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Abstract: In order to improve the accuracy of the segmentation of buildings with small sample
sizes, this paper proposes a building-segmentation network, ResFAUnet, with transfer learning and
multi-scale feature fusion. The network is based on AttentionUnet. The backbone of the encoder is
replaced by the ResNeXt101 network for feature extraction, and the attention mechanism of the skip
connection is preserved to fuse the shallow features of the encoding part and the deep features of
the decoding part. In the decoder, the feature-pyramid structure is used to fuse the feature maps of
different scales. More features can be extracted from limited image samples. The proposed network
is compared with current classical semantic segmentation networks, Unet, SuUnet, FCN, and SegNet.
The experimental results show that in the dataset selected in this paper, the precision indicators of
ResFAUnet are improved by 4.77%, 2.3%, 2.11%, and 1.57%, respectively, compared with the four
comparison networks.

Keywords: semantic segmentation; building extraction; transfer learning; small sample data

1. Introduction

High-resolution remote-sensing images contain rich information on geometry, texture,
and spatial distribution, which are widely used in agriculture, geological surveys, disaster
detection, environmental protection, transportation, urban planning, and other fields [1–6].
With the development of remote-sensing technology, the extraction of information on target
buildings automatically and accurately from high-resolution remote-sensing images has
gradually become a key problem. The improvements in remote-sensing-image resolution
also create new challenges. For example, when the texture and structure of one building
are inconsistent, incomplete building extractions, or internal voids, might occur. At present,
researchers are dedicated to the task of automatically extracting information on buildings
from remote-sensing images. A variety of extraction algorithms have been proposed, which
can be mainly divided into traditional methods and deep-learning-based approaches.

Regarding the traditional methods, the structure and texture, of and prior information
on buildings in remote-sensing images are used for extraction. Irvin R. B. et al. proposed a
method to extract information on buildings from remote-sensing images by using building
shadows [7]. Lee et al. extracted building-height information based on the building-
volume shadow analysis (VSA) method [8]. However, this method is not suitable for
urban buildings with high densities, whose shadows might overlap with each other. On
the other hand, many researchers extract information on buildings by analyzing their
structure and texture. Levitt. S proposed a method based on image-texture detection [9].
This method is simple and efficient, but the actual effect depends on the choice of texture.
Lin et al. adopted the edge-detection algorithm to extract information on buildings by
detecting their roofs, walls, and shadows [10]. They extracted candidate building edges by
analyzing line-segment features in remote-sensing images, and determined the candidate
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building boundaries by region segmentation, analysis, and region merging [11]. With
the development of digital-image-processing technology, methods based on mathematical
morphology have emerged. Xu et al. used two-dimensional OTSU segmentation to carry
out the rough segmentation of buildings, and used mathematical morphology and other
means to detect and eliminate the non-buildings in aerial images [12]. Gavankar et al.
proposed an automatic building-extraction method based on mathematical morphology in
high-resolution remote-sensing images by using the top-hat filter and K-means algorithm
of image morphology [13]. In general, the traditional methods only use the shallow features
of buildings. Their extraction accuracy is not high, their generalization ability is poor,
limited to specific cases requiring significant building features.

In recent years, the application of deep learning has emerged. Deep learning uses
convolutional neural networks to extract and learn features in images, resulting in break-
throughs in classification, detection, and segmentation tasks. Currently, the mainstream
convolutional neural networks include AlexNet [14], VGGNet [15], ResNet [16], etc. Com-
pared with traditional feature-extraction algorithms, convolutional neural networks can
effectively extract the deep features of images with great levels of generalization. Scholars
have designed a series of semantic segmentation networks using convolutional neural
networks. Long et al. proposed the full convolutional neural network, FCN [17], in 2015,
and applied it in the semantic segmentation of images. The FCN restores the feature map
to the image’s input size through deconvolution, so as to achieve pixel-by-pixel predic-
tion. Subsequently, many new semantic segmentation networks were derived in order
to improve the FCN, including Unet [18], SegNet [19], PSPNet [20], DeepLab [21], etc. In
particular, the Unet network has a completely symmetric encoder–decoder structure, which
preserves the simplicity of the structure while improving its performance. Many scholars
have undertaken efforts based on the application of Unet to the automatic extraction of
information on buildings with remote-sensing images. Oktay et al. introduced attention
gates into the skip connections between the encoder and decoder in Unet. Attention gates
can be used to suppress irrelevant regions and focus on useful salient features during
network training [22]. He et al. proposed a first-order and second-order hybrid attention
network [23] and applied it to Unet to improve the correlation between the intermediate fea-
tures. Shi et al. introduced a spatial-channel attention mechanism on the basis of Unet [24]
to improve the feature-extraction ability of the neural networks. The structure of Unet can
also be improved by using other networks. Ji et al. improved Unet by adapting FPN, and
proposed SuUnet [25] to deal with objects of different sizes in remote-sensing images or
multi-scale problems in the images of different resolutions. Delibasoglu et al. employed
Inception blocks instead of traditional convolutional layers in the coding phase of Unet [26].
This approach enabled the model to capture building features at multiple scales by utilizing
parallel convolution kernels of different sizes. Abdollahi et al. employed dense connections,
ConvLSTM [27], and the SE mechanism [28] to suppress irrelevant information [29] while
incorporating prior information on buildings. Although deep-learning-based methods
are superior in the extraction of information on buildings from images, large numbers of
building samples are required in the network-training processes. However, in real-world-
application scenarios, the sample data sizes are often limited, leading to unsatisfactory
learning results when using semantic segmentation networks.

Obtaining strong network performances with limited data-set capacity is a common
problem. At present, an intuitive solution is to use transfer learning, which involves
the transfer of the pre-training weight of related fields and fine-tuning the network. In
medical imaging, label scarcity is a common problem. Therefore, transfer learning has
been widely applied in the field of medical imaging, in the form of by domain adaptation
(DA). This is a transfer-learning method in which the source task is the same as the target
task, but the data distribution of the source domain is different from that of the target
domain. In recent years, scholars have proposed a series of DA methods applicable to
the medical field. Khan et al. [30] pre-trained the VGG network on the ImageNet dataset
and then fine-tuned it using small amounts of labeled magnetic resonance imaging (MRI)
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data for the classification of Alzheimer’s disease (AD). Gu et al. [31] proposed a two-stage
adaptation approach based on an intermediate domain for use in situations in which
there are insufficient target samples with which to fine-tune the model directly. All these
examples are domain-adaptive methods under supervision. Since data-set annotation
is time-consuming, scholars have proposed a series of unsupervised domain-adaptive
(UDA) methods. Wollmann et al. [32] proposed an UDA method based on style transfer
learning. They first used CycleGAN to transform whole-slide images (WSIs) of lymph
nodes from a source domain to the target domain. Next, DenseNet was used to classify
breast cancers. However, due to the lack of class-level joint distribution in adversarial
learning, the aligned distribution is not discriminative. In order to solve this problem,
Liu et al. [33] proposed a novel margin-preserving self-paced contrast learning (MPSCL)
model to facilitate the classification of the alignment of perceptual features through cross-
domain contrast learning, which effectively improved the segmentation performance of
the network. Yao et al. [34] proposed an unsupervised domain-adaptive framework. The
framework achieves full image alignment to alleviate the domain-offset problem, and
introduces 3D segmentation in domain-adaptive tasks to maintain semantic consistency
at deep levels. In some areas of confidential medical imaging, source datasets are often
unavailable. To solve this problem, Liu et al. [35] proposed a passive semantic segmentation
adaptive framework, which can use knowledge migration to obtain knowledge in the source
domain from existing source models, and then achieve domain adaptation. Stan et al. [36]
developed an UDA algorithm that does not require access to source-domain data during
target adaptation. This method encodes the source-domain information as an internal
distribution, which is used to guide the adaptation in the absence of source samples. The
successful application of transfer learning in the medical field also provides a new approach
to the high-precision extraction of information on buildings with small sample sizes.

To address the challenge of achieving high-precision building segmentation with
neural networks with small sampling sizes, this paper proposes a segmentation network,
ResFAUnet, based on transfer learning and multi-scale fusion. The contributions of this
paper are as follows:

(1) In the encoding part of the network, the ResNeXt101 network with group convolution
is used for feature extraction, and pre-trained weights are introduced in the transfer
learning, which improves the feature-learning performance of the network with
limited samples.

(2) In the decoding part of the network, the original single-chain up-sampling feature-
fusion mode is replaced by the multi-chain, while in the decoding part, the features
from different up-sampling scales are stacked to realize direct information fusion
across scales.

The subsequent sections of this paper are organized as follows. Section 2 introduces the
network structure of ResFAUnet. Section 3 introduces the datasets, parameter setting, and
evaluation indexes used in the experiment, describes the ablation experiment, compares the
performance of ResFAUnet with those of other networks, and analyzes the experimental
results. Section 4 discusses the influence of some of the training parameters (data-set
capacity, input-image size) on the performance of the ResFAUnet network during the
training process. Finally, Section 5 summarizes the conclusions of this study.

2. Materials and Methods

This section describes the construction of ResFAUnet network. Section 2.1 describes
the overall architecture of ResFAUnet. Section 2.2 introduces the encoding structure of
grouping convolution and transfer learning. Section 2.3 introduces the multi-scale feature-
fusion decoding structure.

2.1. ResFAUnet Network Model

In practical applications, sample datasets typically have limited sizes. To achieve
greater accuracy in building extraction, high-quality feature extraction is necessary. There-
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fore, a semantic segmentation network, ResFAUnet, based on transfer learning and multi-
scale fusion, is proposed for limited datasets. The structure diagram is shown in Figure 1.
The code and models are available at https://github.com/cjluozi/ResFAUnet-V1.0.
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Figure 1. ResFAUnet structure diagram.

The ResFAUnet is built on the basis of AttentionUnet network, which is a variant of
Unet network, one of the most commonly used networks in the field of semantic segmenta-
tion. It has a completely symmetrical encoding–decoding structure, in which the encoder
is responsible for feature extraction, the decoder is used for feature recovery, and the skip
connection, which is used to fuse the image features of the encoding part and the decoding
part, is introduced between the encoder and the decoder. Unet is widely used in semantic
segmentation because of its simple and stable structure. The structure diagram of Unet is
shown in Figure 2.
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The AttentionUnet network inherits the “U”-shaped encoding–decoding structure
of the classical semantic segmentation network of Unet, and adds attention gates to skip

https://github.com/cjluozi/ResFAUnet-V1.0
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connection between the encoder and the decoder. In the training process, the self-attention
mechanism in attention gate can obtain the weight of attention through forward prop-
agation and backward feedback. Multiplying the weight of attention by corresponding
feature images can effectively suppress irrelevant features and focus on useful features.
The structure diagram of self-attention mechanism is shown in Figure 3.
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Although the addition of attention gates results in the network focusing on the region
of interest for learning, and improves the segmentation accuracy compared with Unet
network, it does not improve the feature-extraction ability of the network. Therefore,
AttentionUnet is improved as follows:

(1) In the encoding stage of AttentionUnet, the backbone of the feature-extraction network
is replaced by ResNeXt101 network, which is an improved version of the ResNet101
network. In ResNeXt101 network, group convolution is introduced in the convolution
part to improve the feature-extraction ability of the network when the overall frame-
work and computation amount are basically consistent with ResNet101 network. The
pre-trained weight of ResNeXt101 on the ImageNet dataset is used for the transfer
learning, so that the network converges with reduced training epoch.

(2) In the decoding stage of AttentionUnet, feature maps of different sizes are extracted
from the structure of the feature pyramid, and all the feature images of different
sizes are stacked at the output to realize the fusion of the features from low to high
dimensions to obtain the final predicted image.

2.2. Group Convolution + Transfer Learning

Transfer learning uses the generalization capability of convolutional neural networks
to transfer the network structure and weights learned from solving task A to a new task
B, resulting in improved performance of task B. Therefore, cases with limited samples,
transfer learning can be particularly useful, as it allows the use of general features learned
from pre-trained networks, accelerating the training process and providing better results.
In this paper, the idea of transfer learning is employed, and ResNeXt101 network is
selected to replace the feature-extraction part of AttentionUnet network. With ResNeXt101
and ResNet101 networks with the same widths and depths, group convolution is used to
replace the middle layer of Resbolck in ResNet. This enhances the network performance
without increasing computational load. The Resblock is the residual block of ResNet
network and also the basic module of ResNet network. The ResNet network is a network
composed of multiple Resblocks. Similarly, a ResNeXt block is a residual block of the
ResNeXt network. Figure 4 shows the ResNeXt block corresponding to ResNeXt. The
pre-trained weight of ResNeXt on the ImageNet dataset is used for transfer learning, The
output of each ResNeXt_block is connected with the corresponding features of the original
AttentionUnet decoding part, so as to realize the feature fusion of the decoding and the
encoding parts.
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2.3. Multi-Scale Feature Fusion

The Unet network was one of the first algorithms to use full convolutional networks for
semantic segmentation. It has a completely symmetrical encoding–decoding structure and
introduces skip connections to fuse the image features of the encoding and the decoding
parts. The AttentionUnet, a variant of Unet, adds a self-attention mechanism to the skip-
connection part of the network, which can improve the segmentation performance by
suppressing irrelevant regions. However, both Unet and AttentionUnet only use the last
layer of decoding part for image-pixel-category classification. The feature information
of the last layer is derived from the up-sampling of the decoder, but the single-chain up-
sampling of decoding part can only realize the indirect fusion of information of different
scales. It is difficult to realize the complete fusion of information from different scales.

In object-detection field, FPN (feature-pyramid networks) are the most commonly
used multi-scale fusion frameworks, and they are used to solve the identification problem
of objects with different scales. The structure diagram of the feature-pyramid network is
shown in Figure 5. The FPN is a top-down architecture with horizontal connections, which
is used to construct high-level semantic feature maps of different scales. By predicting
feature maps of different scales and fusing the prediction results of different scales, objects
of different scales can be recognized.
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In this paper, to improve the feature-extraction ability of AttentionUnet decoding
part, a multi-scale fusion framework similar to the golden tower structure is proposed.
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As shown in Figure 6, this structure preserves the skip connections in both the encoding
and decoding stages of AttentionUnet, and replaces the single-chain up-sampling of the
decoding stage with the multi-chain. In the decoding stage, each scale is extracted with the
same number of layers as the number of categories, and up-sampled to unify to the output
size. Next, the sampled features from different scales are stacked to realize direct fusion of
information from different scales in the decoding stage.
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3. Experiments and Analysis

In this section, the selection of the public datasets, the setting of the network pa-
rameters, and the evaluation index are introduced first. Next, we report the numerous
experiments that were conducted to verify the performance of ResFAUnet. Finally, the
experimental results are analyzed and discussed.

3.1. Selection of Public Datasets

In this paper, three public datasets were selected to evaluate the performance of the
ResFAUnet network. In order to test the performance of ResFAUnet in cases of insufficient
data, a total of 500 images were selected as experimental samples from the training set and
test set from the three datasets, and the segmentation results were evaluated on the test set
after training.

Inria Aerial Image Labeling Dataset: This dataset [37] includes 180 aerial ortho-
graphic corrected color images with public labels, covering an area of 810 square kilometers,
with a spatial resolution of 0.3 m and an image size of 5000 × 5000 pixels. It covers five
different urban settlements (Austin, Chicago, Kitsap County, Western Tyrol, and Vienna),
ranging from densely populated areas to alpine towns. Each subset of the dataset contains
a different image of each city, which was used to evaluate the network’s generalization
ability. Figure 7 shows some examples.

Building instances of typical cities in China: This dataset [38] is composed of
7260 images from four Chinese cities (Beijing, Shanghai, Shenzhen, and Wuhan) and
63,886 building examples. The size of each image is 500 × 500 pixels and the spatial resolu-
tion is 0.29 m. The dataset was used to test the segmentation performance of the network
for localized buildings. Figure 8 shows some examples.

WHU Building Dataset: This dataset [39] is composed of aerial dataset, a global
urban-satellite dataset, and an East Asian urban-satellite dataset. The Global Cities Satellite
dataset collects remote-sensing images of cities around the world from satellite resources
such as QuickBird, Worldview series, IKONOS, and ZY-3. It contains 204 512 × 512-pixel
images with spatial resolutions ranging from 0.3 m to 2.5 m. The use of this dataset is
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challenging due to the variations between different satellites, sensors, and atmospheric
conditions. The dataset was used to test the robustness of the network. Figure 9 shows
some examples.
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3.2. Parameter Settings
3.2.1. Image Setting

Due to the inconsistency in the image sizes across the different datasets, it was not
feasible to use them directly for training. To address this issue, the original images were
all preprocessed to obtain 512 × 512-pixel images across the three datasets. For the Inria
dataset, the images were expanded from 5000 × 5000 pixels to 5120 × 5120 pixels using
bilinear interpolation and then trimmed to 512 × 512 pixels. Similarly, the image sizes in
the China dataset were expanded to 512 × 512 pixels by using bilinear interpolation. The
WHU datasets were simply retained in their original size without any modification. In
order to simulate a limited dataset with a small sample size, for the Inria dataset and the
China dataset, 500 images (450 in training set and 50 in test set) were selected. Since the
number of images in the WHU dataset was only 204, we also used the 9:1 ratio to divide
the training set and the test set.

3.2.2. Training Setting

The Pytorch framework was used to train the ResFAUnet model. During the training,
the same parameters were used for all three datasets; the learning rate was set to 0.005, and
the batch size was set to 2. This is the maximum size that the graphics card can support at
pixel sizes of 512 × 512. The SGD (stochastic gradient descent) optimizer with a momentum
item of 0.9 was used to train the network. The SGD optimizer is one of the most commonly
used optimization algorithms in deep learning. In each iteration, it randomly selects a small
batch of samples to calculate the gradient of the loss function and updates the parameters
with the gradient. This randomness makes the algorithm more robust, prevents it from
falling into local minima, and improves its training speed. The training graphics card was
NVIDIA GeForce GTX 1080Ti (It is made by Nvidia Corporation and sourced from Beijing,
China), and the training was performed for 100 epochs. The CE loss (cross-entropy loss)
was used to calculate the loss. The CE loss is a loss function based on cross entropy, which
can be used to determine how close the actual output is to the desired output. The CE loss
uses cross entropy to measure the difference between the output of the network and the
label, and uses this difference to update the network parameters through back propagation.
The formula for CE loss is as follows:
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CE(p, q) = −
C

∑
i=1

pi log(qi) (1)

where C represents the number of categories, pi represents the true value, and qi represents
the predicted value.

3.3. Evaluation Indexes

To evaluate the network performances, the Pre (precision), MIoU (mean intersection
over union), Rec (recall), and F1 (F1 score) were employed. The Pre index represents the
probability that a certain category of prediction is correct in the forecast results. The MIoU
index refers to the ratio of the intersection and the union of each type of predicted result and
real value, the result of the summation, and then the average. The Rec index refers to the
probability that a category will be predicted correctly in the true value. The F1 index is the
harmonic average of Pre and Rec, and it is used to evaluate the comprehensive performance
of the network. The four indicators are defined as follows:

Precision =
TP

TP + FP
(2)

MIoU =
1
k

k

∑
i=1

TP
TP + FP + FN

(3)

Recall =
TP

TP + FN
(4)

F1 =
2 ∗ Rec ∗ Pre

Rec + Pre
(5)

where TP (true positive) refers to the part of the input image that is actually positive and
predicted to be positive. The FP (false positive) represents the part of the input image that
is actually negative and predicted to be positive. The TN (true negative) represents the
part that is actually negative sample and predicted to be negative. The FN (false negative)
means the part that is actually a positive sample and is predicted to be a negative sample.

3.4. Comparisons and Analysis

In this section, ResFAUnet is compared with Unet, SuUnet, FCN, SegNet, and other
mainstream deep-learning networks. The training parameters were kept the same for the
different networks to conduct the training using the Inria dataset, China dataset, and WHU
dataset. The performance of ResFAUnet is evaluated through qualitative and quantitative
analyses of the results.

3.4.1. Inria Dataset

Table 1 presents the quantitative evaluation indexes of the different models evaluated
on the Inria dataset. As shown in the table, the ResFAUnet network proposed in this paper
outperformed the Unet, FCN, SuUnet, and SegNet networks in all four indexes. Due to the
high resolution of the Irina dataset, all of the four networks except Unet achieved precision
and MIoU values above 90% and 85%, respectively. Compared to the Unet, the precision
index of the ResFAUnet network increased by 3.23%, while that of the SuUnet network
with the multi-scale fusion structure improved by 0.97%, and those of the FCN network
and the SegNet network with the transfer learning achieved improvements of 1.19% and
0.89%, respectively. Among all the comparison networks, ResFAUnet had the highest
F1 score and the lowest standard deviation, which means that the model was the most
stable. Additionally, by taking the MIoU index into account, a better balance was achieved
between recall and precision. Figure 10 shows the comparison of the precision and MIoU
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indexes of the Inria dataset among the five networks. From the graph, it can be seen that
ResFAUnet achieved the highest precision and MIoU indicators by using fewer epochs.

Table 1. Test results of different network models in Inria datasets.

Model Precision MIoU Recall F1 Score

Unet 88.81 ± 0.42 84.13 ± 0.31 93.77 ± 0.25 91.22 ± 0.28
SuUnet 91.07 ± 0.29 86.65 ± 0.25 93.69 ± 0.25 92.36 ± 0.27

FCN 90.85 ± 0.28 86.11 ± 0.27 93.92 ± 0.23 92.36 ± 0.24
SegNet 91.15 ± 0.27 86.22 ± 0.27 93.70 ± 0.25 92.41 ± 0.24

ResFAUnet 92.04 ± 0.25 87.26 ± 0.26 94.02 ± 0.22 93.02 ± 0.23
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Figure 11 shows the test image results under different scenarios. The first imagine is
that of a small target building. For the building in the green box in the figure, the Unet,
SuUnet, FCN, and SegNet networks did not detect the smallest building, and only the
ResFAUnet network completely segmented all the buildings. In the green box in the second
image, only ResFAUnet successfully detected the outline of the occluded building. In the
third image, the other four networks only segmented part of the outline of the building,
while only ResFAUnet segmented the complete outline of the building. In the fourth
scenario, the differentiation between the building and the background was not high. In the
green box in the image, only ResFAUnet completely divided all the buildings. Therefore, the
ResFAUnet network proposed in this paper achieved good results in small-target-building
segmentation and building-contour integrity.

3.4.2. China Dataset

Table 2 shows the quantitative evaluation indexes of various models tested on the
China dataset. It can be seen that the test scores of the five models using the China dataset
were all lower than those using the Inria. This result was attributed to the fact that the
China dataset contains image data from Beijing, Shanghai, Shenzhen, and Wuhan, where
the building scenes are relatively complex. In particular, the presence of shadows between
high-rise city buildings creates significant challenges for segmentation. Additionally, the
similarity between city roads and buildings makes it difficult to distinguish between them.
Despite these challenges, ResFAUnet still achieved good segmentation results, which were
significantly higher than those of Unet, FCN, SuUnet, and SegNet in all four indexes.
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Compared to Unet and SuUnet, the precision improved by 5.36% and 3.07%, respectively.
Compared to FCN and SegNet, which also adopt transfer learning, the improvements
were 1.75% and 1.28%, respectively. Furthermore, the precision and MIoU indexes of the
five models using the China dataset were compared, as shown in Figure 12. From the
graph, it can be seen that the ResFAUnet curve was the most stable, requiring only a few
epochs to achieve convergence, and its performance was superior to those of the four other
comparison networks.
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Table 2. Test results of different network models using China dataset.

Model Precision MIoU Recall F1 Score

Unet 85.86 ± 0.36 78.08 ± 0.35 88.63 ± 0.32 87.22 ± 0.32
SuUnet 87.25 ± 0.34 78.36 ± 0.33 88.54 ± 0.30 87.14 ± 0.30

FCN 89.47 ± 0.30 81.36 ± 0.29 89.25 ± 0.27 89.36 ± 0.25
SegNet 89.94 ± 0.28 81.34 ± 0.28 88.81 ± 0.25 89.37 ± 0.25

ResFAUnet 91.22 ± 0.27 84.88 ± 0.25 91.97 ± 0.24 91.59 ± 0.23

Figure 13 shows the segmentation results in various scenarios. In the first scenario,
both the building and the road are present. The Unet, SuUnet, and FCN wrongly identified
roads as buildings. Although SuUnet performed better in distinguishing between roads
and buildings, it failed to identify any buildings in the green-box area; only ResFAUnet
accurately segmented all the buildings. In the second and fourth scenarios, large buildings
were tested. The Unet, SuUnet, FCN, and SuUnet networks partially segmented the
building outlines, and large buildings with cavities inside, while the proposed ResFAUnet
network completely segmented the outlines of the buildings. As with the first scenario, the
third scenario was used to evaluate the network’s ability to distinguish between roads and
buildings. Only ResFAUnet was able to segment the entire outlines of the buildings, while
Unet and SuUnet did not even recognize the buildings. The fifth scenario featured a ground
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area that appeared similar to the roof of a building. Only ResFAUnet successfully identified
it, while all the other models falsely identified it as a building. It can be seen that the
ResFAUnet network proposed in this paper can distinguish buildings from backgrounds in
complex scenarios in Chinese datasets and completely segment the outlines of buildings.
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3.4.3. WHU Dataset

Table 3 shows the evaluation indexes tested with different models on the WHU dataset.
It can be seen from Table 3 that the precisions of all the models were below 90%, and that of
the MIoU was less than 85%. This can be attributed to the fact that the number of images in
the WHU dataset is small, the image resolution is low, and the environments are different.
However, the proposed ResFAUnet still demonstrated acceptable results and outperformed
the other networks on all the evaluation indexes. Compared with Unet, SuUnet, FCN, and
SegNet, its precision was improved by 5.71%, 2.86%, 3.4%, and 2.54%, respectively. Of
the comparison networks, ResFAUnet had the highest F1 score and the lowest standard
deviation, which means that this model was the most stable. Meanwhile, the comparison
of the precision and MIoU indexes of the five networks on the WHU datasets is shown in
Figure 14. It can be seen that the precision index and the MIoU index of the ResFAUnet
were significantly better, especially in the initial epochs.

Table 3. Test results of different network models using WHU dataset.

Model Precision MIoU Recall F1 Score

Unet 83.10 ± 0.34 73.71 ± 0.38 85.56 ± 0.32 84.31 ± 0.34
SuUnet 85.95 ± 0.32 76.02 ± 0.34 85.85 ± 0.30 85.90 ± 0.30

FCN 85.41 ± 0.28 75.54 ± 0.30 85.71 ± 0.27 85.57 ± 0.28
SegNet 86.27 ± 0.27 74.44 ± 0.29 83.71 ± 0.28 84.97 ± 0.27

ResFAUnet 88.81 ± 0.25 79.11 ± 0.26 87.29 ± 0.25 88.04 ± 0.24
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the green boxes, only ResFAUnet accurately distinguished the buildings from the ground. 
All the other four networks misidentified the ground as buildings. In the second scenario, 
the other four networks did not fully recognize the small buildings in the green boxes; 
Unet did not recognize any buildings at all. Only ResFAUnet completely recognized the 
outlines of all the buildings. The third scenario was complex, with buildings and roads 
both present. In this scenario, the other four networks missed some of the buildings. In 
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was complex was compared between the models, and only ResFAUnet completely and 
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Figure 15 displays the test-image results in various scenarios. The first and the second
scenarios featured densely populated buildings. The SegNet performed the worst in the
first scenario and failed to distinguish the separate buildings accurately. As depicted in
the green boxes, only ResFAUnet accurately distinguished the buildings from the ground.
All the other four networks misidentified the ground as buildings. In the second scenario,
the other four networks did not fully recognize the small buildings in the green boxes;
Unet did not recognize any buildings at all. Only ResFAUnet completely recognized the
outlines of all the buildings. The third scenario was complex, with buildings and roads
both present. In this scenario, the other four networks missed some of the buildings. In
the fourth and the fifth scenarios, the contour integrity when the shape of building outline
was complex was compared between the models, and only ResFAUnet completely and
correctly recognized the contours of the buildings.
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3.5. Ablation Experiment

This section reports the ablation experiments that were conducted to verify three
aspects of the ResFAUnet network. The first aspect was the feature-extraction structure of
the ResNeXt101 network in the encoding part (assessed by comparing the performance
of AttentionUnet, ResNeXt101 + AttentionUnet, and ResFAUnet networks on different
datasets). The second aspect was the multi-scale fusion structure of the decoding part
(assessed by comparing the performance of AttentionUnet, FPN + AttentionUnet and Res-
FAUnet networks on different datasets). The last aspect was the transfer learning (assessed
by comparing the performance of AttentionUnet, ResFAUnet_nopred, and ResFAUnet
networks on different datasets). The experiments were conducted using the same dataset
and parameter settings.

3.5.1. Verifying the Effectiveness of ResNeXt101 Network

In this section, the effectiveness of the ResNeXt101 network as the encoding part for the
feature extraction was verified by comparing AttentionUnet, ResNeXt101 + AttentionUnet,
and ResFAUnet. Table 4 presents the test results of the three networks on Inria dataset,
China dataset, and WHU dataset. The results indicate that after replacing the encoding
part of AttentionUnet with ResNeXt101, the performance was significantly improved. The
precision indexes of the three datasets increased by 1.93%, 3.88%, and 3.25%, respectively,
and the other three indexes also improved. This means that the ResNeXt101 network had a
stronger feature-extraction ability.

Replacing AttentionUnet’s feature-extraction part with the ResNeXt101 network can
improve the feature-extraction ability of the network. For a clearer visualization of this
observation, four images are presented from the three datasets, in Figure 16. The first image
is from the WHU dataset, and the results reveal that the segmentation by AttentionUnet
left holes in the interior of the building, while the outline of the building was completely
segmented by ResNeXt101 + AttentionUnet. The second and third images are from the
Irina dataset. The AttentionUnet missed buildings that appeared similar to the background,
while ResNeXt101 + AttentionUnet accurately recognized them. The fourth image is from
the China dataset, in which AttentionUnet did not accurately distinguish the void inside
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the building, but ResNeXt101 + AttentionUnet made the correct prediction. In the three
datasets, ResFAUnet achieved the best segmentation effect, owing to the introduction
of the feature fusion of the decoding part based on ResNeXt101 + AttentionUnet. This
demonstrates not only the inheritance of the outstanding feature-extraction ability of
ResNeXt101, but also that a more precise segmentation of the building outline was achieved.

Table 4. Test results of verifying the effectiveness of ResNeXt101 network.

Datasets Models Precision MIoU Recall F1 Score

Inria dataset
AttentionUnet 89.64 ± 0.30 85.31 ± 0.32 93.37 ± 0.29 91.46 ± 0.27

ResNeXt101 + AttentionUnet 91.57 ± 0.27 86.74 ± 0.27 93.89 ± 0.25 92.72 ± 0.24
ResFAUnet (ours) 92.04 ± 0.25 87.26 ± 0.26 94.02 ± 0.22 93.02 ± 0.23

China dataset
AttentionUnet 86.75 ± 0.34 78.62 ± 0.32 88.36 ± 0.31 87.55 ± 0.30

ResNeXt101 + AttentionUnet 90.63 ± 0.29 83.92 ± 0.27 91.36 ± 0.25 90.99 ± 0.24
ResFAUnet (ours) 91.22 ± 0.27 84.88 ± 0.25 91.97 ± 0.24 91.59 ± 0.23

WHU dataset
AttentionUnet 84.39 ± 0.32 73.67 ± 0.34 84.50 ± 0.32 84.36 ± 0.30

ResNeXt101 + AttentionUnet 87.64 ± 0.26 78.81 ± 0.28 86.93 ± 0.25 87.28 ± 0.25
ResFAUnet (ours) 88.81 ± 0.25 79.11 ± 0.26 87.29 ± 0.25 88.04 ± 0.24
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3.5.2. Verifying the Partial Feature Fusion in Decoding

In this section, the effectiveness of the partial feature fusion in the decoding part is ver-
ified by comparing AttentionUnet, feature fusion + AttentionUnet (FPN + AttentionUnet)
and ResFAUnet. Table 5 shows the test results for the three networks on the Inria dataset,
China dataset, and WHU dataset. It can be seen that the network with feature fusion in
decoding (FPN + AttentionUnet) had small improvements in all indexes compared with
AttentionUnet network, and that the precision indexes of the three datasets improved by
0.71%, 1.91%, and 0.89%, respectively. This means that the multi-scale feature fusion can
effectively improve the feature-extraction ability of the network.
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Table 5. Test results of verifying the Partial Feature Fusion.

Datasets Models Precision MIoU Recall F1 Score

Inria dataset
AttentionUnet 89.64 ± 0.30 85.31 ± 0.32 93.37 ± 0.29 91.46 ± 0.27

FPN + AttentionUnet 90.35 ± 0.32 85.52 ± 0.30 93.72 ± 0.28 92.01 ± 0.27
ResFAUnet (ours) 92.04 ± 0.26 87.26 ± 0.26 94.02 ± 0.22 93.02 ± 0.23

China dataset
AttentionUnet 86.75 ± 0.34 78.62 ± 0.32 88.36 ± 0.31 87.55 ± 0.30

FPN + AttentionUnet 88.66 ± 0.32 79.64 ± 0.30 87.83 ± 0.29 88.24 ± 0.28
ResFAUnet (ours) 91.22 ± 0.27 84.88 ± 0.25 91.97 ± 0.24 91.59 ± 0.23

WHU dataset
AttentionUnet 84.39 ± 0.32 73.67 ± 0.34 84.50 ± 0.32 84.36 ± 0.30

FPN + AttentionUnet 85.28 ± 0.30 73.94 ± 0.32 83.45 ± 030 84.44 ± 0.29
ResFAUnet (ours) 88.81 ± 0.25 79.11 ± 0.26 87.29 ± 0.25 88.04 ± 0.24

For a better visualization, one image was selected from each of the three datasets,
as shown in Figure 17. In the WHU dataset and China dataset, AttentionUnet missed
some of the buildings, while the FPN + AttentionUnet achieved better segmentation re-
sults. In the Irina dataset, AttentionUnet incorrectly identified land as buildings, while
FPN + AttentionUnet effectively distinguished the ground from buildings. It can be seen
that partial feature fusion in decoding can reduce building omissions and false identifi-
cation to some extent, as well as improving the building-segmentation performance of
the network.
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3.5.3. Verifying Transfer Learning

In this section, the effectiveness of transfer learning is verified by comparing At-
tentionUnet, ResFAUnet_nopred, and ResFAUnet. Specifically, AttentionUnet and Res-
FAUnet_nopred do not use transfer learning. Table 6 shows the test results for the three
networks on the three datasets. The results of ResFAUnet_nopred were all lower than those
of AttentionUnet, while the all indexes of ResFAUnet were higher than those of Attentio-
nUnet. Compared to ResFAUnet_nopred, the precision index of ResFAUnet increased by
4.5%, 5.29%, and 8.16% in three datasets, respectively. These results demonstrate that the
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introduction of transfer learning can effectively improve network performance in small
sample-learning tasks.

Table 6. Test results of verifying transfer learning.

Datasets Models Precision MIoU Recall F1 Score

Inria dataset
AttentionUnet 89.64 ± 0.30 85.31 ± 0.32 93.37 ± 0.29 91.46 ± 0.27

ResFAUnet (not pretrained) 87.54 ± 0.32 81.51 ± 0.34 91.49 ± 0.31 89.48 ± 0.29
ResFAUnet (ours) 92.04 ± 0.25 87.26 ± 0.26 94.02 ± 0.22 93.02 ± 0.23

China dataset
AttentionUnet 86.75 ± 0.34 78.62 ± 0.32 88.36 ± 0.31 87.55 ± 0.30

ResFAUnet (not pretrained) 85.93 ± 0.35 74.88 ± 0.34 84.13 ± 0.32 85.02 ± 0.30
ResFAUnet (ours) 91.22 ± 0.27 84.88 ± 0.25 91.97 ± 0.24 91.59 ± 0.23

WHU dataset
AttentionUnet 84.39 ± 0.32 73.67 ± 0.34 84.50 ± 0.32 84.36 ± 0.30

ResFAUnet (not pretrained) 80.65 ± 0.34 68.09 ± 0.33 79.7 ± 0.32 80.17 ± 0.32
ResFAUnet (ours) 88.81 ± 0.25 79.11 ± 0.26 87.29 ± 0.25 88.04 ± 0.24

For a clearer visualization, four images were selected from Inria dataset, China dataset,
and WHU dataset, and shown in Figure 18. The performance of ResFAUnet_nopred in
these four scenarios was the worst, even lower than AttentionUnet’s performance, with a
large number of incomplete building-contour segmentations. This was mainly because the
dataset size was small, making it difficult for ResFAUnet_nopred to learn a good weight.
The ResFAUnet achieved the best performance with the same dataset and parameter
settings. Thus, transfer learning can help the network gain better training results with
small sample sizes.
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4. Discussion

In this section, multiple aspects of the ResFAUnet network are discussed to study the
influences of other parameters on the network’s performance during the training process.
The specific arrangement is as follows. In Section 4.1, the influence of the dataset capacity
on ResFAUnet network performance when changing the capacity of the dataset is studied.
In Section 4.2, the influence of the image scale on the performance of the ResFAUnet
network when changing the size of the input image is studied.

4.1. Dataset Capacity

The dataset is the only source of data in a neural network. The size of the dataset
directly affects the feature-learning ability of the neural network. This subsection reports
the use of datasets with different capacities to train the ResFAUnet network, and the
experimental results obtained using datasets with different capacities are analyzed to study
the relationship between the ResFAUnet network’s performance and the dataset capacity.
In the experiment, the China dataset was selected, and its capacity was set as 200, 500,
700, 1000, and 1500 images; the learning rate was set as 0.01, the image size was set as
512 × 512, and all the other training parameters were kept unchanged to study the effect of
the capacity on the network’s performance. Figure 19 shows the variation curves between
the precision and the dataset capacity, and between the MIoU and the dataset capacity. It
can be seen that with the increase in the dataset capacity, the precision index and the MIoU
index of the ResFAUnet network both increased as logarithmic functions. When the dataset
size was between 200 and 500 images, the precision index and MIoU increased the fastest.
When the dataset increased gradually, the two indexes increased slowly, but the overall
trend was still upward. Furthermore, with the increase in the dataset capacity, the errors
in the precision and MIoU indexes gradually decreased, and the network’s performance
becomes more stable.
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4.2. Image Size

This subsection reports how the relationship between the image size and the Res-
FAUnet network performance was investigated by adjusting the size of the input images.
In the experiment, the China dataset and the Inria dataset were selected, and three different
image sizes were adopted for the experiment. The image sizes were set as 224 × 224,
384 × 384, and 512 × 512, the learning rate was set as 0.01, and the other training parame-
ters were consistent. The experimental results are shown in Table 7. From the results, it



Remote Sens. 2023, 15, 2436 20 of 22

can be observed that the larger the input size of the image, the better the performance of
the network. In the China dataset, the result for the image scale of 512 was significantly
improved compared with that of 224. The Precision, MIoU, Recall, and F1 score were im-
proved by 3.5%, 7.06%, 5.02%, and 4.45%, respectively. In the Inria dataset, compared with
the training results with the image scale of 224, the four evaluation indexes with the scale
of 512 increased by 4.48%, 6.05%, 3.74%, and 3.92% respectively. Furthermore, with the
increase in the image size, the standard deviations of the four evaluation indexes (Precision,
MIoU, Recall and F1 score) became smaller, and the network became more stable.

Table 7. Test results of different input-image sizes in the China dataset and Inria dataset.

Datasets Input_Size Precision MIoU Recall F1 Score

China dataset
(224, 224, 3) 87.43 ± 0.53 77.15 ± 0.48 86.09 ± 0.43 86.57 ± 0.46
(384, 384, 3) 89.95 ± 0.39 83.82 ± 0.33 90.46 ± 0.32 90.41 ± 0.30
(512, 512, 3) 90.93 ± 0.32 84.21 ± 0.29 91.11 ± 0.27 91.02 ± 0.25

Inria dataset
(224, 224, 3) 87.54 ± 0.48 81.16 ± 0.48 90.93 ± 0.43 89.20 ± 0.45
(384, 384, 3) 91.56 ± 0.35 86.88 ± 0.33 93.92 ± 0.30 92.81 ± 0.35
(512, 512, 3) 92.02 ± 0.30 87.21 ± 0.28 94.67 ± 0.30 93.12 ± 0.30

5. Conclusions

In this paper, a new end-to-end deep-learning network, ResFAUnet, is proposed to
solve the problem of the low accuracy of building-information extraction with of small
sample sizes. Based on AttentionUnet, the proposed ResFAUnet preserves the attentional
mechanism using the skip connection to integrate the shallow features of the encoding part
and the deep features of the decoding part. In the encoding part, the grouped convolutional
network, ResNeXt101, is used for feature extraction, and the pre-trained weights on the
ImageNet dataset are used for transfer learning. This improves the training accuracy of
the network with small sample sizes. In the decoding part, the multi-chain up-sampling
feature-fusion method is adopted to obtain more abundant feature information and improve
the accuracy of the extraction of the building information. In addition, comparative
experiments on the Inria dataset, China dataset, and WHU dataset were carried out,
and the results showed that the building-information-extraction accuracy of ResFAUnet
outperformed the others.
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