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Abstract: Hyperspectral image (HSIs) denoising is a preprocessing step that plays a crucial role in
many applications used in Earth observation missions. Low-rank tensor representation can be utilized
to restore mixed-noise HSIs, such as those affected by mixed Gaussian, impulse, stripe, and deadline
noises. Although there is a considerable body of research on spatial and spectral prior knowledge
concerning subspace, the correlation between the spectral continuity and the nonlocal sparsity of the
spectral and spatial factors is not yet fully understood. To address this deficiency, in the present study,
we determined the correlation between these factors using a cascaded technique, and we describe
in this paper the double-factor tensor cascaded-rank (DFTCR) minimization method that was used.
The information existing in the nonlocal sparsity property of the spatial factor was employed to
promote a geometrical feature representation, and a tensor cascaded-rank minimization approach
was introduced as a nonlocal self-similarity to promote restoration quality. The continuity between
the difference and nonlocal gradient sparsity constraints of the spectral factor was also introduced
to learn the basis. Furthermore, to estimate the solutions of the proposed model, we developed an
algorithm based on the alternating direction method of multipliers (ADMM). The performance of the
DFTCR method was tested by a comparison with eleven established denoising methods for HSIs.
The results showed that the proposed DFTCR method exhibited superior performance in the removal
of mixed noise from HSIs.

Keywords: low rank; hyperspectral image; denoising; sparsity regularization

1. Introduction

Hyperspectral images (HSIs), with detailed spatial and spectral information containing
hundreds of contiguous spectral bands, are used for agricultural [1] and military [2] pur-
poses, as well as for disaster monitoring [3,4], terrain detection [5], ecological protection [6],
and land use analysis [7]. The successful use of such applications is guaranteed by the use of
high-quality HSIs [8,9]. However, image quality may be degraded by noise, which impedes
the development of subsequent applications, including classification, unmixing, fusion, and
target detection. Because hardware-based noise suppression solutions involve considerable
maintenance and renewal costs [10], the development of effective HSI denoising methods
or algorithms has become a matter of high economic and practical importance.

To date, numerous HSI denoising methods have been proposed, including filtering
methods [11–15], the nonlocal self-similarity algorithm [16–21], total variation model-based
approaches [22–29], low-rank property-based methods (LRs) [8,9,30–38], and deep learning-
based methods [10,39–43]. Common filtering methods include the bilateral filter [11], block-
matching 3D filtering (BM3D) [12], BM4D [13], VBM4D [14], and PCA-BM3D [15]. The
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nonlocal self-similarity methods highlight recurring patterns of textures and structures
in nonlocal regions of HSIs [21]. To improve restoration quality, a nonlocal self-similarity
prior is often integrated with a low-rank property or TV model; this is then regularized and
utilized to obtain the spatial and spectral dimensions. Typical such methods include spatial–
spectral TV (SSTV) [22] and spatial–spectral adaptive hyperspectral TV (SSAHTV) [23].
Recently, subspace-based methods, such as fast hyperspectral denoising [29] and the
nonlocal meets global method (NGMeet) [19], have been utilized to represent the spatial–
spectral correlation and thereby achieve better HSI denoising results. However, these
methods were especially designed for only Gaussian or impulse noises and do not perform
well in the removal of more complex mixed noises such as stripe noises and deadlines.

Additionally, with the rapid development of artifact intelligence technology, deep
learning-based methods have achieved excellent HSI denoising results due to the powerful
feature representation capability of their deep architectures. Most deep learning-based HSI
denoising methods are designed by convolution neural networks (CNNs) [10,39–43] with
multiscale and multilevel features [39]; these include the deep spatio-spectral Bayesian
posterior based on a CNN [40], the HSI single-denoising CNN (SDeCNN) [41], the LR-
Net [10], and the attention-based deep convolutional U-Net [42]. Although the use of deep
learning methods can be seen as a breakthrough in the HSI denoising field, at least in part,
they are still associated with a number of problems, including the difficulty of addressing
the numerous high-quality HSI pairs (clean and noisy) required for training the model, as
well as lengthy training times and poor generalization capabilities with respect to different
types of noise.

In contrast to the use of deep learning-based methods, which are dependent on the es-
tablishment of large training samples of HSIs, the LR property may be used as the dominant
prior to better confirm HSI denoising. Clean HSI data may be regarded as an LR matrix,
and the corresponding LR matrix recovery method (LRMR) has been proposed to recover
this property from contaminated HSIs [30]. However, the LRMR ignores the correlation of
HSI spatial dimensions. In light of this, He et al. [31] created a spatial–spectral TV that reg-
ularized local LRMR. The HSIs were decomposed as low-rank and sparse items and were
constructed as a nonconvex regularization to obtain tighter rank approximations, a charac-
teristic associated with matrix-based methods [32]. However, as reported by the authors
of [18], such matrix-based methods destroy the intrinsic tensor structures of HSIs and the
correlation between the individual modes of the tensor. To address this problem, various
methods, including Tucker decomposition [44], canonical decomposition/parallel factor
analysis decomposition [45], block term decomposition [46], tensor-singular value decom-
position (t-SVD) [47], tensor train decomposition [48], and tensor ring decomposition [49],
have been utilized [50]. Moreover, in recent years, low-rankness, local continuity, and
nonlocal self-similarity have been combined as mixed priors, constructed as regulariza-
tion terms, to establish denoising methods that have achieved high-quality restoration
results. For example, Zheng et al. [34] joined the double-factor-based regularization and
LR properties of spectral continuity and put forward a double-factor-regularized LR tensor
fractionation model to remove mixed noise from HSIs. To address the issue of high compu-
tational cost, Chen et al. [35] proposed a novel factor group sparsity-regularized nonconvex
LR approximation (FGSLR). Zha et al. [21] proposed a novel nonlocal structured sparsity
regularization approach (NLSSR) based on an LR framework to preserve strong correlations
between sparse coefficients and reduce spectral redundancy. Sun et al. [36] proposed a
graph Laplacian regularizer to exploit LR information across the bands of HSIs (FGLR). To
make the most of the information concerning the spatial correlation and spectral depen-
dency of HSIs, Sun et al. [9] proposed a unified subspace LR learning method using tensor
cascaded-rank minimization (STCR). STCR has demonstrated excellent restoration results
in low-level vision tasks, including HSI denoising, super-resolution, compress sensing, and
inpainting. Although the nonlocal characteristics are represented by spatial correlation,
the importance of the sparsity constraint on the spatial difference images of the spatial
factor cannot be emphasized enough. For example, in subspace, the spatial difference
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images of the spatial factor show nonlocal sparsity characteristics comparable with clean or
degraded HSI. However, the unknown sparsity constraint on spectral difference images
of the spectral factor is obscured by its continuity. Consequently, these two insufficiencies
limit the capability of denoising methods.

In the present study, to address the two issues, we used a double-factor tensor
cascaded-rank minimization method to remove mixed noise from HSIs. Our work may be
summarized as follows: (1) Inspired by [9], we utilized the cascaded manner to characterize
the spectral continuity properties along each mode. At the same time, we recognized the im-
portance of the latent sparsity constraint on the spatial difference image of the spatial factor
for the preservation of the integrity of information. For this, then, we constructed a neces-
sary regularization item to promote the sparsity constraints. (2) Next, we determined that,
except for the smoothness and continuity in the spectral signatures of HSIs, an underlying
gradient sparsity could be identified and explored. We therefore established another regu-
larization item based on the L1–2 norm to achieve a balance between the gradient sparsity
and smoothness previously described in [38]. (3) Finally, tensor low-cascaded-rank decom-
position and subspace learning were incorporated into an ADMM-based algorithm [51,52]
to obtain the proposed DFTCR denoising method. Extensive experiments were then carried
out on simulated and real-world HSIs to verify the capability of the proposed DFTCR for
denoising HSIs.

The remainder of this paper is organized as follows: Section 2 presents details of
the model and regularized prior for the proposed DFTCR method and the correspond-
ing ADMM-based solving algorithm. Section 3 describes the extensive experiments that
demonstrated the superiority of the proposed DFTCR method. Essential issues relating to
computational complexity, ablation analysis, convergence analysis, and running time are
discussed in Section 4. Finally, Section 5 offers a conclusion and an outlook for future work.

2. HSI Denoising Using Double-Factor-Regularized Tensor Cascaded-Rank
Minimization
2.1. DFTCR-Based HSI Denoising Model

In line with [9], we first formulate the HSI degraded model as follows:

Y = G(X ) +N + S , (1)

where Y ∈ Rm×n×l stands for the degraded HSI tensor with a spatial dimension of m × n
and a spectral dimension of l; G(·) is a linear operator relating to an imaging/degradation
module; X ∈ Rm×n×l is the latent high-quality his; N ∈ Rm×n×l is random additive noise;
and S ∈ Rm×n×l represents sparse noise. In the present study, we paid more attention to
the denoising algorithm for the purpose of improving HSI quality. To this end, we recast
the degraded process as follows:

Y = X +N + S . (2)

In other words, G(·) can be neglected. Obviously, restoring a clean HSI X from the
degraded model (2) is an ill-posed problem. In order to robustly estimate X , the classical
and effective maximum a posteriori method can be applied. Additionally, reasonable priors
can be used to construct a regularization model based on a maximum a posteriori frame. By
such means, the ill-posed problem can be overcome, and good restorations can be obtained
for noisy HSIs. The latent HSIs and the mixed noises dependent on their necessary prior can
therefore be summarized as the regularization models R1(X ) and R2(S), and the denoising
objective function can be expressed, as follows:

L(X ,S) = argmin
X ,S

1
2
∥Y − X − S∥2

F + λR1(X ) + γR2(S) (3)
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where λ(> 0) and µ(> 0) are the positive regularization parameters; and R1(X ) and
R2(S) are the regularization terms extracted from the latent HSI priors and the sparse
noise property, respectively. Usually, a sparse noise mixture can be modeled as a sparse
regularization term based on L1 norm, namely, R2(S) = ∥S∥1. In the present study,
inspired by the performance of tensor cascaded-rank minimization in subspace [9], double-
factor tensor cascaded-rank minimization was used to construct the regularization term
R1(X ). The spectral low-rankness of HSIs with a mode-3 tensor–matrix product of a
low-dimensional tensor and a high-dimensional matrix can be factorized thus:

X = C×3B

where C ∈ Rm×n×r(r ≪ l) denotes the spatial factor and the orthogonal basis; B ∈ Rr×l

stands for the spectral factor; and B satisfies BTB = I in subspace [34,35]. The corresponding
definitions of mode-k unfolding and the model-k tensor–matrix product can be introduced,
as follows:

Definition 1 (mode-k unfolding) [34]. For a Nth-order tensor X ∈ Rn1×n2×···×nk , its mode-k
unfolding X(k) is an nk × ∏

i ̸=k
ni matrix. The corresponding operator and inverse operator are

denoted as X(k) = Un f oldk(X ) and X = Foldk

(
X(k)

)
, respectively.

Definition 2 (mode-k tensor–matrix product) [34]. The mode-k tensor–matrix product of an
n1 × n2 × · · · × nN tensor X and a J × nk matrix B is an n1 × · · · × nk−1 × J × nk+1 × · · · × nN
tensor denoted by X×kB, which satisfies the following:

(X×kB)i1,...,ik−1,j,ik+1,...,iN
=

nk

∑
ik=1

xi1i2,...,iN · bj,ik

From the two abovementioned definitions, we obtain the following equation:

X = C×3B ⇔ X(k) = BC(k)

Equation (3) can now be rewritten, as follows:

L(B, C,S) = argmin
X ,S

1
2
∥Y − C×3B − S∥2

F + λR1(B, C) + γR2(S) (4)

The information contained in spatial, nonlocal, and spectral modes can be used in a
cascaded manner, following [9]. This can be expressed as follows:

min
Ci

1
2
∥Ri(C)− Ci∥2

F + ∥Ci∥TCR (5)

where ∥Ci∥TCR is the tensor low-cascaded-rank minimization for the low-rank constructed
tensor Ci, and Ri(C)—with the linear transform operator R—represents the third-order
group tensor for each exemplar cube at location i. The flow of the tensor low-cascaded-rank
decomposition can now be determined, as shown in Figure 1; this exploits the intrinsic
correlation along spatial, nonlocal, and spectral modes of C with the cascaded manner.
More details about how to solve Equation (5) may be found in [9].

Obviously, the tensor low cascaded rank only considers the subsequent decomposition
and reversion of the nonlocal cube along spatial, nonlocal, and spectral modes; the nonlocal
sparsity property of Ci for the three modes is ignored. To consider the spectral nonlocal
sparsity and spectral continuity for the global HSI X , we introduce a regularization for
Ci, i.e., ∥C×3Dw∥1, as shown in Figure 2. Upon analysis of Figure 2a,b and the sparsity
statistic histogram, we find that X×kDk (k = 1, 2) can be distinguished among the data
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of the clean and degraded HSIs. Following Remark 1 in [34], the necessary characters
can now be obtained so that the sparsity of C×kDk is consistent with that of X×kDk, and
more geometrical features can be acquired by the former. We therefore use the sparsity
regularization term ∥C×3Dw∥1, and this leads to an improvement in the restoration of HSIs.

Figure 1. Illustration for Tensor Low-Cascaded-Rank Decomposition.

Figure 2. Nonlocal sparsity along the spectral mode of the spatial difference images and the regu-
larization terms based on the spatial factor Ci. (a) Clean HSI decomposed in selected subspace; and
the spatial vertical and horizontal difference of the spatial factor Ci implemented; mode-3 unfolding
matrices of the corresponding difference obtained along the spectral mode; the sparsity statistics and
visualization from the unfolding matrices; (b) Noisy HSI decomposed and counted for its degraded
sparsity; (c) Regularization terms on the factor Ci used to replace the regularization terms on the
clean HSI.
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To promote the spectral smoothness and continuity of X , a continuity constraint on
B with a first-order difference is used, as represented as ∥D(B)∥2

F. As reported in [9], the
basis B, which spans the high-dimensional space, is responsible for guiding the generation
process of spectral data. The natural spectra of HSIs tend to be smooth and continuous,
and any difference serves to establish and preserve the character of a regularization term
∥D(B)∥2

F to constrain the restored basis B, resulting in an excellent restoration. Although
the difference continuity regularization term of the basis B can be established according
to its physical sense, its latent sparsity is also worthy of consideration. A comparison of
clean, degraded, and mixed denoising results is presented in Figure 3. From the figure, it
can be seen that the difference of the basis B on the clean HSI is continuous, with more
zeros than the noisy HSI. Additionally, the continuity and gradient sparsity of the HSI
denoising results exhibit a distribution similar to that of the clean results, while that of the
noisy HSI can be distinguished. As such, continuity and gradient sparsity can be abstracted
as regularized terms based on the L1–2 norm. In summary, the double-factor tensor low-
cascaded-rank minimization for the HSI denoising model can be defined as follows:

argmin
X ,S

1
2∥Y − C×3B − S∥2

F +
(
∥D(B)∥1 − 1

2∥D(B)∥2
F

)
+λ∑

i

(
1
2∥Ri(C)− Ci∥2

F + ∥Ci∥TCR

)
+ β∥C×3Dw∥1 + γ∥S∥1

. (6)

where Dw stand for the first-order difference matrices.

Figure 3. Illustration of the spatial continuity and sparsity for the difference of the basis B. (a–c) Clean,
noisy, and restored HSIs with subspace decomposition, spatial continuity, and sparsity statistics of the
difference of the basis B, respectively. Due to the difference between noisy HSI and restored or clean
HSI, the necessary regularization term based on the L1–2 norm can be used, which is composed of the
TCR and gradient sparsity, with Ci to obtain the objective function for the new denoising method
with an iterative update.
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2.2. Efficient Alternating Optimization for Solving the Denoising Algorithm

According to ADMM optimization, the minimization problem (6) can be solved using
the following formulae:

Ĉi = argmin
Ci

∑
i
∥ 1

2∥Ri(C)− Ci∥2
F + ∥Ci∥TCR∥2

F{
B̂, Ĉ

}
= argmin

B,C

1
2∥Y − C×3B − S∥2

F + ∥D(B)∥1 − 1
2∥D(B)∥2

F

+ λ
2 ∑

i
∥Ri(C)− Ci∥2

F + γ∥S∥1 + β∥C×3Dw∥1

(7)

The tensors Ci in the first formula of Equation (7) can be estimated using a two-fold
approach, i.e., by considering the decomposition and reversion of the core tensors Ci along
spatial, nonlocal, and spectral modes in a cascaded manner. The processes need to be
completed by cube matching and grouping, as shown in Figure 1. Further details on the
use of this approach to estimate the core tensors can be found in [9]. The estimation of and
C involves a typically nonconvex problem which is difficult to solve directly. The efficient
ADMM-based framework is therefore utilized for optimization due to its guaranteed con-
vergence rate [52,53]. The intermediate variables Z = C×3B, P = D(B), and F = C×3Dw
are now introduced for decoupling purposes, and the second formula of Equation (7) can
be recast as follows:{

B̂, Ĉ
}
= argmin

B,C

1
2∥Y −Z − S∥2

F + ∥P∥1 − 1
2∥D(B)∥2

F

+λ 1
2 ∑

i
∥Ri(C)− Ci∥2

F + γ∥S∥1 + β∥F∥1

s.t. Z = C×3B,P = D(B),F = C×3Dw

. (8)

The solution to Equation (8) with constraints is equivalent to minimizing the La-
grangian function:{

B̂, Ĉ
}
= argmin

B,C

1
2∥Y −Z − S∥2

F −
1
2∥D(B)∥2

F +
λ
2 ∑

i
∥Ri(C)− Ci∥2

F + γ∥S∥1

+ µ
2 ∥Z − C×3B + M

µ ∥2
F + ∥P∥1 +

α
2∥P − D(B) + T

α ∥2
F

+β∥F∥1 +
η
2 ∥F − C×3Dw + U

η ∥2
F

. (9)

where M, U , and T are the augmented Lagrange multipliers; and µ, α, and η are the
positive penalty scalar parameters. These parameters are now the subjects of a series of
subproblems, as follows.

2.2.1. Z-Subproblem

The first subproblem is to update Z , whose expression is written thus:

Ẑ = argmin
Z

1
2
∥Y −Z − S∥2

F +
µ

2
∥Z − C×3B +

M
µ

∥2
F. (10)

Obviously, Equation (10) is a quadratic regularized least-square problem; this can be
expressed using the following equation:

Ẑ =

[
(Y − S) +

(
C×3B − M

µ

)]
/(µ + 1). (11)

2.2.2. S , P , and F -Subproblems Based on L1 Norm

The second subproblem is related to S , P , and F . This can be expressed by the
following equations:

Ŝ = argmin
S

1
2
∥Y −Z − S∥2

F + γ∥S∥1, (12)
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P̂ = argmin
P

∥P∥1 +
α

2
∥P − D(B) +

T
α
∥2

F, (13)

F̂ = argmin
F

β∥F∥1 +
η

2
∥F − C×3Dw +

U
η
∥2

F, (14)

The solutions to Equations (12), (13), and (14) may now be expressed as (15), (16), and
(17), respectively, as follows:

Ŝ = sign(Y −Z)max
(
|Y − Z| − 1

γ
, 0
)

. (15)

P̂ = sign
(

D(B)− T
α

)
max

(∣∣∣∣D(B)− T
α

∣∣∣∣− 1
α

, 0
)

. (16)

F̂ = sign
(

C×3Dw − U
η

)
max

(∣∣∣∣C×3Dw − U
η
− β

η

∣∣∣∣, 0
)

. (17)

2.2.3. C-Subproblem

The subproblem of updating C can be expressed as follows:

Ĉ = argmin
C

λ

2 ∑ ∥Ri(C)− Ci∥2
F +

µ

2
∥Z − C×3B +

M
µ

∥2
F +

η

2
∥F − C×3Dw +

U
η
∥2

F, (18)

The solution to Equation (18) is obtained using Equation (19), as follows:(
λ∑RT

i Ri + µI
)
C×3 + ηC×3DT

wDw =
λ∑RT

i (Ci) + (µZ +M)×3BT + (ηF + U )×3DT
w

. (19)

Equation (19) may now be rewritten thus:

C(3)

(
λ∑ RT

i Ri + µI
)
+ ηDT

wDwC(3) = K(3), (20)

where K(3) is the matrix format of K, i.e.,

K = λ∑RT
i (Ci) + (µZ +M)×3BT + (ηF + U )×3DT

w.

We are now presented with an obvious Sylvester matrix equation, which may be
solved using the following method: first, the circulant matrix DT

wDw and the symmetric
matrix λ∑ RT

i Ri + µI are implemented with 1-D fast Fourier transformation and eigenvalue
decomposition, respectively [9,34]. This process may be expressed as follows:

DT
wDw = FT

1 ΣF1 and λ∑ RT
i Ri + µI = U1ΛUT

1 ,

where F1 is a 1 − D discrete Fourier transform (DFT) matrix. Having obtained a first solution
of the Sylvester matrix equation, C(3) can now be calculated using the following equation:

C(3) = FT
1

(
(1 ⊘ T1)⊙

(
F1K(3)U1

))
UT

1 , (21)

where T1 = η(diag(Σ)) + diag(Λ); ⊙ represents component-wise multiplication, and ⊘
represents component-wise division.

2.2.4. B-Subproblem

The subproblem of updating B may be expressed as in Equation (22), as follows:

B̂ = argmin
B

1
2
∥D(B)∥2

F +
µ

2
∥Z − C×3B +

M
µ

∥2
F +

α

2
∥P − D(B) +

T
α
∥2

F. (22)
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Equation (22) expresses a quadratic optimization problem similar to the C-subproblem
described above; therefore, B can now be formulated, as follows:

H1B + BH2 = H3, (23)

where H1 = (α − 1)DTD, H2 = µC(3)C
T
(3), H3 = µ

(
Z + M

µ

)
×3

CT
(3) + αDT

(
P + T

α

)
.

Due to the circulant matrix of H1 and the symmetric matrix of H2, the solution B can be
obtained, thus:

B̂ = F−1
((

F(H1)E + (Ω1)T
)−1

⊙ (F(H3)U)

)
UT , (24)

where F(·) and F−1(·) are the fast Fourier transform operator and its inverse, respectively;
E ∈ Rl×k is a matrix whose diagonal entries are 1 and all others are 0; 1 ∈ Rk×l is an
all-ones matrix; and U and Ω are the eigen matrix and eigenvalues matrix, respectively.

2.2.5. Updating Lagrangian Multipliers

Finally, according to the alternating optimization framework of ADMM, the update of
the Lagrangian multipliers is obtained using the following equations:

M = M+ µ(Z − C×3B), (25)

U = U + η(F − C×3Dw), (26)

T = T + α(P − D(B)). (27)

The above derivations and analyses make it obvious that the optimization procedures
must be conducted by means of iteration; this is summarized in Algorithm 1 for the
denoising of HSIs.

Algorithm 1 Proposed algorithm for HSI denoising

Input: A rearranged noisy HSI tensor Y .
Initialization: Estimate B0 with SVD, set C0 = Y×3

(
B0)T ; regularization parameters λ, β, and γ;

Subspace dimension r ≪ l; Cube matching parameter a, b; Tensor cascaded rank [b, k]T ; Stop
criterion ε, positive scalar µ, α, η, µmax, αmax, ηmax, and ρ; maximum iteration tmax.
Tensor Low-cascaded-rank decomposition: estimate Ci by Equation (7).
While not converged do

Sparse noise estimation: calculate S t+1 by Equation (15);
Latent input HSI estimation: calculate Z t+1 by Equation (10);
Tensor coefficient learning: calculate C t+1 by Equation (18);
Continuous basis learning: calculate Bt+1 by Equation (24);
Auxiliary variables estimation: calculate P , F by Equations (16) and (17)
Update lagrangian multiplier Mt+1, U t+1, T t+1 by Equation (25), Equation (26),
Equation (27), respectively;
Update penalty scalar: ηt+1 = min

(
ρηt+1, ηmax

)
,

µt+1 = min
(
ρµt+1, µmax

)
, αt+1 = min

(
ραt+1, αmax

)
;

Check the convergence: t > tmax or functional energy:

∥C t+1
×3 Bt+1 − C t

×3Bt∥2
F/∥C t

×3Bt∥2
F < ε;

Update iteration: t = t + 1.
End while
Output: The latent low − rank X = C t+1

×3 Bt+1.

3. Experimentation

In this section, we describe a number of simulated and real-world experiments that
were conducted to assess the performance of the proposed DFTCR denoising method.
In brief, we sought to compare the denoising performance of the proposed DFTCR with
that of eleven state-of-the-art denoising methods. These were BM4D [13], LRMR [31],
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LRTDTV [37], WLRTR [32], FGLR [36], NGMeet [19], NLSSR [21], FGSLR [35], NFF [53],
SDeCNN [41], and STCR [9]. It should be noted that SDeCNN is a deep learning method
whose pretrained model was directly used as the best-performing model. All experiments
were conducted using Windows 10 on an Intel Xeon 2.89-GHz CPU with 128 GB of memory.
To obtain a fair comparison, the setting of parameters was carried out in line with the
published instructions for each competing method.

3.1. Experiment Setup

Datasets: In order to verify the robustness and performance of the proposed DFTCR
method, the necessary numerical experiments were carried out using the famous HYDICE
Washington DC Mall dataset (WDC, https://engineering.purdue.edu/biehl/MultiSpec/
hyperspectral.html, accessed on 17 December 2023) for simulation purposes. The size of the
synthetic HSI was 300 × 300 × 191. There are several different types of noise in real-world
HSIs, including Gaussian, impulse, deadline, and stripe noise. In real-world scenarios
involving HSIs, such noises usually manifest as a mixture of several kinds. Therefore, to
simulate such scenarios as well as possible, four different noise cases based on the mixed-
noise settings of the compared methods were thoroughly compared. Before simulation, the
gray values of each band were normalized.

Case 1 (Gaussian noise): zero-mean Gaussian noise with a variance σ2 of 0.15, 0.30, or
0.45 was added to all bands.

Case 2 (Gaussian noise + impulse noise): A mixture of zero-mean Gaussian noise and
impulse noise was added to all bands. The variance of Gaussian noise was set as σ2 = 0.3,
and percentages of impulse noise were randomly sampled within a range of [0, 0.2].

Case 3 (Gaussian noise + impulse noise + deadlines): A mixture of zero-mean Gaussian
noise, impulse noise, and deadlines was added to all bands. The variance of Gaussian noise
was set as σ2 = 0.15, and percentages of impulse noise were randomly sampled within a
range of [0, 0.2]. Deadlines, affecting 10% of the columns or rows of the HSIs, were added
into the 91–130 bands.

Case 4 (Gaussian noise + impulse noise + stripes): A mixture of zero-mean Gaussian
noise, impulse noise, and stripes was added to all bands. The variance of Gaussian noise
was set as σ2 = 0.15, and the percentages of impulse noise were randomly sampled within
a range of [0, 0.2]. Stripes, affecting 10% of the columns or rows of the HSIs, were added to
the 131–190 bands.

Because the ground-truth HSI was obtained from the simulated experiments, three
quantitative figure indices from the comparison were employed: mean peak signal-to-noise
ratio (MPSNR) over all bands; mean structure similarity (MSSIM) over all bands; and mean
spectral angle mapping (MSAM) over all spectral vectors. The greater the values of MPSNR
and MSSIM and the smaller the value of MSAM, the better the HSI denoising results.

The regularization parameters λ, β, and γ were selected in the intervals
[
100, 105],[

10−1, 10−2] and
[
10−1, 10−2], respectively. The cube matching parameters a and b, and

the tensor cascaded rank [b, k]T were selected as a ∈ [36, 100], b ∈ [6, 12], and k ∈ [4, 10],
respectively, following [9]. In our experiments, all parameters were set consistently, as
follows: a = 30, b = 8, k = 5, λ = 1.5× 104, β = 0.03, and γ = 0.03. The stopping condition
was set as ε = 10−5; the penalty parameters were set as µ = η = α = 0.03, the maxima of
which were µmax = ηmax = αmax = 105; the multiplier scale was ρ = 1.2; and the maximum
iteration was set as 50. Finally, B0 = UY (:, 1 : k), where UY , SY , and VY represent the

singular value decomposition (SVD) of
(

Y(3)

)T
, Y(3) ∈ Rmn×l was vectorized from HSI Y

along the spatial dimension.

3.2. Denoising Results for Simulated Noisy HSIs

The MPSNR, MSSIM, and MSAM values produced by all the competing methods are
shown in Table 1. The best results are highlighted in bold, and the second-best results
are presented in italic format. It can be seen that the proposed DFTCR method achieved
results that were superior to those of competitors in almost all cases. In particular, DFTCR

https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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achieved the best MPSNR values, and most of its MSSIM and MSAM results were superior
to those achieved by competitors. However, the NGMeet method did achieve some MSSIM
and MSAM results, which were superior to those of the proposed DFTCR method. For a
comparison of performances with respect to individual bands, Figure 4 gives the PSNR
values for each band obtained by all the compared methods in Cases 3 and 4. In Figure 4b,
it can be seen that a group of very low PSNR values covers the band range from 91 to 130;
this indicates the effect of the mixed noise, including the Gaussian noise and impulse noise.
It is a challenge for all denoising methods to achieve restoration under such conditions.
However, a high value was maintained by the proposed DFTCR, so that the negative effects
of the mixed noise were removed. It can also be seen that the proposed DFTCR achieved
the highest PSNR values of all the competing methods. This implies that the proposed
method is able to achieve high-quality denoising results.

Figure 4. PSNR values of each band of the simulated WDC dataset with Case 3 and Case 4. (a) Case 3.
(b) Case 4.

To better compare the denoising results for these restored images, Figures 5 and 6 show
pseudo-color images of the WDC HSIs (composed of bands 150, 89, and 46; and 180, 161,
and 70) before and after denoising with different methods. It can be seen in Figure 5 that
BM4D, WLRTR, NFF, and STCR produced restored HSIs, which were barely satisfactory.
However, STCR achieved greater PSNR values (Table 1) than all other methods except
for NGMeet, FGSLR, and DFTCR; we may therefore say that STCR effectively removes
Gaussian and impulse noise. LRMR, LRTDTV, NLSSR, and FGSLR removed the most
deadline noise, but some deadline residues remained in restored HSIs. In particular, NLSSR
and FGSLR retained some Gaussian noise; this was not effectively removed from the
zoomed-in HSIs. Moreover, a comparison with the ground-truth HSI showed that NLSSR
produced digital number (DN) bias globally and FGSLR exhibited some DN bias, with
pink roofs, locally. Better denoising results were achieved by FGLR and NGMeet, but some
residual noise was retained in the former, and a slight DN bias was exhibited in the latter.
SDeCNN achieved clear and smooth denoising results, but local details were lost. DFTCR
was therefore the most suitable denoising method for deadline-contaminated HSIs. The
proposed DFTCR method produced smooth and clear HSIs with abundant details without
significant DN bias. In Case 3, then, the proposed DFTCR produced the best visual quality.
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Table 1. Three quantitative results of comparison methods under different cases for WDC datasets.

Case Index BM4D LRMR LRTDTV WLRTR FGLR NGMeet NLSSR NFF FGSLR SDeCNN STCR DFTCR
Case 1: Gaussian Noise

σ = 0.15
PSNR 31.7828 33.1616 32.3958 32.8736 29.9907 35.9711 35.1194 34.3819 34.9102 28.4516 36.9208 37.3647
SSIM 0.8905 0.9235 0.9100 0.9199 0.8828 0.9669 0.9598 0.9436 0.9158 0.7719 0.9624 0.9661

MSAM 0.1051 0.0996 0.0828 0.0735 0.1533 0.0606 0.0630 0.0811 0.2037 0.1232 0.0637 0.0600

σ = 0.30
PSNR 28.7382 30.1235 31.0538 30.1217 27.9487 32.0521 32.6969 27.7750 31.2225 28.6010 33.0368 33.9688
SSIM 0.7907 0.8648 0.8794 0.8561 0.8216 0.9184 0.9222 0.7533 0.8525 0.7827 0.9082 0.9264

MSAM 0.1514 0.1415 0.1118 0.1002 0.1844 0.0888 0.1155 0.2539 0.4114 0.1245 0.1049 0.0915

σ = 0.45
PSNR 26.7505 28.0738 29.5993 28.3815 26.5602 29.4187 27.5070 27.750 29.0902 28.6949 30.4437 31.6006
SSIM 06974 0.8052 0.8374 0.7956 0.7717 0.8522 0.7785 0.7533 0.8188 0.7962 0.8467 0.8790

MSAM 0.1963 0.1804 0.1525 0.1243 0.2115 0.1172 0.2852 0.2539 0.5650 0.1292 0.1478 0.1249
Case 2: Gaussian Noise + Impulse Noise

σ = 0.30, o = 0.1
PSNR 29.1526 29.8571 29.7821 30.0378 27.9627 32.4915 29.7650 30.8235 31.3202 26.3835 32.9093 33.2625
SSIM 0.8569 0.8925 0.8821 0.8897 0.8583 0.9388 0.8943 0.9126 0.8878 0.7432 0.9305 0.9344

MSAM 0.2348 0.2292 0.2283 0.2265 0.2486 0.2220 0.2565 0.2146 0.2745 0.2652 0.2181 0.2205
Case 3: Gaussian Noise + Impulse Noise + Deadlines

σ = 0.15, o = 0.1
r = 40%, v = 0.05

PSNR 24.6478 28.0118 28.3779 24.9081 26.4307 29.7875 27.9576 25.1743 29.0582 26.5918 28.7792 32.5335
SSIM 0.7126 0.8500 0.8550 0.7386 0.8026 0.9147 0.8379 0.7784 0.8618 0.7251 0.8363 0.9441

MSAM 0.2539 0.1574 0.1276 0.1987 0.1990 0.0979 0.1429 0.2072 0.1423 0.1381 0.2591 0.0728
Case 4: Gaussian Noise + Impulse Noise + Stripes

σ = 0.15, o = 0.1
nr = 5%, n = 5 ∼ 12

PSNR 28.6042 29.6547 29.5840 29.7255 27.8851 32.3462 29.6949 30.6570 31.2862 26.4745 32.5697 32.8969
SSIM 0.8420 0.8897 0.8768 0.8851 0.8570 0.9368 0.8922 0.9111 0.8884 0.7433 0.9267 0.9311

MSAM 0.2381 0.2303 0.2292 0.2272 0.2493 0.2222 0.2570 0.2149 0.2725 0.2447 0.2187 0.2210

The bold and italic font represent the best and second results, respectively.



Remote Sens. 2024, 16, 109 13 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

most deadline noise, but some deadline residues remained in restored HSIs. In particular, 

NLSSR and FGSLR retained some Gaussian noise; this was not effectively removed from 

the zoomed-in HSIs. Moreover, a comparison with the ground-truth HSI showed that 

NLSSR produced digital number (DN) bias globally and FGSLR exhibited some DN bias, 

with pink roofs, locally. Better denoising results were achieved by FGLR and NGMeet, 

but some residual noise was retained in the former, and a slight DN bias was exhibited in 

the latter. SDeCNN achieved clear and smooth denoising results, but local details were 

lost. DFTCR was therefore the most suitable denoising method for deadline-contaminated 

HSIs. The proposed DFTCR method produced smooth and clear HSIs with abundant de-

tails without significant DN bias. In Case 3, then, the proposed DFTCR produced the best 

visual quality. 

It is well known among scholars that inconsistencies in the mechanical motion of 

systems and the failure of CCD arrays lead to nonuniform responses in neighboring de-

tectors, thereby generating stripping noise [9]. In the present study, therefore, we tested 

the performance of the competing denoising approaches using HSIs contaminated by 

stripes. The results are shown in Figure 6, in which local details are zoomed-in within red 

rectangles. It can be seen that FGLSR failed to effectively remove the effect of noise. BM4D, 

LRMR, LRTDTV, WLRTR, and NLSSR all restored clean HSIs but with a few residual 

stripes; among these, NLSSR also produced serious DN biases, compared with the 

ground-truth HSI. FGLR and NGMeet produced cleaner HSIs, but with DN biases that 

were minor in the case of FGLR but severe in the case of NGMeet. It can also be seen that, 

although SDeCNN produced a clean and smoothed HSI, the edges of the building are 

blurred, and its details are lost. The remaining denoising methods produced HSIs of better 

quality without significant visual differences and preserved abundant details without 

color skews. From these results, along with those presented in Table 1, it may be deter-

mined that the proposed DFTCR produced the highest MPSNR value and the second-

highest MSSIM value, while NGMeet produced the highest-ranked MSSIM and NFF the 

highest-ranked MSAM. In summary, then, we may say that the proposed DFTCR exhib-

ited state-of-the-art performance in HSI denoising. 

 

Figure 5. Visual comparison of denoising results for the simulated WDC dataset by bands (R:150, 

G:89, B:46) (Case 3). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet. 

(h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR. (n) Ground Truth. 

Figure 5. Visual comparison of denoising results for the simulated WDC dataset by bands (R:150,
G:89, B:46) (Case 3). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet.
(h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR. (n) Ground Truth.
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Figure 6. Visual comparison of denoising results for the simulated WDC dataset by bands (R:180,
G:161, B:70) (Case 4). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet.
(h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR. (n) Ground Truth.

It is well known among scholars that inconsistencies in the mechanical motion of
systems and the failure of CCD arrays lead to nonuniform responses in neighboring
detectors, thereby generating stripping noise [9]. In the present study, therefore, we tested
the performance of the competing denoising approaches using HSIs contaminated by
stripes. The results are shown in Figure 6, in which local details are zoomed-in within red
rectangles. It can be seen that FGLSR failed to effectively remove the effect of noise. BM4D,
LRMR, LRTDTV, WLRTR, and NLSSR all restored clean HSIs but with a few residual stripes;
among these, NLSSR also produced serious DN biases, compared with the ground-truth
HSI. FGLR and NGMeet produced cleaner HSIs, but with DN biases that were minor in
the case of FGLR but severe in the case of NGMeet. It can also be seen that, although
SDeCNN produced a clean and smoothed HSI, the edges of the building are blurred, and
its details are lost. The remaining denoising methods produced HSIs of better quality
without significant visual differences and preserved abundant details without color skews.
From these results, along with those presented in Table 1, it may be determined that the
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proposed DFTCR produced the highest MPSNR value and the second-highest MSSIM
value, while NGMeet produced the highest-ranked MSSIM and NFF the highest-ranked
MSAM. In summary, then, we may say that the proposed DFTCR exhibited state-of-the-art
performance in HSI denoising.

3.3. Denoising Results for Real-World Noisy HSIs

The above section describes the extensive simulated experiments that were carried out
to demonstrate the superiority of the proposed DFTCR. In the next section, we report our
use of four real-world HSIs from two sensors, i.e., AVIRIS and AHSI. The real Indian Pines
dataset with a size of 145 × 145 × 220 (obtained from https://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes, accessed on 17 December 2023) with
serious levels of noise from the AVIRIS sensor was utilized, and the denoising results
are illustrated in Figure 7 in pseudo-color format. Most of these methods exhibited good
performance in removing Gaussian noise and were able to recover more details without
color skew, except for NGMeet and NLSSR. NGMeet produced redder and smoother
regions with some loss of detail, and NLSSR produced a similar result but with greener
regions. Comparing the STCR with the proposed DFTCR, we found that both removed
Gaussian noise effectively; in particular, the proposed DFTCR preserved smoother regions
with details.

Figure 7. Visual comparison of denoising results for the real Indian Pines dataset by bands (R:89,
G:27, B:17). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet.
(h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR.

In contrast to the AVIRIS Indian Pines dataset, the Gaofen-5 (GF-5) satellite dataset (ob-
tained from http://hipag.whu.edu.cn/resourcesdownload.html, accessed on 17 December
2023) contains dense deadlines and stripes in addition to Gaussian noise in pseudo-color
noisy HSIs, as shown in Figures 8–10. It can be seen that BM4D, LRMR, and LRTDTV all
failed to remove these deadlines and stripes. WLRTR, NLSSR, and SDeCNN successfully
removed deadlines and stripes, but details were not well preserved. NGMeet still produced
a color-skew, and some details were lost. FGSLR and NFF removed all noise but still
retained some spectrum offset from local color vestiges. FGLR, STCR, and the proposed
DFTCR all produced clean images with rich details.

From the detail in Figure 8, it can be seen that STCR still retained a small degree of
yellow-ellipse color distortion. The restored result of FGLR revealed consistency with the
global color but with the color-skew trending to cyan. The proposed DFTCR produced no
visible color distortion. In Figure 9, the zoomed-in regions of interest (ROIs) within yellow
rectangles show sharpness in airport pavements and highways. It can also be seen that the
proposed DFTCR produced a superior denoising result with sharp contrasts and edges
compared with STCR, NFF, and FGLR. Furthermore, in the ROIs shown in the zoomed-in
yellow rectangles of Figure 10, the stripes were removed from the river by WLRTR, FGLR,
NGMeet, NLSSR, NFF, SDeCNN, STCR, and DFTCR, while the ships and other objects on
the river (i.e., high-frequency information) were considered as sparse noise to be removed

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://hipag.whu.edu.cn/resourcesdownload.html
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by WLRTR, FGLR, NGMeet, NLSSR, and SDeCNN. In addition, NFF, STCR, and DFTCR
recognized high-frequency noise and information more robustly, and DFTCR retained
more sharpness of classification types visually. To summarize, we may say that DFTCR
eliminated the distortion from stripes and deadlines and preserved more original spectral
information at the same time, with the help of the nonlocal sparsity property with TCR
prior and double actors—the basis factor B and spatial factor C. This demonstrates that the
proposed DFTCR is suitable for real-world HSI denoising applications.

Figure 8. Visual comparison of denoising results for the real GF−5 dataset by bands (R:155, G:102,
B:46) (Baoqing). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet.
(h) NLSSR. (i) FGSLR. (j)NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR.

Figure 9. Visual comparison of denoising results for the real GF−5 dataset by bands (R:155, G:102,
B:46) (Capital Airport). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR.
(g) NGMeet. (h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR.

Figure 10. Visual comparison of denoising results for the real GF−5 dataset by bands (R:155, G:102,
B:46) (Shanghai). (a) Noisy. (b) BM4D. (c) LRMR. (d) LRTDTV. (e) WLRTR. (f) FGLR. (g) NGMeet.
(h) NLSSR. (i) FGSLR. (j) NFF. (k) SDeCNN. (l) STCR. (m) Proposed DFTCR.
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4. Discussion
4.1. Analysis of Computation Complexity

We analyzed the computational complexity of the developed ADMM-based algo-
rithm using the noisy HSI Y ∈ Rm×n×l . In Algorithm 1, the calculation complexity at each
iteration is dependent on the updating of B,S ,Z , C, Ci. The complexity of the TCR decompo-
sition Ci before iteration is O

(
r2ab + abr log(r) + ab2r

)
. B is then updated via Equation (24),

containing SVD, 1-D FFT and matrix multiplications, leading to O
(
rmnl + r2l + rl log(l)

)
cost. Next, updating C via Equation (21) requires O

(
(r + m + n)mnl + r2l + rmn log(mn)

)
cost. The necessary updating costs of S , P , F from Equations (15), (16), and (17) are
O(mnl), O(rl), and O(mnr), respectively. The updating costs of M, T , U from Equations
(15), (16), and (17) are O(mnl), O(rl), and O(mnr), respectively. Finally, the sum of the
computational cost at each outer iteration is O

(
rl + 2r2l + 2mnr + mnl(2r + m + n + 2) +

rl log(l) + rmn log(mn)).

4.2. Ablation Analysis

Comparing the objective functions of STCR and DFTCR, we find that the main distinc-
tion lies in the spatial factor C. However, if we remove the regularization term ∥C×3Dw∥1
from Equation (6), the DFTCR denoising method is as degraded as the STCR method. The
restored results using the simulated WDC dataset for these same cases are displayed in
Table 2. It can be seen that the restoration quality of HSIs increases with the participation
of the regularization term. This implies that the regularization term ∥C×3Dw∥1 is effective
in improving restoration quality.

Table 2. Ablation analysis without the main regularization term ∥C×3Dw∥1.

Cases Index STCR DFTCR
Case 1: Gaussian Noise

σ = 0.15
PSNR 36.9208 37.3647
SSIM 0.9624 0.9661

MSAM 0.0637 0.0600

σ = 0.30
PSNR 33.0368 33.9688
SSIM 0.9082 0.9264

MSAM 0.1049 0.0915

σ = 0.45
PSNR 30.4437 31.6006
SSIM 0.8467 0.8790

MSAM 0.1478 0.1249
Case 2: Gaussian Noise + Impulse Noise

σ = 0.30, o = 0.1
PSNR 32.9093 33.2625
SSIM 0.9305 0.9344

MSAM 0.2181 0.2205
Case 3: Gaussian Noise + Impulse Noise + Deadlines

σ = 0.15, o = 0.1
r = 40%, v = 0.05

PSNR 28.7792 32.5335
SSIM 0.8363 0.9441

MSAM 0.2591 0.0728
Case 4: Gaussian Noise + Impulse Noise + Stripes

σ = 0.15, o = 0.1
nr = 5%, n = 5 ∼ 12

PSNR 32.5697 32.8969
SSIM 0.9267 0.9311

MSAM 0.2187 0.2210
The bold font represent the best results.

4.3. Convergence Analysis

Figure 11 represents the relative change values ∥C t
×3Bt − C t−1

×3 Bt−1∥2
F of the proposed

DFTCR method using the simulated WDC dataset with designed cases. Six groups for four
cases were employed to validate the convergence of DFTCR. From the figure, it can be seen
that the curve of the relative change value monotonically converges to certain values as the
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number of iterations increases. In other words, the curve finally becomes flat and stable.
This indicates that numerical convergence is guaranteed by the proposed DFTCR method.

Figure 11. Relative change values versus the iteration number of the proposed DFTCR solver in the
simulated WDC dataset with designed cases. (a) Case 1 (σ2 = 0.15). (b) Case 1 (σ2 = 0.3). (c) Case 1
(σ2 = 0.45). (d) Case 2. (e) Case 3. (f) Case 4.

4.4. Running Time

As described in Section 4.1 above, the proposed DFTCR method is characterized by a
medium level of computation complexity. To test the running times of DFTCR, we used the
real-world GF-5 Shanghai and Indian Pines datasets to compute the running times of all
compared methods; these are presented in Table 3. Although all running times indicate
a medium level of efficiency, the restoration qualities of DFTCR are the best among the
competing methods. Overall, we may say that the proposed DFTCR strikes an effective
balance between restoration quality and efficiency in the denoising of HSIs.

Table 3. Running times (in seconds) of different methods for the real-world and simulated dataset.

Dataset BM4D LRMR LRTDTV WLRTR FGLR NGMeet

GF-5 685.30 54.62 94.37 325.96 4.98 135.42
WDC 1008.64 61.63 117.21 382.81 6.93 135.91

Dataset FGSLR STCR NLSSR SDeCNN NFF DFTCR

GF-5 258.00 78.03 50.33 5.37 706.30 86.51
WDC 296.92 77.48 58.11 1.90 1104.75 91.18

5. Conclusions and Outlooks

In this paper, we describe a new HSI denoising method based on double-factor tensor
cascaded-rank minimization. This method can effectively remove Gaussian noise, dead-
lines, and stripe noise, both individually and in combination. Due to the loss of information
in the nonlocal sparsity property of the spatial factor C, a necessary and robust regulariza-
tion term was employed in the STCR framework. The spatial factor can be regularized to
characterize the representation of geometrical features. In addition, to preserve the edges
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and sharpness of restored HSIs, a tensor cascaded-rank minimization prior, suggested as
a nonlocal self-similarity, was fully exploited. Another factor, difference continuity and
nonlocal gradient sparsity regularization, was also utilized in the proposed DFTCR to learn
the basis B in its subspace and thus more closely approximate the HSIs endmembers [8,9].
The ADMM strategy can be used to derive these formulae, which form the basis of the iter-
ative algorithm and flow. A low-dimensional subspace projection was applied to decrease
the high-dimensional HSI tensor, which reduced computational complexity. Many other
SOTA denoising methods for HSIs were tested as competitors to verify the performance of
the proposed DFTCR. Extensive simulated and real-world experiments demonstrated the
superiority and effectiveness of the proposed DFTCR in typical HSI denoising applications.

In future works, we will extend the proposed DFTCR methods to restore more types
of degraded HSIs, using such techniques as deblurring, inpainting, and super-resolution
reconstruction. We will also consider how to improve the computational efficiency of
DFTCR and apply the method to multitemporal HSIs and satellite videos, in addition to
stationary satellite images.
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