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Abstract: Identifying floods and flood susceptibility mapping are critical for decision-makers and
disaster management. Machine learning and deep learning have emerged as powerful tools for
flood prevention, whereas they confront the drawbacks of overfitting and biased prediction due
to the difficulty in obtaining real data. Therefore, this study presents a novel approach for flood
susceptibility prediction by integrating ResNet-18 with a 2D hydrological model for global flood
susceptibility mapping using remote sensing datasets. The three main contributions of this study are
outlined below. First, a new perspective integrating hydrological simulation and deep learning is
presented to overcome the inherent drawbacks of deep learning. Second, the model performance
is improved through physics-based initialization. Third, the pretrained model achieves better per-
formance than the original model with incomplete training labels. This experiment demonstrates
that the physics-based initialized ResNet-18 model achieves satisfactory prediction performance in
terms of accuracy and area under the receiver operating characteristic (ROC) curve (0.854 and 0.932,
respectively) and is extremely robust according to a sensitivity analysis.

Keywords: flood susceptibility; deep learning; transfer learning; ResNet-18; XAI; physics-based initialization

1. Introduction

Although each country faces its own natural disasters, including tornadoes, earth-
quakes, and wildfires, floods are one of the major threats to people’s livelihoods and affect
development prospects around the world [1]. In recent years, the frequency and intensity
of floods have increased due to climate change, land-use change, and population growth in
flood-prone areas. It was found that 1.81 billion people are directly exposed to 1-in-100-year
floods [2]. Flood susceptibility mapping is a critical tool for disaster management planning.
Flood susceptibility mapping (FSM) identifies areas that are at risk of flooding according
to a series of geoenvironmental conditions [3–5], as it identifies areas that are at risk of
flooding and helps in decision-making for disaster risk reduction.

To date, various approaches have been applied for FSM, including physical-based
models, physical models and empirical models [6]. Physical-based models are one of
the most widely implemented models for predicting flash flood susceptibility [7]. These
models simulate the flow of water and the resulting flood inundation using rainfall–runoff
modelling based on climatic or remote sensing (RS) data [8]. Physical-based models are
numerical models that require intensive effort to preprocess the input data and longer
computation times [9]. There are three types of numerical models: 1-, 2-, and 3-dimensional
hydrodynamic models [10]. Numerical models are based on fluid motion driven by stan-
dard mass, energy and momentum principles.

Physical modelling methods have been a great development in recent years because of
the improvement in computing power hardware and software for numerical modelling [6].
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However, physical modelling is the least favourable approach to implement because
it requires the development and application of extremely accurate experimentations of
realistic flood events, complicated manipulation and expensive computing power [7].

Empirical models are data-driven models, referred to as black-box models, which
depend on the characteristics and mechanisms of the observed data and hydrological
cycle [6]. Machine learning (ML) and deep learning (DL) algorithms are types of empirical
models and have emerged as powerful tools for FSM. Some machine learning methods,
such as decision trees (DTs) [11], support vector machines (SVMs) [12], K nearest neighbours
(KNNs) [13], and artificial neural networks (ANNs) [14], have been applied in FSM and
achieved good performance. Multiple ML models have also been integrated and applied in
FSM, and such models are typically referred to as ensemble models [15]. The random forest
(RF) algorithm is an ensemble algorithm that applies bagging to ensemble a number of
DT classifiers [16]. Naïve Bayes trees (NBTs) are an integration of naïve Bayes and DTs for
FSM [11]. The Bayesian general linear model (GLM) is an integration of naïve Bayes and
GLM [17]. An ensemble of genetic algorithm (GA) models has been applied for FSM [18].
A deep learning neural network (DLNN) that has more than a single hidden layer has been
applied in FSM and achieved excellent performance [19].

The ability to quickly train and analyse hydrological data makes ML methods very
useful in predicting floods [20], but ML has a number of drawbacks, such as peak-value
prediction and overfitting [21,22]. In an effort to address this inherent issue, the integration
of machine learning and statistical methods or hydrological models has become a cutting-
edge field. Combining bivariate statistics with multiple ML models can result in a coupled
model that outperforms individual FSM models [23]. Another proposed approach is to
implement more accurate hydrological data generated by hydrological models as labelled
data for ML models to improve their prediction performance. For example, a study
that integrated a conceptual hydrological model with a monotone composite quantile
regression neural network (MCQRNN) improved the model performance in short-term
flood probability density forecasting [24]. Global hydrological models (GHMs) integrated
with long short-term memory (LSTM) units were applied for global flood simulations and
yielded a drastic improvement [25]. A land surface hydrological model integrated with
LSTM was applied for streamflow forecasting for a cascade reservoir catchment [26], and
it significantly reduced the probabilistic and deterministic forecast errors. A distributed
hydrologic model was integrated with LSTM for streamflow forecasting in a medium-sized
basin and achieved excellent performance at medium-range timescales [27]. A precipitation-
runoff modelling system (PRMS) was integrated with a recurrent graph network and
LSTM for streamflow forecasting and achieved excellent performance with fewer training
labels [28].

The common conclusion from the previous studies on hybrid/integrated models
mentioned above is that these models improved the model prediction ability, while studies
that apply the integration of ML and hydrological models for FSM are relatively rare.
Therefore, further research with different perspectives is needed to explore new integrated
models for FSM.

The residual network (ResNet)-18 is a DLNN that has been widely applied in image
recognition and classification tasks [29]. It has 18 layers and utilizes residual connections to
address the vanishing gradient problem. Residual connections allow the gradient to flow
directly through the network, improving the training process and reducing the number
of parameters. Transfer learning is a machine learning technique that involves using a
pretrained model to solve a related task [30]. Transfer learning has been used extensively
in image recognition and natural language processing tasks.

This study proposes a novel approach to FSM by integrating ResNet-18 with a 2D
hydrological model for global flood susceptibility mapping using RS datasets, and an ex-
plainable artificial intelligence (XAI) approach, Shapley Additive exPlanations (SHAP) [31],
is applied to analyse the difference after hydrologically based transfer learning. The three
main contributions of this study are outlined below. First, a new perspective using a ResNet-
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18 model, a physics-based initialization rather than a random initialization, is proposed
to integrate hydrological simulation and deep learning for FSM. Second, the overfitting
tendency of the model can be significantly reduced and the model performance can be
improved through physics-based initialization. Third, pre-trained models can achieve
better performance with incomplete training labels than the original model.

2. Materials
2.1. Data Preparation

Floods are caused by various environmental factors. A total of 12 flood conditioning
factors were considered for FSM in this study based on a literature review (Table 1).

Table 1. Primary sources of the datasets in this study.

Data Type Subfactor Resolution Time Source and Details

Elevation

Digital elevation model (DEM)

7.5 arc 2010 Google Earth Engine (GEE)Slope

Slope aspect

General curvature (GC)

Rainfall Global precipitation
measurement (GPM) 10 km 2000–2018 NASA

Soil Soil type 1:5,000,000 2006
Natural Resources Conservation

Service, Department of
Agriculture, U.S.

Vegetation Normalized difference
vegetation index (NDVI) 1 km 2000–2018 GEE

Lithological Lithological types 0.5◦ 2012 PANGAEA

Climate classification Köppen-Geiger climate classes
(KG) 1 km 2017 Climate Change & Infectious

Diseases Group
River network River network Variable 2020 Global Runoff Data Centre

Flood inventory map Historical flood inundation areas 250 m 2000–2018 GEE
Flood inventory map Historical flood points Variable 1985–2021 Dartmouth Flood Observatory

Flood inventory map Hydrological simulation of flood
inundation areas 1 km 1980–2013 European Commission

The sediment transport index (STI) [32] is widely used in flood sensitivity analysis [33–36].
A detailed characterization of sediment transport that is closely related to roughness coefficients
can greatly improve the understanding of fluvial regimes and floods [37,38]. The STI is a
measure of the amount of sediment that is transported by a river or stream. It is typically
expressed as the volume or weight of sediment that is transported over a given period of
time [39]. The STI reflects the mobility of sediment, and an increase in the STI coefficient will
increase the frequency of floods [40]. The STI is calculated as follows:

STI =

(
As

22.13

)0.6
(

sinβ

0.0896
)

1.3
, (1)

where As is the area of the basin and β is the slope gradient.
The topographic wetness index (TWI) describes soil saturation related to basin runoff [41].

TWI integrates water supply and downstream drainage in the upslope catchment area. Al-
though it is straightforward and intuitive, it performs well in a wide range of applications [42].
The TWI is calculated as follows:

TWI = ln
(

α

tanβ

)
, (2)

where α and β are the upslope area per unit contour length and slope angle, respectively.
Elevation data were obtained from the Google Earth Engine (GEE) platform. The slope,

slope aspect and general curvature (GC) were calculated with the elevation data using
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third-order partial derivatives in QGIS. The Euclidean distances to rivers (EDTRs) of the
flood points were calculated by the Euclidean distance tool in QGIS and a variable in the
Global River Network. In the layer stacking step (Figure 1a), each geoenvironmental factor
can be processed as a single-band image of size 3598 × 1448, and all the conditioning factor
layers are stacked together to form a multiband image. In terms of feature engineering,
each image is produced in patches pixel by pixel from the multiband image. Each central
pixel and its neighbouring pixels in a 3 × 3 window are extracted, and the resultant image
patch has a size of 3 × 3 ×12 (Figure 1b).

1 
 

 

Figure 1. Modelling process in this study: (a) stacking all the conditioning factors together to form a
multiband image, (b) sending the resultant image to ResNet, (c) the process of transfer learning.

2.2. Flood Inventory Map

The inventory of flood inundation areas is the benchmark for FSM. Especially for
ML, the accuracy of flood event locations directly affects the prediction results of the
model. In this study, the satellite-observed inundation maps were obtained from a previous
study [43]. The flood event datasets were collected from the Dartmouth Flood Observatory
(DFO), which is one of the most comprehensive flood databases [44]. The Terra and
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Aqua moderate resolution imaging spectroradiometer (MODIS) sensors were applied to
successfully map 913 flood events occurring between 2000 and 2018 according to the DFO
database. Each pixel was classified as water or nonwater at a 250-metre resolution. In the
task of recognizing floodwater pixels, permanent water pixels were excluded. To make the
flood training data more comprehensive, DFO flood event points that were not mapped by
MODIS were also included in the flood inventory map.

3. Methods
3.1. ResNet

Building a normal convolutional neural network (CNN) that is sufficiently deep
can result in problems such as gradient disappearance, the curse of dimensionality, and
degradation issues, and the improvement in accuracy stops at a certain point and eventually
begins to degrade [29]. A residual block module is a basic structure in ResNet-18. This
residual module allows the model to skip convolutional layers during training, which
effectively alleviates the vanishing and exploding gradient problems caused by increasing
the network depth [45].

ResNet-18 is mainly composed of a basic ResNet module (Figure 1b). The residual
building block is composed of convolutional layers (Conv), batch normalization (BN), a
rectified linear unit (ReLU) activation function, and a shortcut connection implemented by
the residual block. The output of the residual block can be formulated as follows:

y = F(x) + x (3)

F is the residual equation, where x and y are the input from the previous layer of
the neural network and the output of the current layer, respectively. The entire residual
network is composed of a convolutional layer and several basic residual modules.

In this study, ResNet-18 was implemented as the architecture. ResNet-18 contains
17 convolutional layers, a max pooling layer with a size of 3 × 3, and a fully connected
layer, followed by a dropout layer (Figure 1b). ResNet-18 involves 11,193,858 parameters,
where the ReLU activation function and BN are applied to the back of all convolution layers
in the residual module, and the softmax function is implemented in the final layer.

3.2. Transfer Learning and Pretraining

Transfer learning is a technique in machine learning where the parameters of a pre-
trained model are implemented as an informed initialization for neurons, especially for
similar tasks [30]. The parameters of a general neural network model are randomly ini-
tialized during training, which can not only increase the training time of the model but
also easily cause the model to converge to a local optimum rather than a global optimum.
Transfer learning takes advantage of the features learned from the previous model, and
fine-tuning with a new dataset can significantly reduce the training time and prevent the
model from settling into a local optimum [46]. Deep neural networks usually adopt a
hierarchical approach to extract meaningful information. The initial layers detect high-level
features, such as edges and corners in image recognition tasks, while later layers identify
more complex, domain-specific features. The hierarchical structure of neural networks
makes them ideal for transfer learning.

The transfer learning approach in this study (Figure 1c) involves two steps: the
generation of flood inundation maps and the training of a residual neural network model.
This study utilized flood hazard maps with a 1-km resolution generated by 2D hydrological
modelling from a previous study [47], which included maps with 20-year, 50-year, 100-year,
200-year, and 500-year return periods (RPs) of flood inundation areas. ResNet-18 was first
pretrained using flood maps with different RPs and further trained using data from the
flood event database. The performance of the different models was evaluated using metrics
such as accuracy and area under the curve (AUC), and the performance of the models
was compared.
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3.3. Model Performance Measures

The sensitivity and specificity represent the proportion of floods that are classified as
flood pixels and the proportion of nonflood pixels that are classified as nonflood, respec-
tively. True positive (TP) and true negative (TN) are the number of pixels that are correctly
classified, P is the total number of pixels with floods, and N is the total number of pixels
without floods.

Sensitivity =
TP

TP + FN
, (4)

Speci f icity =
TN

FP + FN
, (5)

Accuracy =
TP + TN

TP + FP + TN + FN
, (6)

AUC =
∑ TP + ∑ TN

P + N
(7)

For a binary classification problem, the confusion matrix defines the basis for perfor-
mance metrics, and the receiver operating characteristic (ROC) is a plot generated with
sensitivity and specificity information [48]. The AUC calculates the probability P value
of each entity as a positive class iteratively when a model classifies which category an
entity belongs to, and it sorts these values and calculates them as a threshold θ to weigh a
positive category.

3.4. Model Interpretation

SHAP is a post hoc method for black box models [31]. SHAP explains the decision-
making rules of the model by calculating the contribution of different features to the
predicted value of an instance X. The SHAP explanation method calculates the Shapley
values according to coalitional game theory, and the feature values of each instance act as
players in a coalition. A player can be an individual feature value or a group of feature
values, such as tabular data or image pixels. One innovation brought by SHAP is that the
Shapley value interpretation is represented as an additional feature attribution method, a
linear model. The SHAP explainer is as follows:

g
(
z′
)
= φ0 +

M

∑
j = 1

φjz′ j, (8)

where g is the explanatorily linear model, z’∈{0,1} is a coalition vector that equals 1 if a
feature is observed, M is the number of input features and φj∈R is the set of Shapley values
that represent the feature attributes of a feature j.

Shapely interaction values evaluate the interaction effects between pairs of features
after considering the effects of individual features. This index indicates how different pairs
of features affect the model output. The Shapley interaction value from game theory is
defined as follows:

φi,j = ∑
S⊆\{i,j}

|S|!(M− |S| − 2)!
2(M− 1)!

δi,j(S) (9)

In this formula, the main effect of the features is subtracted, and the pure interaction
between the features can be computed after considering the individual effects. Values for
all possible feature coalition S were averaged, which is similar to the calculation of Shapley
values. When the SHAP interaction values for all features were computed, a matrix for each
instance was generated with dimensions of M ×M, where M is the number of features.
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4. Results
4.1. Model Performance

Table 2 shows the prediction performance. All experiments were performed using
Python with the Kera framework and scikit-learn.

Table 2. Prediction performance of models with the validation dataset.

Models Accuracy Specificity Sensitivity TP TN FP FN SD RMSE

ResNet 0.851 0.905 0.742 26242 10758 2761 3745 0.463 0.387
ResNet (RP20) 0.853 0.893 0.773 25906 11217 3097 3286 0.470 0.383
ResNet (RP50) 0.854 0.907 0.748 26317 10842 2686 3661 0.463 0.382

ResNet (RP100) 0.853 0.909 0.742 26368 10759 2635 3744 0.462 0.383
ResNet (RP200) 0.855 0.900 0.765 26095 11090 2908 3413 0.467 0.381
ResNet (RP500) 0.853 0.906 0.749 26265 10861 2738 3642 0.464 0.383

In this experiment, the performance of the pretrained models generated by different
flood maps was not consistent. The model pretrained using RP50 had the best performance,
with accuracy increasing from 0.851 to 0.854, and specificity and sensitivity increasing
from 0.905 to 0.907 and 0.742 to 0.748, respectively, compared to those of the ResNet
model initialized with random parameters. The other models showed varying degrees
of improvement compared to the performance of the ResNet model, and the second-best
performing model was that with ResNet (RP100), with accuracy and specificity increasing
from 0.851 to 0.853 and 0.905 to 0.909, respectively. The remaining models performed
similarly, all performing better than the ResNet model but not as well as ResNet (RP50)
and ResNet (RP100).

It should be noted that simply mixing hydrological simulation data (RP200 in this
experiment) with flood event datasets does not improve the performance of the model.
Compared to that of ResNet, the performance of the model trained with the mixed dataset
was significantly lower, with AUC and accuracy decreasing to 0.910 and 0.823, respectively.
This indicates that supplementing the data with hydrological simulation data alone does
not improve the model performance compared with that of pretraining.

4.2. ROC curve

The success rate curve that was computed using the training dataset is shown in Figure 2a.
From these success rate curves, the ResNet (RP50) model had the best performance (AUC = 0.947),
followed by the ResNet (RP20) model (AUC = 0.946), the ResNet (RP100) (AUC = 0.944) model, the
ResNet (RP500) model (AUC = 0.942) and the ResNet (RP200) model (AUC = 0.933). Compared
to those of the ResNet model, the ResNet (RP50), ResNet (RP20) and ResNet (RP100) models had
higher AUC values.

Similarly, the prediction rate was graphically represented as a curve using the val-
idation dataset (Figure 2b). Thus, the ResNet (RP200) model had the best performance
(AUC = 0.933), followed by the ResNet (RP50) model (AUC = 0.932), the ResNet (RP500)
(AUC = 0.932) model, the ResNet (RP100) model (AUC = 0.931) and the ResNet (RP20)
model (AUC = 0.931). Compared to those of the ResNet model, all pretrained models had
significantly higher AUCs than ResNet.

These results indicate that transfer learning using hydrological simulation flood maps
can significantly reduce the overfitting tendency of the model (except for RP200), preventing
the model from falling into a local optimum.
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5. Discussion
5.1. Model Performance with Fewer Training Labels

A previous study found that the pretrained model had a significant improvement in
streamflow prediction with fewer training labels [28]. It is highly valuable to investigate
whether pretraining also yields this improvement in FSM because of the difficulty of
acquiring real flood data.

We randomly sampled 30%, 50%, and 70% of the original training data five times
each and trained the model with both random initialization and physics initialization. It
can be observed that the model with physics initialization outperformed the model with
random initialization by a considerable margin (Table 3). All pretrained models had better
performance in terms of AUC and accuracy. ResNet (RP50) performed the best with 30%
and 50% of the training labels, but ResNet (RP500) had the best performance with 70% of
the training labels.

Table 3. Prediction performance of models trained by incomplete training labels with the same
validation dataset.

30% Training
Labels AUC Accuracy 50% Training

Labels AUC Accuracy 70% Training
Labels AUC Accuracy

ResNet 0.879 0.795 ResNet 0.894 0.813 ResNet 0.913 0.834
ResNet (RP20) 0.887 0.808 ResNet (RP20) 0.909 0.827 ResNet (RP20) 0.924 0.844
ResNet (RP50) 0.906 0.824 ResNet (RP50) 0.913 0.831 ResNet (RP50) 0.920 0.837

ResNet (RP100) 0.886 0.803 ResNet (RP100) 0.901 0.813 ResNet (RP100) 0.916 0.834
ResNet (RP200) 0.888 0.805 ResNet (RP200) 0.910 0.829 ResNet (RP200) 0.923 0.843
ResNet (RP500) 0.895 0.815 ResNet (RP500) 0.914 0.831 ResNet (RP500) 0.927 0.849

These results indicate that pretraining can significantly improve the model perfor-
mance with incomplete training data by leveraging hydrological knowledge to learn
representative latent variables without risking overfitting a fewer number of observations.
Incomplete flood datasets are very common in FSM studies due to the difficulty in obtain-
ing real data. We have found that it is best to integrate labelled data (such as RS data)
with hydrological simulation when implementing deep learning for FSM studies, allowing
neural networks to leverage hydrological knowledge. This approach has the potential to
train a model with better accuracy and robustness.
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5.2. Comparison with a Global Flood Dataset

In our experiment, we calculated the susceptibility index of 1,469,173 grid cells to build
a global FSM. All susceptible indices were sorted in ascending order and divided into five
classes using the natural (Jenks) breaks method [34]. In terms of ResNet, the first class of
values (0–0.109) identified zones with very low flood susceptibility, accounting for 46.31%
of the study area. The low (0.106–0.269), moderate (0.269–0.457), and high (0.457–0.673)
susceptible pixels accounted for 20.62%, 14.46%, and 11.22% of the study area, respectively.
Approximately 7.39% of the study area had a very high (0.673–1) flood susceptibility. In
terms of ResNet (RP50), the very low (0–0.102) and low (0.102–0.262) susceptible classes
accounted for 43.16% and 21.57%, respectively, of the study area, and the moderate (0.262–
0.454) flood susceptibility class accounted for 17.64%. The high (0.454–0.678) and very high
(0.678–1) classes accounted for 10.81% and 6.82%, respectively.

To evaluate the accuracy of the flood susceptibility map and the pretraining improve-
ment in this study, the flood susceptibility map was compared with a global river flood
event map which shows the number of global flood events from 1980 to 2019 (please refer
to Figure 10b in [49]).

The ResNet (RP50) map more closely resembled the flood event map from a global
perspective (Figure 3), especially in North America and eastern Asia.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. Comparison of (a) global FSM of ResNet; (b) global FSM of ResNet (RP50). 

5.3. Comparison among ResNet (RP50), ResNet (RP100), and ResNet (RP200) 
RPs of 100 and 200 years are highly related to flood occurrence in flood studies. 

Therefore, a comparison was made in regions with prediction differences among ResNet, 
ResNet (RP50), ResNet (RP100), and ResNet (RP200), specifically in eastern Asia, Europe, 
and North America (Figure 4). 

In eastern Asia, all maps of the pretrained ResNet showed more areas of moderate 
susceptibility in southeastern Asia, central Asia, the Korean Peninsula, Hokkaido Island, 
and Sakhalin Island. Compared with the maps of the 3 other pretrained ResNets, the map 
of ResNet (RP200) showed high and very high susceptibility in South Korea, Philippines, 
and Sakhalin Island. 

 

Figure 3. Comparison of (a) global FSM of ResNet; (b) global FSM of ResNet (RP50).



Remote Sens. 2023, 15, 2447 10 of 16

In eastern Asia, the ResNet (RP50) map showed more areas of low, moderate and high
susceptibility in the Korean Peninsula, Hokkaido Island, and Sakhalin Island. These trends
were consistent with the flood event maps of these regions. In Far East Russia, there were
multiple rivers with a comparatively high incidence of flooding. ResNet (RP50) showed
more areas of moderate susceptibility in these regions, and the map was consistent with
the flood event map.

In North America, the ResNet (RP50) map showed more areas of low and moderate
susceptibility in America, Mexico, and Quebec, a province of Canada. These map trends
were consistent with those of the flood event map.

5.3. Comparison among ResNet (RP50), ResNet (RP100), and ResNet (RP200)

RPs of 100 and 200 years are highly related to flood occurrence in flood studies.
Therefore, a comparison was made in regions with prediction differences among ResNet,
ResNet (RP50), ResNet (RP100), and ResNet (RP200), specifically in eastern Asia, Europe,
and North America (Figure 4).
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In eastern Asia, all maps of the pretrained ResNet showed more areas of moderate
susceptibility in southeastern Asia, central Asia, the Korean Peninsula, Hokkaido Island,
and Sakhalin Island. Compared with the maps of the 3 other pretrained ResNets, the map
of ResNet (RP200) showed high and very high susceptibility in South Korea, Philippines,
and Sakhalin Island.

In Europe, all maps of the pretrained ResNet showed more areas of moderate and high
susceptibility, specifically in Ireland, the UK, and France. The map of ResNet (RP200) showed
more areas of moderate and high susceptibility in Ireland, the UK, Norway, and Finland.

In North America, all maps of the pretrained ResNet showed more areas of low
and moderate susceptibility in the western US, northern Mexico, and eastern Canada.
Compared with the maps of the other pretrained ResNets, the maps of ResNet (RP100) and
ResNet (RP200) showed more areas of moderate and high susceptibility in eastern Canada.

5.4. Model Interpretation with SHAP

In this study, 1000 points were randomly sampled for model interpretability analysis
using SHAP, exploring how pretraining adjusts the feature importance to improve the
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model performance. Figure 4 shows the feature importance ranking of all models. The
slope, DEM and TWI are the most important factors causing floods in all models, and the
difference between ResNet and ResNet (RP50) lies mainly in the different contributions
of the DEM, GPM, and NDVI to the model output (Figure 4a,b). Compared with those of
ResNet, the importance of the slope, NDVI and TWI decreased for ResNet (RP50), but the
importance of the DEM, GPM, KG, and EDTR increased.

The feature importances of the pretrained models are mostly similar, while the impor-
tance of the STI increased significantly for ResNet (200) compared with the other models
(Figure 5e). the difference between ResNet (RP50) and ResNet (RP100) lies mainly in the
different contributions of TWI (Figure 5c,d). The importance of the GPM comparatively
increased for ResNet (20) compared with the other models (Figure 5b). The slope was the
most important factor in ResNet (500).
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In comparing the interaction value matrices of the two models (Figure 6), the inter-
action value commonly increased in ResNet (RP50). It can be seen that the interaction
values of the DEM and KG (0.094 to 0.105), GPM and slope (0.036 to 0.05), slope and NDVI
(0.053 to 0.069), NDVI and KG (0.126 to 0.136), and Lith and KG (0.04 to 0.058) significantly
increased in ResNet (RP50), indicating that the influence of these five pairs of features on
the model output increased.
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5.5. Model Sensitivity and Uncertainty Analysis

A robust FSM model should have results that do not change significantly within
a reasonable range of variations in the input data. To effectively demonstrate that the
prediction results of the physics-initialization method are generalizable, two random
operations that occurred during the modelling process were analysed to measure the
sensitivity and uncertainty of the model. For sensitivity testing, ten random selections
of training and testing sets were made (Table 4), and the stacking orders of the flood
conditioning factors were randomly changed (Table 5). A total of 81,861 grid cells were
selected based on systematic sampling with a periodic interval of 20 of the total grids.

Table 4. Results of ResNet (RP50) carried out 10 times with different training/test sets.

Experiment 1 2 3 4 5 6 7 8 9 10 Min Max SD Average

AUC 0.932 0.935 0.937 0.934 0.934 0.935 0.935 0.935 0.932 0.933 0.932 0.937 0.001 0.934
Accuracy 0.854 0.856 0.861 0.856 0.858 0.858 0.857 0.860 0.854 0.854 0.854 0.861 0.002 0.857
Specificity 0.918 0.910 0.909 0.909 0.914 0.919 0.919 0.923 0.907 0.903 0.903 0.923 0.006 0.913
Sensitivity 0.733 0.761 0.746 0.750 0.810 0.795 0.791 0.793 0.748 0.758 0.733 0.810 0.026 0.768

Table 5. Results of ResNet (RP50) carried out 10 times with different stacking orders of flood
conditioning factors.

Experiment 1 2 3 4 5 6 7 8 9 10 Min Max SD Average

AUC 0.932 0.925 0.927 0.929 0.930 0.928 0.931 0.931 0.928 0.927 0.925 0.932 0.002 0.929
Accuracy 0.854 0.846 0.846 0.849 0.851 0.849 0.852 0.852 0.849 0.848 0.846 0.854 0.003 0.850
Specificity 0.907 0.928 0.933 0.915 0.919 0.883 0.913 0.909 0.893 0.898 0.883 0.933 0.015 0.910
Sensitivity 0.748 0.682 0.673 0.718 0.717 0.780 0.730 0.738 0.761 0.747 0.673 0.780 0.033 0.729

The experiment showed that all the evaluation criteria have reasonable fluctuations.
The mean and standard deviation (SD) of the AUC were 0.934 and 0.001, and those of
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accuracy were 0.857 and 0.002, respectively. Compared with the results of ResNet (RP50)
with different training/test sets, the results of ResNet (RP50) with different factor stacking
orders fluctuated slightly more.

Comparing the mean value of 10 susceptibility estimates and a single susceptibility
estimate (Figure 7a,b) proved that the correlation between them is very high, and the two
uncertainty scenarios showed a very high correlation (r2 = 0.98 and r2 = 0.98) between the
single susceptibility estimate and the average susceptibility estimate, indicating that the
susceptibility predicted by ResNet (RP50) is extremely robust.
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To quantify the uncertainty of flood prediction methods, the measure strategy pro-
posed in [50] was applied. Figure 6c,d show a plot of the mean susceptibility estimate on 
the x-axis against two standard deviations (2SD) of the susceptibility estimate on the y-
axis. The 2SD value increases from very low to moderate susceptibility and then decreases 
to very high susceptibility (Figure 7c,d). Specifically, the 2SD value is relatively low for 

Figure 7. Comparison between a single susceptibility estimate and the mean susceptibility estimate:
(a) The mean susceptibility estimate was calculated based on 10 estimates acquired from different
training/test sets. (b) The mean susceptibility estimate was calculated from 10 estimates acquired
from different stacking orders of the factors. (c) The x-axis shows the mean susceptibility estimate
of the 10 estimates carried out with different training/test sets. The y-axis shows the 2SD of the
susceptibility estimate. (d) The x-axis denotes the mean susceptibility estimate of 10 estimates
derived from different stacking orders of flood conditioning factors. The y-axis shows the 2SD of the
susceptibility estimate.

To quantify the uncertainty of flood prediction methods, the measure strategy pro-
posed in [50] was applied. Figure 6c,d show a plot of the mean susceptibility estimate on
the x-axis against two standard deviations (2SD) of the susceptibility estimate on the y-axis.
The 2SD value increases from very low to moderate susceptibility and then decreases to
very high susceptibility (Figure 7c,d). Specifically, the 2SD value is relatively low for the
low (<0.3) and high susceptibility zones (<0.25), which indicates that ResNet (RP50) can be
stably predicted in these two susceptible zones.

6. Conclusions

The hybridization of ML and hydrological models is necessary to enhance the robust-
ness and reliability of flood prediction. In this study, a global flood susceptibility map was
made by combining a 2D hydrological model with ResNet-18 using a new framework ac-
cording to RS datasets. The models were trained using flood inundation maps generated by
a 2D hydrological model with RPs of 20 years, 50 years, 100 years, 200 years, and 500 years
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as pretraining data for transfer learning. The models with RPs of 20 years, 100 years,
200 years, and 500 years for physics initialization avoided settling into a local optimum
and showed improved accuracy, particularly the model pretrained with RPs of 50 years,
which showed the most significant improvement. The AUC and accuracy were improved
from 0.928 and 0.851 to 0.932 and 0.854, respectively. Transfer learning could significantly
improve the model performance with incomplete training data, which are common in the
real world. The flood susceptibility map generated by this hybrid model was also closer to
that in another global flood event dataset, which indicates an improvement in addressing
the problem of biased prediction for ML. It was found that the feature importance of the
models using transfer learning changed according to the SHAP post hoc test. The model
was insensitive to the randomness of the training and test set splitting process and the
stacking order of the factors. Finally, this paper provides a perspective on combining
hydrological models with deep learning, which can be extended to other disaster studies.
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