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Abstract: This study investigates the seasonal and regional variability in the chlorophyll-specific
absorption coefficient of phytoplankton at 443 nm (a∗ph(443); unit: m2 mg−1) in surface oceans.
It is focused on the time series data derived from the satellite products of chlorophyll-a (Chl-a)
concentration and the phytoplankton absorption coefficient. Global estimates of a∗ph(443) reveal a
decreasing gradient from the open ocean toward the coastal environment, with considerable spatial
variance. Seasonal variations are prominent over most oceans, resulting in substantial deviations
from the climatological means. A sinusoidal model was fitted to the monthly time series data to
characterize the annual and semiannual features. The amplitudes and the phases of the monthly
data were latitudinally dependent. The occurrence times of the maximum a∗ph(443) values were six
months out of phase between the northern and southern hemispheres. Satellite observations present
a global mean relationship between a∗ph(443) and Chl-a comparable with those obtained via in situ
measurements. However, the seasonal/regional a∗ph(443) and Chl-a relationships can significantly
depart from the global mean relationship. We propose a hypothesis that a∗ph(443) can be predicted as
a function of geolocation and time. Preliminary validations with in situ matchup data confirm that
the proposed model is a promising alternative to the traditional approaches requiring Chl-a as the
input. The present exploration helps understand the phytoplankton biogeography and facilitates
future efforts to improve bio-optical modeling, including estimating the primary production.

Keywords: light absorption coefficient; phytoplankton; seasonality; chlorophyll-a; ocean color; VIIRS

1. Introduction

Natural phytoplankton in surface oceans absorb sunlight for photosynthesis and are
essential in determining carbon fixation and export [1,2]. Light absorption occurs in the
reaction centers containing various photosynthetic pigments. The spectral absorption co-
efficient of phytoplankton (aph(λ); unit: m−1) varies with the pigment concentration and
experiences inter- and intra-species variability due to the pigment packaging effect. Phyto-
plankton pigment composition and size structure add another source of variability to the
spectral absorption coefficient [3]. Understanding phytoplankton absorption, including spec-
tral, temporal, and spatial variability and environmental influences, is essential to solving
problems of phytoplankton ecology and primary production in the world ocean [4,5].

The chlorophyll-specific absorption coefficient of phytoplankton (unit: m2 mg−1) links
the optics and the biology of phytoplankton. Researchers usually describe a∗ph(λ) as a

simplistic nonlinear function of chlorophyll-a (Chl-a) concentration (unit: mg m−3) [6–9],
as the latter is frequently amendable in field measurements and satellite observations. Built
on the idealized a∗ph(λ)-Chl-a relationship, one can determine Chl-a from a∗ph(λ) inverted
from satellite ocean color spectra or vice versa [10–13]. In addition, the specific phyto-
plankton absorption coefficient is an important component of the bio-optical models for the
estimation of the primary production, especially when Chl-a is the principal input [14,15].
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Another important line of the application resides in constructing the light absorption coeffi-
cient from known pigment composition. The spectral absorption coefficients of primary
pigments, including chlorophyll-a, chlorophyll-b, chlorophyll-c, photosynthetically active
carotenoids, and photoprotective carotenoids, have to be predetermined [16,17]. Inversely,
with known a∗ph(λ), it is feasible to infer various pigment concentrations from aph(λ) via
spectral decomposition [3,18]. As a phytoplankton cellular property, the size-specific a∗ph(λ)

spectra are critical for the retrieval of phytoplankton size classes from ocean color observa-
tions [19–24]. As an example, Uitz et al. [24] calculated the a∗ph(λ) of microphytoplankton,
nanophytoplankton, and picophytoplankton using high-performance liquid chromatog-
raphy (HPLC) analysis. Brewin et al. [23] inferred class-dependent specific absorption of
phytoplankton from the NASA bio-Optical Marine Algorithm Dataset (NOMAD) using a
three-population model. These previous efforts achieved great success in their respective
domains of application.

The examination of field measurements has lent insights into the variability in the
chlorophyll-specific absorption coefficient of phytoplankton in the surface ocean. Consider-
able evidence has shown that this specific absorption varies regionally and seasonally in
response to changes in phytoplankton species, light, and nutrient conditions [9,17,25–31].
In coastal oceans, for example, seasonal variability in the chlorophyll-specific absorption
coefficient of phytoplankton was identified in the Arctic water [28], the Black Sea [26], and
the Scotian Shelf [25]. The relationship between absorption and Chl-a reportedly differed
significantly concerning seasons and/or regions [9,25–27]. In open oceans, the specific
absorption also displayed seasonal cycles significantly different from the means [17,30].
Nevertheless, understandably, the existing in situ observations are often sporadic, and the
results are restricted to local regions and do not represent all seasons. Synthesizing the field
measurements remains difficult, leading to limited information that can be used to model
this coefficient’s seasonal variation on a global scale.

The need for the accurate estimation of primary production and ocean color inversion
demands a thorough understanding of the seasonal and regional variability in a∗ph(λ)

and the underlying environmental, biological, and optical mechanisms controlling a∗ph(λ).
Satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board
the Suomi National Polar-orbiting Partnership (SNPP) have generated global aph(λ) and
Chl-a data products, which can be used to compute a∗ph(λ). Such satellite observations
offer us a unique opportunity to characterize the temporal and spatial variability in this
bio-optical property. Henceforth, in this study, we aim to obtain a global perspective of
the variability in the chlorophyll-specific absorption coefficient of phytoplankton at a blue
band of 443 nm, a∗ph(443), with a focus on its spatial distribution and seasonal variability.
A secondary objective is to assess our ability to predict a∗ph(443) based on the diagnostic
spatial and temporal features identified herein. Aware of uncertainties with satellite ocean
color observations, we note that it is not our primary task to answer the uncertainty
problems associated with a∗ph(λ) estimation. In the following, we briefly describe data and
methods. We then lay out the primary findings and discuss the association between the
specific absorption and Chl-a concentration. Furthermore, we discuss the perspectives and
problems with the newly developed method and parameterization for the prediction of
Chl-a concentration.

2. Materials and Methods
2.1. Domain of Study

The analyses were conducted based on the ocean color observations of VIIRS onboard
SNPP. We selected four-year-long datasets between January 2014 and December 2017 for
simplicity. The primary data were Level-3 mapped daily aph(λ) and Chl-a products. As
the spatial resolution of satellite images (9 km) was too coarse for most inland aquatic
environments, we put our emphasis on open and coastal oceans in the following context.
We defined coastal oceans as those within 200 km of coastlines or shallower than 1000 m in
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depth while referring to the remaining vast open regions as the open ocean. A geographical
illustration of open and coastal oceans is given in Figure 1.
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Figure 1. Geographical demarcation of the coastal water (≤200 km from coastlines or depths within
1000 m) and the open ocean/water. We retrieved the global bathymetry data using the ETOPO1 1
arc-minute global relief model (https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data;
accessed on 30 April 2023). The sampling locations for historical in situ Chl-a and aph(443) measure-
ments were superimposed (denoted by red dots).

2.2. Satellite Ocean Color Data

The VIIRS ocean color data were processed using the NOAA Multi-Sensor Level-1
to Level-2 (MSL12) ocean color data processing system [32,33]. MSL12 followed Gordon
and Wang [34] and Wang [35] in performing the atmospheric correction for satellite ocean
color retrievals [36]. To determine the aerosol contribution, it estimated the aerosol types
with an assumption of the null contribution at the near-infrared (NIR) bands [37] for the
majority of natural waters. Whenever the black pixel assumption at the NIR bands failed
in turbid coastal/inland environments [38], MSL12 switched to a combination of a NIR
band and a shortwave infrared (SWIR) band [35,39]. The resulting ocean color spectra,
normalized water-leaving radiance (nLw(λ)) and remote sensing reflectance (Rrs(λ)), have
6 visible bands (410, 443, 486, 551, 638, and 671 nm) and 2 NIR bands (745 and 862 nm).
Validations of nLw(λ) or Rrs(λ) have been conducted in previous works [40–47].

Chl-a concentration data were derived using the ocean color index (OCI) algorithm [48].
The algorithm divided the global waters into two components dependent on an empirical
threshold value. Specifically, when Rrs(443)/Rrs(551) ≤ 2, a 4th-order polynomial function
was developed and employed for the retrieval of Chl-a:

log10[Chl-a]oc3v = α0 + α1Rm + α2Rm
2 + α3Rm

3 + α4Rm
4, (1)

where Rm = max(log10R1, log10R2), with R1 = Rrs(443)/Rrs(551) and R2 = Rrs(486)/Rrs(551),
and the coefficients from α0 to α4 were specifically tuned for the VIIRS sensor (hence, the
OC3V algorithm). When Rrs(443)/Rrs(551) > 4, the color index (CI) scheme [49] was used,

log10[Chl-a]CI= 216.76 × CI− 0.4093, (2)

where CI = Rrs(551) − 0.526 × Rrs(443) − 0.474 × Rrs(671). For 2 < Rrs(443)/Rrs(551) ≤ 4,
Equations (1) and (2) were combined via a linear weighting function, Chl-a = w × [Chl-
a]oc3v + (1 − w) × [Chl-a]CI, with w = 0.5 × (Rrs(443)/Rrs(551) − 2), to ensure the smooth
transition of the retrieved Chl-a across these 2 thresholds.

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data
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The water inherent optical properties (IOPs) were derived using the approach of Shi
and Wang [50]. This method is a modification of the quasi-analytical algorithm (QAA) [51]
and includes Rrs(λ) at both the visible and NIR bands in the formulation to improve the
estimated IOPs. Briefly, it starts with a fundamental relationship between Rrs(λ) and IOPs,

Rrs(λ) =g1

[
bb(λ)

a(λ)+bb(λ)
]+g2

[
bb(λ)

a(λ)+bb(λ)

]2

, (3)

where a(λ) and bb(λ) refer to the total absorption coefficient and total backscattering
coefficient, respectively, while g1 and g2 are model coefficients equal to 0.0949 and 0.0794,
respectively [52]. Specific to this approach, Shi and Wang [50] identified the waters with
Rrs(745) ≥ 0.001565 sr−1 as “turbid” environments, where the pure water absorption
coefficients aw(λ) at the NIR bands are significantly higher than those of other constituents,
such as phytoplankton, detritus, and colored dissolved organic matter (CDOM). As such,
the ratio term in Equation (3) can be approximated as follows:

bb(λ)

a(λ)+bb(λ)
≈ bb(λ)

aw(λ)+bb(λ)
, (4)

where λ = 745 and 862 nm. Via the substitution of Equation (4) into Equation (3), one can
straightforwardly determine bb(745) and bb(862) from known Rrs(745) and Rrs(862), respec-
tively, where aw(745) and aw(862) are constants. Subsequently, the particulate backscattering
coefficients bbp(745) and bbp(862) can be derived reliably and further extended to all other
visible bands, assuming an exponential model for bbp(λ). The substitution of bbp(λ) into
Equation (3) will yield the estimation of a(λ). For non-turbid waters (defined herein
as Rrs(745) < 0.001565 sr−1), the original QAA algorithm [51] was implemented. The
procedures to separate aph(λ) from a(λ) were adopted from Lee et al. [51]. Uncertainty
evaluations of such derived bbp(λ) and aph(λ) are available elsewhere [50,53].

Level-3 ocean color products of Chl-a and aph(443) were created using MSL12 with
essentially the same processing procedure as the one for the Sea-viewing Wide-field-of-
view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS)
Level-3 ocean color products [54]. Pixels containing valid Level-2 Chl-a and aph(443) data
were mapped to fixed bins whose spatial elements were approximately 9 × 9 km2. It is
worth noting that Chl-a and aph(443) data were derived independently, even though their
retrieval algorithms were dependent on the spectral ratios of Rrs(λ). It is justified to use the
satellite products for the following exploratory analyses.

2.3. Analyses of a∗ph(443) Data

Daily a∗ph(443) data were computed from the corresponding Chl-a and aph(443) prod-
ucts generated from the VIIRS satellite sensor as a∗ph(443) =aph(443)/Chl− a, which has a

unit of m2 mg−1. The resulting a∗ph(443) data have global coverage and a nominal spatial
resolution of 9 km. We inspected the a∗ph(443) data quality, removed all negative values, and

identified extreme values exceeding 0.25 m2 mg−1. It is acknowledged that large a∗ph(443)

values greater than 0.25 m2 mg−1 were only occasionally found from the field measure-
ments [25,55] and hereafter have been excluded from further analysis. The remaining daily
a∗ph(443) data were then averaged (by the median) as monthly data on a pixel-by-pixel
basis, thus retaining the original 9 km resolution. Likewise, the annual climatology was
calculated as the median of all monthly products over the four years. For simplicity, the
time dependency of the chlorophyll-specific absorption coefficient of phytoplankton and
other quantities was suppressed in the notations throughout the text.
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We derived the monthly residual time series (∆a∗ph(443)) after subtracting the clima-
tology from the original a∗ph(443) monthly time series. We used a sinusoidal model to
characterize the time-dependent ∆a∗ph(443), which consists of two sine functions:

∆a∗ph(443) =a0 + a1· sin(
2π

T1
t + ϕ1)+a2· sin(

2π

T2
t + ϕ2), (5)

where a0 is the vertical shift, a1 and a2 are the amplitudes, ϕ1 and ϕ2 are the phase shifts,
T1 and T2 are the periods, and t is the observation time (unit: month). As it is common to
observe 12-month and sometimes 6-month cycles in phytoplankton phenology [56–59], we
assumed T1 and T2 to be exactly 12 and 6 months, respectively. The fitting parameters a0, a1,
a2, ϕ1, and ϕ2 were then determined using nonlinear regression based on the Levenberg–
Marquardt (LM) optimization method. The maximum number of iterations was set to
20. Note that Equation (5) can be regarded as a simplified form of the generalized linear
regression model. In comparison with other complex forms, the fitted model of Equation (5)
is easier to interpret for its fewer/constant model components.

To investigate the dependency of a∗ph(443) on Chl-a, we fitted the power law function
of Bricaud et al. [6] to the corresponding satellite data, with

a∗ph(443) = A·[Chl-a]−B, (6)

where A (unit: m2 mg−1) and B (unitless) are coefficients to be determined. Chl-a data were
restricted to 0.01–20 mg m−3 to facilitate comparison. Linear regressions were performed on
log10-transformed Chl-a and a∗ph(443) data. To put equal weights on the data, we divided
them into 100 equally spaced ranges according to log10[Chl-a] and used the corresponding
median values for regressions. Accordingly, R2 was derived in log10 space as well.

2.4. In Situ Data to Assist Evaluation

We retrieved in situ time series pigment measurements of surface water samples
from the Hawaii Ocean Time-series (HOT) Aloha station (22.75◦N, 158◦W) for model
evaluation. The pigment composition data were determined via HPLC. We reconstructed
the phytoplankton absorption coefficient spectra from the HPLC pigments and the in vivo
pigment absorption spectra following Bidigare et al. [16]. Then, we used the model of
Woźniak et al. [60] to correct the light absorption data for the package effect (also see
Letelier et al. [17] and Zoffoli et al. [61]). In addition, we accessed and included the
Bermuda Atlantic Time Series (BATS) bio-optical data for comparison. According to the
BATS program, the phytoplankton pigments were measured using the HPLC approach,
and the phytoplankton absorption coefficient was determined using the quantitative filter
technique (QFT) [62].

In addition to the above time series data, we also extracted phytoplankton Chl-a
concentration and light absorption coefficient measurements from a compiled dataset [63]
and the NASA SeaWiFS Bio-optical Archive and Storage System (SeaBASS) [64]. These data
were recovered from discrete stations covering a variety of optical water types (Figure 1).
The phytoplankton absorption measurement approaches were somewhat diverse but
mostly followed the NASA-recommended protocols [65]. The pigment concentration data
were generally determined via either HPLC or the fluorometric approach. In total, these two
databases yielded 2576 matchups of phytoplankton absorption and pigment concentration
data for the validation analysis.

The absolute percentage difference (APD) was derived as

APD = median
[∣∣∣∣Pi −Mi

Mi

∣∣∣∣]×100%, (7)
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where P and M represent two quantities to be compared, with M being the reference and
the subscript i referring to the sequence of data pairs. In analogy, the bias between P and M
was evaluated as

bias= median [Pi −Mi] × 100%. (8)

3. Results and Discussion
3.1. Spatial Distribution of Multi-Year Averages

The map of 4-year annual climatology describes the spatial feature of the chlorophyll-
specific absorption coefficient of phytoplankton at 443 nm in the global ocean (Figure 2a).
The median a∗ph(443) value for global open oceans is estimated to be 0.103 m2 mg−1

(standard deviation (STD) = 0.028 m2 mg−1). It is reduced by almost half and equal to
0.062 m2 mg−1 (STD = 0.026 m2 mg−1) within the coastal domain. The decreasing trend in
a∗ph(443) from oligotrophic to mesotrophic/eutrophic oceans is opposite to that of Chl-a
concentration, which, as is well known, remains the lowest in the central ocean basins and
yet is abundant in coastal oceans [66].
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The open circles in (b) refer to the locations where the monthly time series data were extracted for
further analysis in Figure 3.
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Figure 3. Examples of the monthly time series for ∆a∗ph(443) (denoted in open circles) and fitted mod-
els (denoted in black curves) for the regions of (a) South Pacific Gyre (24.3457◦S, 117.0703◦W),
(b) North Atlantic Ocean (42.0996◦N, 48.7793◦W), (c) Equatorial Pacific Ocean (0◦N, 150◦W),
(d) Chesapeake Bay (37.72175◦N, 76.11854◦W), and (e) East China Sea (32.0272◦N, 124.5403◦E).
Sampling locations for (a–e) are indicated in Figure 2b. The ∆a∗ph(443) data (unit: m2 mg−1) are
scaled according to the ordinates on the left y-axis. The green lines and dots show the corresponding
Chl-a data (unit: mg m−3) scaled according to the ordinates on the right y-axis.

Satellite observations revealed considerable spatial variance in a∗ph(443), with signifi-
cant departures from the global median value. To illustrate this problem, we compared a
selection of a∗ph(443) estimations across the ocean basins (Table 1). Among them, the highly
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stratified oligotrophic waters within the subtropical ocean gyres stand out. On average,
the South Pacific Gyre has the highest a∗ph(443) (~0.155 m2 mg−1), which is >35% higher
than that of the North Atlantic Gyre and >25% higher than the Indian Ocean Gyre. Note
that these gyre waters belong to the optical water type of Class 1 [4] and are known as “the
ocean deserts” due to low Chl-a concentrations. The marked variances in a∗ph(443) across
the subtropical ocean basins can be ascribed to the different pigment compositions and/or
cell sizes of the phytoplankton species [67,68], which are further decided by the unique
physical forcing and nutrient supply [66,69]. A second data group is representative of the
Equatorial Pacific Ocean, South China Sea, Gulf of Mexico, and Mediterranean Sea, where
the water types are dominantly Classes 2–3 [4]. Notably low a∗ph(443) values have been
recorded in the Mediterranean Sea (~40% smaller on average than the other 3), which have
been corroborated by the field observations and can be explained by its distinct regional
phytoplankton features (pigment concentration, composition, and size) [70,71]. The coastal
oceans exhibited considerable regional variances as well, despite the smaller absolute
differences because of the relatively small a∗ph(443) values. However, due to the temporal
variability, it is common for a∗ph(443) to experience a two-fold change in the coastal region.
In contrast, the variability in a∗ph(443) is usually within 50% of the medians. Table 1 presents
the medians, minima, maxima, and STDs of the regional data to reflect this problem. A
pixel-by-pixel quantification of the temporal variation is shown in Figure 2b, where the
coefficient of variation (CV) of a∗ph(443) was computed as the ratio of STD to the median
specific absorption. It is common for a∗ph(443) to undergo variability with CV = 15–30% in
open oceans and CV = 20–50% in coastal oceans.

Table 1. Statistics of the regional mean chlorophyll-specific absorption coefficient of phytoplankton
a∗ph(443) (unit: m2 mg−1) in the open and coastal oceans.

Satellite Data (2014–2017) In Situ Data

Median Min. Max. STD CV Range of
Variation Observation Time

Open
Ocean

North Atlantic Gyre 0.114 0.090 0.141 0.015 13% 0.13 [72] —
South Atlantic Gyre 0.132 0.099 0.159 0.017 13% —
North Pacific Gyre 0.147 0.120 0.172 0.021 14% 0.070–0.140 [17] January–December
South Pacific Gyre 0.155 0.117 0.189 0.025 16% 0.070–0.100 [71] October–December
Indian Ocean Gyre 0.125 0.093 0.161 0.020 16% —

Equatorial Pacific 0.115 0.106 0.137 0.007 6% 0.080–0.130 [73] November
South China Sea 0.104 0.079 0.125 0.012 12% — —
Gulf of Mexico 0.093 0.073 0.116 0.012 13% — —

Mediterranean Sea 0.062 0.038 0.084 0.011 18% 0.023–0.165 [70] September–November

Coastal
Ocean

Baltic Sea 0.043 0.034 0.097 0.013 30% 0.016–0.124 [74] March–May,
August–October

Black Sea 0.036 0.022 0.056 0.009 25% 0.030–0.115 [26] August–September,
November–December

Gulf of Maine 0.048 0.036 0.110 0.016 33% 0.040–0.079 [75] April, October

Hudson Bay 0.048 0.031 0.170 0.034 71% 0.019–0.125 [76] July,
September–October

Long Island Sound 0.035 0.023 0.058 0.010 29% — —

Gulf of Mexico 0.054 0.040 0.079 0.009 17% 0.020–0.150 [77]
April–May,

July–August,
November

Yellow Sea 0.045 0.023 0.062 0.010 22% — —

The validation of the satellite-derived a∗ph(443) data remains difficult at this moment
as it needs simultaneous matchups of in situ Chl-a and aph(λ) measurements from the field
campaigns that were conducted beneath the satellite overpass. We instead made a some-
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what qualitative comparison of the range of variation between satellite data and existing in
situ measurements. Table 1 presents the statistics for a selection of geographical regimes
that were relatively easy to delineate from the surrounding environments. First, Morel
et al. [72] measured the Prochlorococcus and Synechococcus cultures with a maximum of
~0.13 m2 mg−1 in the North Atlantic Gyre, which is close to the mean satellite observations.
Letelier et al. [17] reported the maximum a∗ph(443) value of ~0.14 m2 mg−1 in the northwest
of Hawaii, which is equivalent to our estimated median values. A few valuable measure-
ments recovered from the South Pacific Gyre (~0.07–0.1 m2 mg−1) [71] approach the lower
limits of the satellite observations, perhaps because the field data merely represented the
situations occurring in October–December. Field observations from other open and coastal
environments are further presented in Table 1, which are hard to compare with the satellite
results for the seasonal variability.

3.2. Temporal Variation in Monthly a∗ph(443)

3.2.1. Example Time Series Data

We extracted 5 monthly time series data representative of distinct ocean physical and
biogeochemical environments to demonstrate the periodical variations in the chlorophyll-
specific absorption coefficient of phytoplankton at 443 nm. In Figure 3, the data points for
the residual absorption ∆a∗ph(443) are denoted as open circles, and the fitted curves are
overlaid on top for comparison. The satellite monthly Chl-a data are also superimposed
to elucidate its covariation with a∗ph(443). The South Pacific Gyre waters appear to have
the most intense fluctuations despite having the least Chl-a concentration (Figure 3a). The
differences between the maxima and minima are about 0.10 m2 mg−1. The annual minima
(or maxima) occurred approximately simultaneously with the maxima (or minima) of Chl-a
concentration. In the North Atlantic transition zone, the example data exhibit a primary
peak during the fall–winter period and a secondary one in summer (Figure 3b). The as-
sociated annual minima correspond to the primary Chl-a peaks in springtime. The high
coefficient of determination R2 values (~0.6) in these 2 examples confirm the satisfactory
performance of the sinusoidal model fitting. In the Equatorial Pacific Ocean, however, the
specific absorption coefficient experienced weak periodical variations with the smallest
amplitudes (Figure 3c) because nearly constant solar irradiation and nutrient supply re-
sulted in relatively stable phytoplankton community structures [69]. The resulting model
fit appears to be somewhat redundant in this scenario. Under this circumstance, one may
predict this residual term for the specific absorption coefficient to be zero. It is observed
that the model characterized the seasonal variability reasonably well in the coastal ocean
example in Chesapeake Bay (R2 = 0.65, Figure 3d), where minor and major peaks existed in
summer and fall/winter, respectively. The example in Figure 3e was from an environment
under significant terrestrial nutrient inputs and with a data shortage due to unfavorable
atmospheric conditions. The resulting specific absorption data understandably deviated to
an increased extent from otherwise more predictable periodic cycles (R2 = 0.26).

3.2.2. Goodness of Fit

The model of Equation (5) was fitted to the monthly time series on a pixel-by-pixel
basis. In Figure 4a, we use the coefficient of determination R2 to quantify the appropriate-
ness of the model fitting. With the prevalence of high R2 over the vast oceans, it is evident
that satisfactory regressions have been reached (with a mean R2 of 0.45). Among others,
the subtropical ocean gyres stand out with an average R2 value of 0.6. At least half of
the coastal oceans have R2 values greater than 0.46. Small R2 values are most common
in the Pacific Ocean, consistent with the findings on the seasonal variability in Chl-a [78].
Small R2 values also coincide with regions suffering from missing satellite observations
due to clouds and heavy aerosols. Whereas the apparent ∆a∗ph(443) time series over these
waters might have been distorted due to insufficient data coverage, one cannot rule out the
possibility that their actual seasonal variations may be close to the fitted sinusoidal patterns.
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In the vicinity of polar waters, especially beyond ±50◦ latitudes, many ocean color data are
not valid because of unfavorable retrieval conditions, e.g., large solar-zenith angles, large
sensor-zenith angles, high sun glint contamination, and cloud coverage [44,79], which are
not included in the regressions.
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of determination R2, (b) occurrence time of the maximum specific absorption Tmax, (c) amplitude
a1, and (d) amplitude a2. Note that some data are missing from the monthly time series because
of high solar-zenith angles, sensor-zenith angles, sun glints, and cloudiness. In addition, to reduce
bias, we did not perform the fitting for the time series with more than 12 missing data points (out of
48 consecutive months).

3.2.3. Seasonal Variability

We estimated the occurrence time for the seasonal maximum a∗ph(443) (denoted as
Tmax) from the fitted functions. As in Figure 4b, Tmax exhibits a characteristic latitudinal
dependence. The times at the corresponding latitudes in the northern and southern hemi-
spheres are out of phase by approximately six months. For example, Tmax in the North
Pacific Subtropical Gyre occurs in July–September, while it happens in January–March in
its southern counterpart (also see Figure 3a). The temperate regions in the North Atlantic
witnessed maximum a∗ph(443) during November–January, right before the initiation of the
spring blooms (also see Figure 3b). Correspondingly, maximum a∗ph(443) values occurred
in May–July in the sub-Antarctic regions. The discovery of the latitudinal variation in Tmax
is analogous to the zonal characteristics of the ocean surface Chl-a concentration [57,78].
The latitudinal periodicity supports the fact that phytoplankton phenology is primarily
driven by the seasonal cycles of solar radiation incident upon the ocean surface, which
affects the intensity and timing of the water column stability and nutrient flux.

The annual and semiannual amplitudes are either positive or negative (Figure 4c,d),
a result of the phase shifts in the global time series observations. As expected, the
annual cycles are generally much more substantial than the semiannual signals, with
|a 1| � |a2|, suggesting dominance in the seasonal variations. Values of |a 1| can be as
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high as 0.04–0.05 m2 mg−1 in the open ocean, especially in the subtropical gyres. For the an-
nual component, the signs of the amplitudes are alternatively changing along the latitudinal
direction. For example, negative and positive amplitudes are present in the subtropics of
the northern and southern hemispheres (±5◦–35◦ latitude), respectively. Regarding higher
latitudes, the amplitudes transitioned to positive and negative values in the temperate of
the northern hemisphere and southern hemisphere (±35◦–50◦ latitude), respectively. These
primary cycles in the northern and southern hemispheres are essentially 180◦ (or 6 months)
out of phase. In contrast, the amplitude of the semiannual component a2 appears to be
approximately symmetric about the equator with opposite signs. The presence of relatively
high |a 2| values appears to coincide with two phytoplankton blooms often prevailing in
monthly time series data, including the North Atlantic Ocean [80], the Arabian Sea [81],
and the Equatorial Atlantic Ocean [82].

Cross-correlation analysis of the monthly a∗ph(443) and Chl-a time series did not reveal
significant lags between the timing of maximum Chl-a and minimum a∗ph(443) in global
oceans. Note that the dominant pigments varied seasonally and geographically [30]. The
intracellular pigments, including Chl-a and the accessory chlorophylls, photosynthetic
carotenoids, and photoprotective carotenoids, all absorb light. Thus, it is still possible for
the existence of a time lag between Chl-a and a∗ph(443) in nature. However, if the time
lags were shorter than one month, it would be impossible to detect them from the present
monthly data. On the other hand, ocean color algorithms rely mainly on the spectral shapes
of the ocean color spectra, which might have suppressed the time lags.

3.3. Dependence of a∗ph(443) on Chl-a Concentration

We examined the global relationship between a∗ph(443) and Chl-a using satellite-
derived climatological data. As shown in Figure 5, the chlorophyll-specific absorption
is inversely reliant on Chl-a concentration, reflecting the package effect [6,7]. The log10-
transformed a∗ph(443) and Chl-a data form a close-to-ideal linear relationship, which can

be described sufficiently by the power model (R2 = 0.99), a∗ph(443) = 0.05672·[Chl-a]−0.3051.
We compared this global relationship with the model fit made to the NOMAD data and with
the original work of Bricaud et al. [6]. Specifically, the regression to the NOMAD data gives
rise to a power function with A = 0.0547 m2 mg−1, which is almost the same as our global
model, and B = 0.2526, slightly smaller than our result. In contrast, the Bricaud et al. [6]
model departs from our global model with a smaller coefficient A = 0.0398 m2 mg−1, but
has a coefficient of B = 0.339 which is very close to our global estimates. Overall, the
disparities among these three scenarios are acceptably close to each other, inasmuch as the
three datasets represented different geographical and seasonal features.

We further assessed the a∗ph(443) and Chl-a relationship with respect to latitudes
and seasons based on satellite-derived monthly climatology data. The analyses revealed
geographical and seasonal dependences of a∗ph(443) on Chl-a, with the model coefficients
varying over wide ranges and sometimes deviating significantly from the global mean
relationship. As indicated in Figure 6a, for example, moderate A values (<0.04 m2 mg−1) are
present in the northern subtropical oceans (~15◦–40◦N) and southern subtropical oceans
(~10◦–30◦S). In the temperate and subarctic regions, large A values are easily spotted
that exceed 0.07 m2 mg−1. Most B values are limited to 0.2–0.6 over the vast oceans but
remain the highest in the subtropics. It is also evident that both A and B coefficients
experienced non-negligible seasonal variability. For example, the values of A at 40◦N
increased by a factor of 1.5 when transitioning from summer to winter. At the same time, the
corresponding B values dropped from >0.5 to <0.3. These regional and seasonal variations
in the model coefficients echo the field observations occurring in different parts of the
world ocean [9,25,27,83,84]. However, comparing the coefficients A and B in Figure 6 with
earlier field observations is not straightforward because of differing data ranges and ocean
provinces being focused on during respective analyses. The seasonal/regional dependency
of the phytoplankton absorption on Chl-a probably arises from the zonal changes in the
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cell size structure and taxonomic composition of phytoplankton communities (e.g., [68]),
which are ultimately decided by the solar radiation upon ocean surfaces.
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divided into 100 equally spaced ranges with respect to Chl-a between 0.02 and 20 mg m−3, and
then the median Chl-a and median a∗ph(443) values corresponding to each range were used for
regression analysis.
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3.4. Estimation of a∗ph(443) as a Function of Geolocation and Time

As a critical element of ocean color applications, a∗ph(λ) is often modeled as a function
of phytoplankton pigment concentrations [6,23,24,85]. As discovered in this study, the
seasonal and regional dependence of a∗ph(λ) on pigment concentrations will complicate the
practices relying on global relationships. Can the new seasonal/regional results presented
so far be further exploited to fulfill the synoptic prediction of the phytoplankton absorption
for global applications? They certainly can. In fact, the paradigm of a∗ph(λ) time series
data presents an alternative for predicting a∗ph(443) as the sum of the means and the
seasonal residuals,

a∗ph(443) =a∗ph(443) + ∆a∗ph(443), (9)

where a∗ph(443) refers to long-term climatology and can be adopted from Figure 2. The time-
dependent ∆a∗ph(443) is modeled by Equation (5), with the coefficients a1, a2, ϕ1, and ϕ2 (a0

is not essential) determined using the satellite data fitting. Thus, the chlorophyll-specific
absorption coefficient of phytoplankton at 443 nm can be approximated as a function of
geolocation and time, independent of Chl-a measurements.

We tested this hypothesis with in situ time series measurements collected from Hawaii
and Bermuda. As shown in Figure 7, an overall agreement is reached between in situ and
estimated ∆a∗ph(443). The model data pairs differ by an absolute percentage difference APD
= 18.2% in Hawaii (and bias > 200%). For the Bermuda data, the estimations have an APD of
15.1% (and bias = 120%). Note that the significant biases are partially ascribed to the small
absolute values of ∆a∗ph(443) relative to their climatology means. Moreover, we cannot
dismiss the possibility that in situ data are not free of measurement uncertainties [86].
Nonetheless, the estimated and in situ ∆a∗ph(443) data are significantly correlated, with

R2 = 0.92 and R2 = 0.69 for Hawaii and Bermuda data, respectively.
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Figure 8 compares the model-estimated a∗ph(443) with in situ measurements at discrete
stations around the global ocean. As far as the open ocean data are concerned, the model
yields a∗ph(443) with high accuracy, where APD = 37% and bias = 8.8%. For coastal ocean
data, the model estimates a∗ph(443) with APD = 30% and bias = −16%. Notably, an uncer-
tainty of ~30–40% is acceptably small and is comparable with that of satellite-retrieved
Chl-a products in open oceans (~30%) (e.g., [87]). It is also important to emphasize that
the model tested here works more appropriately for predicting monthly a∗ph(443) and does
not sufficiently represent the daily variation in a∗ph(443), nor does the model account for
diurnal variability in this bio-optical quantity. The in situ data used for this comparison
were measured on specific days. These discrepancies can partially explain the scatters seen
in the plots. In addition, the measuring and processing procedures of water samples for
aph(443) were different among cruises and investigators, which unavoidably resulted in
measurement uncertainties for aph(443) [86]. Finally, although the model data deviations
are small in Figure 8, cautious practices are recommended in light of the ocean’s dynamic
nature. For example, ocean phytoplankton can undergo abnormal changes in biomass
during an El Niño Southern Oscillation (ENSO) period [88], and the community structure
shifts after episodic events [89]. Nonetheless, the above analyses demonstrated an indepen-
dent procedure for the prediction of the phytoplankton absorption over global oceans, a
promising approach for synoptic remote sensing and large-scale ocean modeling.
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4. Conclusions

Based on satellite observations, this article has explored the seasonal and regional
variability in the chlorophyll-specific absorption coefficient of phytoplankton at 443 nm
a∗ph(443) in global oceans. The analyses revealed considerable spatial variance in the long-
term climatology of the specific absorption across global oceans. Our data also showed
substantial seasonal variability in a∗ph(443) around the median values. The coefficient
of variation can be as high as 100% in coastal oceans and 30% in open oceans. Using
a model-fitting approach, we characterized the zonal distribution of the amplitudes in
the monthly time series and the occurrence time of the maximum a∗ph(443). The seasonal
patterns in the open oceans of the northern hemisphere are primarily opposite to those
of the southern hemisphere, suggesting a significant latitudinal dependence. We further
examined and verified that a simple analytical model, with the model coefficients derived
from the regressions of satellite data, can indeed predict the complex seasonal signals of
the chlorophyll-specific absorption coefficient of phytoplankton at 443 nm with an absolute
percentage error of ~30% on average. It is also pointed out that although the seasonal
variations in a∗ph(443) are concomitant with corresponding differences in Chl-a, the depen-
dence of a∗ph(443) on Chl-a is subjected to seasonal and regional variability. We argue that
the analytical model tested in this study can act as an alternative approach for estimating
chlorophyll-specific absorption. In particular, this approach is relatively independent and
does not demand information on the phytoplankton pigment concentrations.

The present analyses are based on the monthly a∗ph(443) data and apply to monthly
schemes most appropriately. The resulting model does not sufficiently depict the data at a
finer temporal interval, such as the daily data. This problem can be circumvented in the
future by adopting gap-free ocean color products in which the data loss associated with the
cloudiness and the width of the satellite image swath are compensated [90,91]. Another
limitation resides in the single wavelength discussed in the context. The red band of 671 nm
is omitted from this study because the current satellite ocean color retrievals at this band
are subjected to large uncertainties in open oceans because the absolute values are too
small. Future attempts should include a∗ph(λ) at the red band for a complete perspective of
the spectral variability in the chlorophyll-specific absorption coefficient of phytoplankton,
particularly over turbid coastal and inland waters.

Author Contributions: Conceptualization, J.W. and M.W.; methodology, J.W.; software, J.W., K.M.
and L.J.; validation, J.W., K.M. and L.J.; formal analysis, J.W.; data curation, K.M. and L.J.;
writing—original draft preparation, J.W.; writing—review and editing, M.W., K.M. and L.J.; su-
pervision and funding acquisition, M.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Joint Polar Satellite System (JPSS) program and NOAA
Ocean Remote Sensing (ORS) projects. Part of this work was performed and funded under contract
ST13301CQ0050/1332KP22FNEED0042.

Data Availability Statement: All three VIIRS ocean color data images and routine data quality
monitoring results using the in situ measurements are available at the NOAA Ocean Color Sci-
ence Team website (https://www.star.nesdis.noaa.gov/socd/mecb/color; accessed on 30 April
2023). VIIRS global ocean color product data are freely distributed via NOAA CoastWatch (https:
//coastwatch.noaa.gov/cwn/index.html; accessed on 30 April 2023).

Acknowledgments: We thank numerous investigators who shared their in situ measurements
through SeaBASS. Special acknowledgments go to the Hawaii Ocean Time-series (HOT) project, the
Bermuda Bio-Optics Project (BBOP), and the Bermuda Atlantic Time Series (BATS) project. We thank
the three anonymous reviewers for their useful comments. The scientific results and conclusions,
as well as any views or opinions expressed within the article, are those of the author(s) and do not
necessarily reflect those of NOAA or the Department of Commerce.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.star.nesdis.noaa.gov/socd/mecb/color
https://coastwatch.noaa.gov/cwn/index.html
https://coastwatch.noaa.gov/cwn/index.html


Remote Sens. 2023, 15, 2423 16 of 19

References
1. Siegel, D.A.; Buesseler, K.O.; Doney, S.C.; Sailley, S.F.; Behrenfeld, M.J.; Boyd, P.W. Global assessment of ocean carbon export by

combining satellite observations and food-web models. Global Biogeochem. Cycles 2014, 28, 181–196. [CrossRef]
2. Platt, T.; Sathyendranath, S.; Forget, M.-H.; White, G.N., III; Caverhill, C.; Bouman, H.; Devred, E.; Son, S. Operational estimation

of primary production at large geographical scales. Remote. Sens. Environ. 2008, 112, 3437–3448. [CrossRef]
3. Hoepffner, N.; Sathyendranath, S. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser.

1991, 73, 11–23. [CrossRef]
4. Wei, J.; Wang, M.; Mikelsons, K.; Jiang, L.; Kratzer, S.; Lee, Z.P.; Moore, T.; Sosik, H.M.; Van der Zande, D. Global satellite water

classification data products over oceanic, coastal, and inland waters. Remote. Sens. Environ. 2022, 282, 113233. [CrossRef]
5. Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption

curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr. 1981, 26, 671–689.
[CrossRef]

6. Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplank-
ton: Analysis and parameterization. J. Geophys. Res. 1995, 100, 13321–13332. [CrossRef]

7. Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a
concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. 1998, 103, 31033–31044.
[CrossRef]

8. Babin, M.; Stramski, D.; Ferrari, G.M.; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Variations in the light absorption
coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res.
2003, 108, 3211. [CrossRef]

9. Cleveland, J.S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration. J. Geophys. Res. 1995,
100, 13333–13344. [CrossRef]

10. Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.P.;
et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037.
[CrossRef] [PubMed]

11. Tilstone, G.H.; Peters, S.W.M.; van der Woerd, H.J.; Eleveld, M.A.; Ruddick, K.; Schönfeld, W.; Krasemann, H.; Martinez-Vicente, V.;
Blondeau-Patissier, D.; Röttgers, R.; et al. Variability in specific-absorption properties and their use in a semi-analytical ocean
colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters. Remote. Sens. Environ. 2012, 118, 320–338.
[CrossRef]

12. Zheng, G.; DiGiacomo, P.M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of
phytoplankton. Remote. Sens. Environ. 2017, 201, 331–341. [CrossRef]

13. Carder, K.L.; Chen, F.R.; Lee, Z.P.; Hawes, S.K.; Kamykowski, D. Semianalytic Moderate-resolution Imaging Spectrometer
algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res.
1999, 104, 5403–5421. [CrossRef]

14. Morel, A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog. Oceanogr.
1991, 26, 263–306. [CrossRef]

15. Uitz, J.; Claustre, H.; Gentili, B.; Stramski, D. Phytoplankton class-specific primary production in the world's oceans: Seasonal
and interannual variability from satellite observations. Global Biogeochem. Cycles 2010, 24, GB3016. [CrossRef]

16. Bidigare, R.R.; Ondrusek, M.E.; Morrow, J.H.; Kiefer, D.A. In vivo absorption properties of algal pigments. In Ocean Optics X;
Society of Photo Optical: Bellingham, WA, USA, 1990; pp. 290–302.

17. Letelier, R.M.; White, A.E.; Bidigare, R.R.; Barone, B.; Church, M.J.; Karl, D.M. Light absorption by phytoplankton in the North
Pacific Subtropical Gyre. Limnol. Oceanogr. 2017, 62, 1526–1540. [CrossRef]

18. Liu, Y.; Boss, E.; Chase, A.; Xi, H.; Zhang, X.; Röttgers, R.; Pan, Y.; Bracher, A. Retrieval of phytoplankton pigments from underway
spectrophotometry in the Fram Strait. Remote. Sens. 2019, 11, 318. [CrossRef]

19. Moisan, T.A.; Rufty, K.M.; Moisan, J.R.; Linkswiler, M.A. Satellite observations of phytoplankton functional type spatial
distributions, phenology, diversity, and ecotones. Front. Mar. Sci. 2017, 4, 189. [CrossRef]

20. Ciotti, A.M.; Bricaud, A. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter
from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 2006, 4,
237–253. [CrossRef]

21. Roy, S.; Sathyendranath, S.; Bouman, H.; Platt, T. The global distribution of phytoplankton size spectrum and size classes from
their light-absorption spectra derived from satellite data. Remote. Sens. Environ. 2013, 139, 185–197. [CrossRef]

22. Zhou, W.; Wang, G.; Li, C.; Xu, Z.; Cao, W.; Shen, F. Retrieval of phytoplankton cell size from chlorophyll a specific absorption
and scattering spectra of phytoplankton. Appl. Opt. 2017, 56, 8362–8371. [CrossRef] [PubMed]

23. Brewin, R.J.W.; Devred, E.; Sathyendranath, S.; Lavender, S.J.; Hardman-Mountford, N.J. Model of phytoplankton absorption
based on three size classes. Appl. Opt. 2011, 50, 4535–4549. [CrossRef]

24. Uitz, J.; Huot, Y.; Bruyant, F.; Babin, M.; Claustre, H. Relating phytoplankton photophysiological properties to community
structure on large scales. Limnol. Oceanogr. 2008, 53, 614–630. [CrossRef]

25. Devred, E.; Perry, T.; Massicotte, P. Seasonal and decadal variations in absorption properties of phytoplankton and non-algal
particulate matter in three oceanic regimes of the Northwest Atlantic. Front. Mar. Sci. 2022, 9, 932184. [CrossRef]

https://doi.org/10.1002/2013GB004743
https://doi.org/10.1016/j.rse.2007.11.018
https://doi.org/10.3354/meps073011
https://doi.org/10.1016/j.rse.2022.113233
https://doi.org/10.4319/lo.1981.26.4.0671
https://doi.org/10.1029/95JC00463
https://doi.org/10.1029/98JC02712
https://doi.org/10.1029/2001JC000882
https://doi.org/10.1029/95JC00532
https://doi.org/10.1364/AO.52.002019
https://www.ncbi.nlm.nih.gov/pubmed/23545956
https://doi.org/10.1016/j.rse.2011.11.019
https://doi.org/10.1016/j.rse.2017.09.008
https://doi.org/10.1029/1998JC900082
https://doi.org/10.1016/0079-6611(91)90004-6
https://doi.org/10.1029/2009GB003680
https://doi.org/10.1002/lno.10515
https://doi.org/10.3390/rs11030318
https://doi.org/10.3389/fmars.2017.00189
https://doi.org/10.4319/lom.2006.4.237
https://doi.org/10.1016/j.rse.2013.08.004
https://doi.org/10.1364/AO.56.008362
https://www.ncbi.nlm.nih.gov/pubmed/29091614
https://doi.org/10.1364/AO.50.004535
https://doi.org/10.4319/lo.2008.53.2.0614
https://doi.org/10.3389/fmars.2022.932184


Remote Sens. 2023, 15, 2423 17 of 19

26. Churilova, T.; Suslin, V.; Krivenko, O.; Efimova, T.; Moiseeva, N.; Mukhanov, V.; Smirnova, L. Light absorption by phytoplankton
in the upper mixed layer of the Black Sea: Seasonality and parametrization. Front. Mar. Sci. 2017, 4, 90. [CrossRef]

27. Mercado, J.M.; Gómez-Jakobsen, F. Seasonal variability in phytoplankton light absorption properties: Implications for the regional
parameterization of the chlorophyll a specific absorption coefficients. Cont. Shelf Res. 2022, 232, 104614. [CrossRef]

28. Matsuoka, A.; Hill, V.; Huot, Y.; Babin, M.; Bricaud, A. Seasonal variability in the light absorption properties of western Arctic
waters: Parameterization of the individual components of absorption for ocean color applications. J. Geophys. Res. Ocean. 2011,
116, C02007. [CrossRef]

29. Sasaki, H.; Miyamura, T.; Saitoh, S.-I.; Ishizaka, J. Seasonal variation of absorption by particles and colored dissolved organic
matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan. Estuar. Coast. Shelf Sci. 2005, 64, 447–458. [CrossRef]

30. Sathyendranath, S.; Stuart, V.; Irwin, B.D.; Maass, H.; Savidge, G.; Gilpin, L.; Platt, T. Seasonal variations in bio-optical properties
of phytoplankton in the Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 633–653. [CrossRef]

31. Lorenzoni, L.; Hu, C.; Varela, R.; Arias, G.; Guzmán, L.; Muller-Karger, F. Bio-optical characteristics of Cariaco Basin (Caribbean
Sea) waters. Cont. Shelf Res. 2011, 31, 582–593. [CrossRef]

32. Wang, M.; Liu, X.; Jiang, L.; Son, S. The VIIRS ocean color product algorithm theoretical basis document version 1.0. In NOAA
NESDIS STAR Algorithm Theoretical Basis Document (ATBD); NOAA NESDIS Center for Satellite Applications and Research: Silver
Spring, MD, USA, 2017; p. 68.

33. Wang, M.; Liu, X.; Tan, L.; Jiang, L.; Son, S.; Shi, W.; Rausch, K.; Voss, K.J. Impacts of VIIRS SDR performance on ocean color
products. J. Geophys. Res. 2013, 118, 10347–10360. [CrossRef]

34. Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A
preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [CrossRef] [PubMed]

35. Wang, M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands:
Simulations. Appl. Opt. 2007, 46, 1535–1547. [CrossRef]

36. IOCCG. Atmospheric Correction for Remotely-Sensed Ocean Color Products, 10th ed.; International Ocean Color Coordinating Group:
Dartmouth, NS, Canada, 2010; p. 78.

37. Jiang, L.; Wang, M. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing. Opt.
Express 2014, 22, 21657–21678. [CrossRef] [PubMed]

38. Shi, W.; Wang, M. Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study
in the Bohai Sea, Yellow Sea, and East China Sea. Limnol. Oceanogr. 2014, 59, 427–444. [CrossRef]

39. Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt.
Express 2007, 15, 15722–15733. [CrossRef] [PubMed]

40. Wei, J.; Wang, M.; Ondrusek, M.; Gilerson, A.; Goes, J.; Hu, C.; Lee, Z.; Voss, K.J.; Ladner, S.; Lance, V.P.; et al. Satellite ocean
color validation. In Field Measurements for Passive Environmental Remote Sensing: Instrumentation, Intensive Campaigns, and Satellite
Applications; Nalli, N., Ed.; Elsevier: Cambridge, MA, USA, 2022; pp. 351–374.

41. Wei, J.; Yu, X.; Lee, Z.P.; Wang, M.; Jiang, L. Improving low-quality satellite remote sensing reflectance at blue bands over coastal
and inland waters. Remote. Sens. Environ. 2020, 250, 112029. [CrossRef]

42. Hlaing, S.; Harmel, T.; Gilerson, A.; Foster, R.; Weidemann, A.D.; Arnone, R.; Wang, M.; Ahmed, S. Evaluation of the VIIRS ocean
color monitoring performance in coastal regions. Remote. Sens. Environ. 2013, 139, 398–414. [CrossRef]

43. Ondrusek, M.; Wei, J.; Wang, M.; Stengel, E.; Kovach, C.; Gilerson, A.; Herrera, E.; Malinowski, M.; Goes, J.I.; Gomes, H.d.R.;
et al. Report for dedicated JPSS VIIRS ocean color calibration/validation cruise: Gulf of Mexico in April 2021. In NOAA Technical
Report NESDIS 157; NOAA National Environmental Satellite, Data Information, Service: Washington, DC, USA, 2022; p. 51.

44. Mikelsons, K.; Wang, M.; Jiang, L. Statistical evaluation of satellite ocean color data retrievals. Remote. Sens. Environ. 2020, 237,
111601. [CrossRef]

45. Hu, C.; Barnes, B.B.; Feng, L.; Wang, M.; Jiang, L. On the interplay between ocean color data quality and data quantity: Impacts of
quality control flags. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 745–749. [CrossRef]

46. Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters:
An assessment of methods. Remote. Sens. Environ. 2019, 220, 110–123. [CrossRef]

47. Wang, M.; Shi, W.; Watanabe, S. Satellite-measured water properties in high altitude Lake Tahoe. Water Res. 2020, 178, 115839.
[CrossRef] [PubMed]

48. Wang, M.; Son, S. VIIRS-derived chlorophyll-a using the ocean color index method. Remote. Sens. Environ. 2016, 182, 141–149.
[CrossRef]

49. Hu, C.; Lee, Z.P.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance
difference. J. Geophys. Res. 2012, 117, 2156–2202. [CrossRef]

50. Shi, W.; Wang, M. A blended inherent optical property algorithm for global satellite ocean color observations. Limnol. Oceanogr.
Methods 2019, 17, 377–394. [CrossRef]

51. Lee, Z.P.; Carder, K.L.; Arnone, R. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm
for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [CrossRef]

52. Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean
color. J. Geophys. Res. 1988, 93, 10909–10924. [CrossRef]

https://doi.org/10.3389/fmars.2017.00090
https://doi.org/10.1016/j.csr.2021.104614
https://doi.org/10.1029/2009JC005594
https://doi.org/10.1016/j.ecss.2005.03.008
https://doi.org/10.1016/S0967-0645(98)00121-0
https://doi.org/10.1016/j.csr.2010.12.013
https://doi.org/10.1002/jgrd.50793
https://doi.org/10.1364/AO.33.000443
https://www.ncbi.nlm.nih.gov/pubmed/20862036
https://doi.org/10.1364/AO.46.001535
https://doi.org/10.1364/OE.22.021657
https://www.ncbi.nlm.nih.gov/pubmed/25321543
https://doi.org/10.4319/lo.2014.59.2.0427
https://doi.org/10.1364/OE.15.015722
https://www.ncbi.nlm.nih.gov/pubmed/19550856
https://doi.org/10.1016/j.rse.2020.112029
https://doi.org/10.1016/j.rse.2013.08.013
https://doi.org/10.1016/j.rse.2019.111601
https://doi.org/10.1109/LGRS.2019.2936220
https://doi.org/10.1016/j.rse.2018.10.034
https://doi.org/10.1016/j.watres.2020.115839
https://www.ncbi.nlm.nih.gov/pubmed/32353611
https://doi.org/10.1016/j.rse.2016.05.001
https://doi.org/10.1029/2011JC007395
https://doi.org/10.1002/lom3.10320
https://doi.org/10.1364/AO.41.005755
https://doi.org/10.1029/JD093iD09p10909


Remote Sens. 2023, 15, 2423 18 of 19

53. IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, 5th ed.; International
Ocean Color Coordinating Group: Dartmouth, NS, Canada, 2006; p. 126.

54. Campbell, J.W.; Blaisdell, J.M.; Darzi, M. Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms; NASA Goddard
Space Flight Center: Greenbelt, MD, USA, 1995; p. 104566.

55. Moisan, J.R.; Moisan, T.A.H.; Linkswiler, M.A. An inverse modeling approach to estimating phytoplankton pigment concentra-
tions from phytoplankton absorption spectra. J. Geophys. Res. -Ocean. 2011, 116, C09018. [CrossRef]

56. Demarcq, H.; Reygondeau, G.; Alvain, S.; Vantrepotte, V. Monitoring marine phytoplankton seasonality from space. Remote. Sens.
Environ. 2012, 117, 211–222. [CrossRef]

57. Dandonneau, Y.; Deschamps, P.-Y.; Nicolas, J.-M.; Loisel, H.; Blanchot, J.; Montel, Y.; Thieuleux, F.; Bécu, G. Seasonal and
interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific
and South Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 303–318. [CrossRef]

58. Mao, Z.; Mao, Z.; Jamet, C.; Linderman, M.; Wang, Y.; Chen, X. Seasonal cycles of phytoplankton expressed by sine equations
using the daily climatology from satellite-retrieved chlorophyll-a concentration (1997–2019) over global ocean. Remote. Sens. 2020,
12, 2662. [CrossRef]

59. Yoder, J.A.; O'Reilly, J.E.; Barnard, A.H.; Moore, T.S.; Ruhsam, C.M. Variability in coastal zone color scanner (CZCS) Chlorophyll
imagery of ocean margin waters off the US East Coast. Cont. Shelf Res. 2001, 21, 1191–1218. [CrossRef]
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