientists to monitor,
predict, and manage the ecological balance in response to environmental changes. Our findings
underline the importance of technological innovation in environmental science and pave the way
for the development of more sophisticated, accurate, and scalable models for NEP prediction.
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