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Abstract: Infrared small target detection (ISTD) plays a significant role in earth observation infrared
systems. However, some high reflection areas have a grayscale similar to the target, which will cause
a false alarm in the earth observation infrared system. For the sake of raising the detection accuracy,
we proposed a cirrus detection measure based on low-rank sparse decomposition as a supplementary
method. To better detect cirrus that may be sparsely insufficient in a single frame image, the method
treats the cirrus sequence image with time continuity as a tensor, then uses the visual saliency of
the image to divide the image into a cirrus region and a cirrus-free region. Considering that the
classical tensor rank surrogate cannot approximate the tensor rank very well, we used a non-convex
tensor rank surrogate based on the Laplace function for the spatial-temporal tensor (Lap-NRSSTT) to
surrogate the tensor rank. In an effort to compute the proposed model, we used a high-efficiency
optimization approach on the basis of alternating the direction method of multipliers (ADMM).
Finally, final detection results were obtained by the reconstructed cirrus images with a set threshold
segmentation. Results indicate that the proposed scheme achieves better detection capabilities and
higher accuracy than other measures based on optimization in some complex scenarios.

Keywords: cirrus detection; tensor robust principal component analysis; spatial-temporal tensor;
non-convex tensor rank surrogate; infrared imagery

1. Introduction

The earth observation infrared system is a significant component of the remote sensing
application. It significantly influences infrared guidance, remote sensing, missile warning,
etc. [1–4]. The infrared detector has the advantages of strong adaptability, good portability,
small size, and ease of concealment [5]. As the infrared imaging detection system has been
significantly improving, some scholars have developed new target detection recognition
algorithms [6–13]. However, some areas or scenes in nature also generate high levels of
radiation, which means that they may show similar characteristics to a real small target.
This will lead to early warning system false positives, which will interfere with small target
detection. Because of the sun’s radiation, cirrus will produce a large amount of radiation,
which will be imaged in the infrared image together with the real small target. To reduce
the false alarm rate, it is essential to research cirrus features and detection methods.

The traditional methods of cloud detection are separated into three classes: pixel-
level threshold, texture analysis and the statistical-based method [14–17]. These methods
use space, time and frequency domain information, or calculate one or more appropriate
thresholds based on a physical model, wavelength difference, etc. According to the obtained
thresholds, the cirrus is distinguished from other parts of the image [18–21]. Because of
the infrared radiation characteristics of cirrus, almost all of these traditional methods use
infrared band images to detect the cirrus.
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Besides using spectral or physical properties, since remote sensing technology, com-
puter vision and artificial intelligence are undergoing a spurt of progress, some scholars
have developed many new detection methods for cirrus detection [22–27]. Machine learn-
ing has improved the detection accuracy within a certain range; however, since the real
cirrus scene lacks sufficient data to train the model, the method based on machine learning
cannot achieve great detection performance in real scenes. Moreover, some scholars also
introduced robust principal component analysis (RPCA) to cirrus cloud detection, but
due to the design of the models, these studies have not yet achieved satisfactory results,
especially in some complex scenarios [28,29].

Recently, optimization-based methods for target detection such as sparse represen-
tation (SR) have gradually been favored by scholars and successfully used in infrared
imagery [30–35]. Low-rank sparse decomposition of a matrix or tensor involves regarding
the infrared image as a linear superposition of two different parts: background component
and target component. This type of method focuses more on the infrared image feature
and utilizes the properties of the background and target. The background component has
non-local self-similarity, which can be treated as a low-rank component. The proportion
of the target component is small and can be treated as a sparse component. Using the
above theory, the detection problem is converted into a matrix decomposition problem. For
infrared images containing cirrus, the cirrus are still sparse compared to the background
component. The background component is low-rank, so a cirrus detection problem can be
converted into a matrix decomposition problem.

A traditional small target detection measure using RPCA and SR is often used for single
frame image detection. Due to the small dimension and weak pixel levels of infrared small
targets, the sparseness of infrared small targets is high in single frame images. However,
due to the different imaging forms of cirrus, there are large cirrus. In a single frame image,
these forms of cirrus may have poor sparsity. Since the background information of the
infrared image in the same region at different times does not change much, and the cirrus
may have morphological changes due to time process and displacement due to motion,
adding time information can effectively improve the discrimination between low-rank
components and sparse components in an established measure.

Considering an introduction of sequence images for detection, the matrix-based low-
rank sparse method cannot meet the processing method of multiple images. Therefore, the
theory of tensor recovery is considered.

The tensor, as a high-dimensional form of the matrix, is able to be directly utilized in
high-dimensional data. Scholars have successfully used tensors to process color images,
video and hyperspectral images [36–42]. Tensors are faster and more efficient at solving
optimization problems when compared to matrices. By introducing a tensor into RPCA,
scholars have proposed a tensor-robust principal component analysis model (TRPCA) [43].
Sequence images or videos with a temporal order can be treated as a three-dimensional
tensor, so the TRPCA model can be applied in infrared imagery.

One of the difficulties of TRPCA is the representation of the tensor rank. Considering
the non-local self-similarity in an infrared image background, the tensor composed of
the background component has a low rank [44]. Tensor rank is the most direct means
of measuring low-rank characteristics. However, the definition of matrix rank cannot be
directly extended to tensors, and no direct definition can be used for the tensor rank.

Another difficulty is that most of the tensor rank calculation problems are NP-hard.
For example: CP decomposition cannot be directly calculated. Therefore, scholars consider
using tensor-rank convex relaxation or nonconvex tensor-rank substitution to represent the
rank of tensors. Huang [45] used the sum of nuclear norms (SNN) in tensor rank but could
not achieve a great effect in a complex background. Lu used tensor nuclear norm (TNN)
in tensor rank [46], but each singular value is endowed with the same weight. However,
big singular values include the main information of the image, while small singular values
are caused by noise. Both SNN and TNN are convex relaxation-of-rank, which limits their
performance. Recently, tensor rank non-convex surrogates (NRSs) based on the Laplace
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function have been proposed and successfully used [47]. This non-convex surrogate based
on the Laplace function can help every singular value obtain a proper weight according to
its values, which can better represent the rank of the tensor. As shown in Figure 1, Laplace
functions can better approximate the l0 norm than the l1 norm. Guan [48] applied the non-
convex surrogate based on the Laplace function to the infrared target detection. Inspired
by his strategy, we propose a measure for cirrus detection based on visual saliency and
non-convex spatial-temporal tensor rank surrogate (Lap-NRSSTT). The proposed method
can use information embedded in a spatial-temporal structure and multiple regularization
parameters to obtain better performance. The primary contributions in the paper could be
summarized as bellow:
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Figure 1. Comparison of the contribution of the l0 − norm, l1 − norm, and the Laplace function to
the rank.

1. Considering the infrared imaging characteristics of cirrus scenes, a spatial-temporal
tensor (STT) model was built, so that a low-rank sparse decomposition method could
be effectively used in an infrared cirrus detection scheme;

2. To obtain an easy-to-calculate tensor rank, the NRSs using the Laplace function are
applied to the STT (Lap-NRSSTT) completion for infrared imagery; It preserves the
details of the cirrus and suppresses noise with smaller singular values;

3. To reduce the time complexity, a mask based on visual saliency is constructed, so that
the optimization-based scheme can quickly reach the convergence stop condition with
great detection performance.

The rest of this paper is organized as follows: In Section 2, details of the proposed
model are proposed, the optimization of the model is designed, and the whole detection
process for infrared sequence images is given. Section 3 proves the validity of the proposed
measure through some single variable measurement and comparative experiments. In
Sections 4 and 5, we summarize the paper and discuss our future work.
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2. Materials and Methods

In this section, we presented the Lap-NRSSTT model for infrared cirrus detection in
infrared imagery.

2.1. Construction of STT Model

An infrared cirrus image could be divided into these parts: the infrared image matrix
D, the background matrix A, the cirrus matrix S and the noise image matrix N. The
definition of the model is as bellow:

D = A + S + N (1)

To introduce TRPCA into cirrus detection, it was necessary to construct an STT model
for detection. Under the tensor model, the infrared cirrus image model could be expressed
as bellow:

D = A+ S +N (2)

where D,A,S ,N ∈ Rm×n×k are the input tensor, background tensor, cirrus tensor and
random noise tensor, respectively. The variables m, n and k represent the size of the tensor.

When constructing the tensor model, the infrared small target algorithm would tra-
verse the whole image using a window of size m× n. The obtained image patches would
be arranged to form a tensor of size m × n × k. To better explain the subsequent steps,
we explained some of the patch-tensor model construction steps: Considering that the
experimental image we used is often preprocessed into an image of equal length and width,
a sliding window of m×m was used, and to make sure that the obtained image patches
did not have overlapping parts, the sliding step was also set to m. The whole image
was traversed by a sliding window. By using this method, we could reduce redundant
information to a certain extent. In this way, each frame of the image would obtain Num
image patches.

When used for cirrus detection, due to the different imaging forms of cirrus, there were
large cirruses. The sparsity may be poor in a single sliding window. Because the background
information of the infrared sequence image did not change much, the sparsity could be
improved according to the change of the cirrus in the same position at a different time.
Therefore, we considered constructing a tensor model with spatial-temporal characteristics.

To fully utilize the relevance of moving targets in the time domain, the order of image
patches would be carefully considered. Here we consider three schemes: i and j were
defined as follows: i was the frame index and j was the image patch index. The first scheme
was to arrange all the image patches of one frame from small to large according to the
patch index j, then continue the arrangement of the image patches of the next frame. This
measure did not fully utilize the similarity of image patches at the same position between
different frames. The second method combined the j-th image patch of each frame into a
tensorM of size m×m× i in the order of frames, and then arranged Num tensorsM to
obtain the final tensorMNum of size m×m× a (a = i× Num) according to the order of
the image patch index j from small to large. However, the displacement result from cirrus
motion is often reflected on the surrounding patches of the patches with the same image
patch index j in adjacent frames. If the tensor was constructed according to the above
method, there would be a lot of image patches between Dj

i and Dj+1
i+1 , which destroyed

the local correlation of each frame in infrared images. Combining the advantages and
disadvantages of the above measures, the STT was constructed by the method shown in
Figure 2.

Firstly, the spatial patch tensor was constructed with the image patch Dj
i and its

surrounding patches. The blue image patches represented the image patches of the current
frame Di. The corresponding construction process is shown in Figure 3.
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Then, the time patch tensor was constructed according to the following scheme: After
selecting 2× s adjacent frames Di+y of the current frame, where y ∈ [−s, 1] ∪ [1, s], every
frame Di+y was used to build a group of tensors according to Figure 3, labeled as Dst

i+y. The
temporal patch tensor was constructed by Dst

i+y and arranged according to the frame index.
STT Dst could be shown as:

Dst = Ast + S st +N st (3)

Thus, we established a new STT model, and fully utilized the spatial-temporal infor-
mation. We would then analyze the properties of the divided parts in infrared imagery.

Background patch tensor Ast: For a three-dimensional tensor, we could obtain the
expansion matrix of its various modes and calculated all singular values of the expansion
matrix. When singular values rapidly descend to near zero rapidly, it means that the
expansion matrix has the characteristics of low rank. We unfolded STT Dst and calculated
the singular values of three mode, as shown in Figure 4. There was no doubt that the curve
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in the image would rapidly decrease to zero, which meant that our proposed tensor model
has low rank characteristics in its multiple modes. Therefore, we could make a hypothesis
on the background as follows:

rank(Ast) ≤ a (4)

where a was a low-rank constant that constrains the background tensor. Generally, a was
larger in a complex background.
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Cirrus patch tensor S st: The distribution range of the cirrus on the image was relatively
small compared with the background; in the infrared video frame, the position shift or the
morphological change of the cirrus caused by the movement of the cirrus made the cirrus
more sparsely distributed in the tensor model we constituted and had significant sparse
characteristics. Thus, the cirrus patch may satisfy a condition such as the following:

‖S st‖0 ≤ s (5)

where s was a small positive number. It could be determined by the size of the cirrus and
the frequency of the cirrus appearing in the spatial-temporal tensor.

Noise patch tensor N st: The random noise in the infrared video was usually Gaussian
white noise. According to (3), we could obtain that:

‖Dst −Ast − S st‖F ≤ n (6)
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Removing noise, the low-rank component and sparse component could be separated
by solving the following optimization problem:

min
Ast ,S st

rank
(
Ast)+ λ‖S st‖0

s.t.Dst = Ast + S st (7)

According to the STT model, we could analyze the behavior of the cirrus patch image
and background patch image. However, in the cirrus image, due to the different shapes of
the cirrus, some shapes of the cirrus, which were similar to the background in the divided
image patches, would show low rank. This would cause difficulty in distinguishing the
cirrus. It was necessary to process the tensor model so that the cirrus component and the
background component could be better distinguished. Therefore, we would use visual
saliency to enhance the image.

2.2. Visual Saliency Mask

According to (7), λ was an important regularization parameter, which will maintain
equilibrium between the sparse component and low rank component. The variable λ could
be expressed as λ = L/

√
min(n1, n2)× n3, where n1× n2× n3 is the dimension of a tensor.

It could separate the components of the cirrus and background to some extent. However,
the shape of the cirrus was different from small targets. The cirrus had a large volume and
different shapes. This made it difficult to select an appropriate λ.

When λ got a smaller value, the convergence rate of the tensor model would be very
low, and it would take multiple iterations to obtain the result, which was slow. Secondly,
many components belonging to the background would also be decomposed into sparse
components, so that the low-rank components obtained in the background were too smooth.
If we increased λ to generate a low-rank component with a higher rank, some cirrus would
also enter the low-rank component, resulting in missed detection. Through experiments, it
was found that for a single λ, it was impossible to determine a specific value so that the
background and cirrus could be well separated.

Inspired by the patch sparse RPCA for salient motion detection in video [49], pixels
could be differentiated according to whether they were cirrus pixels, and different regu-
larization parameters were adopted for different regions. Through the pre-processing, we
analyzed the image to find the possible areas of the cirrus and took different regularization
parameters for the possible areas of the clouds and the cloud-free areas. For the possible
areas that the cirrus may exit, a smaller regularization parameter was adopted to ensure
that the sparse component did not enter the background, while for the background area, a
larger regularization parameter was adopted so that the low-rank component would not
enter the cirrus area. The modified TRPCA model for low-rank tensors and sparse tensors
was as follows:

min
Ast ,S st

rank
(
Ast)+ λ‖SΩ

st‖1 + β‖SΩ−
st‖1

s.t.Dst = Ast + S st,S st = SΩ
st + SΩ−

st (8)

where SΩ
st was the detected region with cirrus and SΩ−

st was the detected region with-
out cirrus.

Due to the use of infrared sequence images and tensors for experiments, the amount
of data to be processed in the experiment was large, and the use of additional RPCA would
greatly increase the operation time. Therefore, the use of visual saliency to process the
cirrus area was considered.

Frequency-tuned (FT) saliency was first proposed by Achanta et al. [50], which was
simple and efficient. The steps to solve the frequency modulation restriction were as
follows: First, Gaussian filtering was performed on the image to remove noise and texture
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details. After that, the l2 − norm of the difference between the processed image and its
image mean was calculated as the final saliency map. It was defined as:

S = ‖IG(x, y)− Iµ‖2 (9)

where S is the frequency modulated saliency map, IG is the Gaussian filtered image, and Iµ

is the image mean. Through the frequency-tuned saliency feature, we obtained the possible
area of the cirrus, and after that we performed threshold segmentation and morphological
processing on the region to obtain the mask of the multi-cloud region we needed, as shown
in Figure 5. Other visual saliency methods such as spectral residual or phase of Fourier
transform cannot achieve good detection results when the gray level of the cirrus in the
image is low and the background has a high brightness area. Considering the complexity
of the experimental scene, other saliency methods cannot meet the complexity of the
experiment. Combined with the STT model proposed above, the Lap-NRSSTT model
we needed was obtained. Next, we discussed the NRS used to describe the low-rank of
the background.
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Figure 5. Cirrus image and corresponding mask image. (a–c) represents three classical clouds.
(d–f) are the corresponding masks after morphological processing.

2.3. Non-Convex Surrogate of Tensor Rank

Since the rank function and l0 − norm were non-convex, it was still NP-hard to solve
(7) directly. The l1 − norm was often used to replace the l0 − norm, but the approximation
of tensor rank was a considerable difficulty. Figuring out how to deal with the rank was
the key to solve the tensor recovery problem. The TNN was a convex relaxation-of-tensor
rank, which had been widely used in medical image processing, tensor completion, video
denoising, etc. However, it assigned the same weight to each singular value. In infrared
images, different singular values correspond to different image information. Large singular
values correspond to low-frequency components, and small singular values correspond to
high-frequency components. In low-rank sparse tensor decomposition, we expected that
the image information corresponding to large singular values was less penalized, so the
TNN could not achieve better results. Many improved methods need prior knowledge
to estimate some parameters. If the estimation was not correct, it was difficult to obtain
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better results. Considering the above problems, this paper used a non-convex tensor rank
surrogate based on the Laplace function (Lap-NRS) to represent the rank of the tensor.

Here, Lap-NRS was defined as:

‖X ‖ε =
n3

∑
k=1

min(n1,n2)

∑
i=1

ϕ
(

σi

(
X (k)

))
(10)

where n1× n2× n3 is the dimension of tensor X and ϕ(x) = 1− e−x/ε represents a Laplace

function. X (k)
represents the Fourier transform result in the third dimension of the k-th

frontal slice of tensor X and σi represents the i-th singular value of the corresponding slice.
ε represents a positive constant.

For the solution of Lap-NRS, we should consider a sub-problem as below:

argmin
B
‖B‖ε +

γ

2
‖B − X‖2

F (11)

where X ∈ Rn1×n2×n3 , γ was a positive constant and the t-SVD of X was X = U ∗ S ∗ VT .
(11) can be solved with (12) and an extended weight singular value thresholding (WSVT)
operator [51], as shown in (12) and (13):

D(k)
∇ϕ

α

= (S (k) −
∇ϕ
(

σi

(
B(k)

))
α

)
+

(12)

B(k) = U (k) ∗ D(k)
∇ϕ

α

∗ V (k)H
(13)

where α = γ
n3

and ∇ϕ
(

σi

(
B(k)

))
represents the derivative of the Laplace function at the

singular value of the i-th positive slice in the Fourier domain of tensor B. Algorithm 1
describes each iteration solution in (11).

Algorithm 1 Specific steps of the ADMM framework

Input: X , B;
Process:
1: Computer X = f f t(X , [], 3);
2: for k = 1 . . . , [(n3 + 1)/2] do[

U (k),S (k),V (k)
]
= SVD(X (k)

);

3: Update D(k)
∇ϕ

α

via (12);

4: Update B(k) via (13);
5: end for;
6: for k = [(n3 + 1)/2] + 1, . . . , n3 do

B(k) = conj(B)n3−k+2;
7: end for;
8: Compute B(k+1)

= i f f t(B(k), [], 3).

2.4. Solution of Lap-NRSSTT Mode

We used the alternating direction method of multipliers (ADMM) framework to solve
this optimization problem, and the corresponding augmented Lagrangian function was
as follows:

L = ‖Ast‖ε + λ‖SΩ
st‖1 + β‖SΩ−

st‖1 +
〈
Y,Ast + S st −Dst〉+ µ

2
‖Ast + S st −Dst‖2

F (14)

where Y and µ > 0 denoted the Lagrange multiplier and penalty factor, and λ and β were
regularization parameters, which were used to coordinate the balance of each component.
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ADMM decomposed the minimization problem L into several sub-problems, and the
required Ast and S st could be obtained through continuous iteration and updating. By
solving the following subproblems, Ast and S st were updated as follows:

(
Ast)k+1

= argmin‖Ast‖ε +
µk

2
‖Ast + (S st)

k −Dst +
Yk

µk ‖
2

F
(15)

(
SΩ

st)k+1
= argminλ‖SΩ

st‖1 +
µk

2
‖
(
Ast)k+1

+ SΩ
st −Dst +

Yk

µk ‖
2

F
(16)

(
SΩ−

st)k+1
= argminβ‖SΩ−

st‖1 +
µk

2
‖
(
Ast)k+1

+ SΩ−
st −Dst +

Yk

µk ‖
2

F
(17)

(
S st)k+1

=
(
SΩ

st)k+1
+
(
SΩ−

st)k+1 (18)

By introducing the relevant parameters, (15) could be solved by Algorithm 1. After
updating Ast, S st could be solved by combining (16), (17), (18) and the soft threshold
operator. The corresponding results are as follows:

(
S st)k+1

=
(

SΩλµ−1 + SΩ−βµ−1

)(
Dst −

(
Ast)k+1 − Yk

µk

)
(19)

where SΩ(.) is the soft threshold operator for cloudy regions:

SΩε(x) = sign(x)×max(|x| − ε, 0) (20)

The updates of Y and µ are as follows:

Yk+1 = Yk + µk
((
Ast)k+1

+
(
S st)k+1 −Dst

)
(21)

µk+1 = ρµk (22)

Finally, the specific process of solving the model by ADMM was shown in Algorithm 2.

Algorithm 2 ADMM for solving the proposed model.

Input: Dst, λ, β;
Initialize:

(
S st)0

=
(
Ast)0

= Y0 = 0, µ0 = 0.00020, ρ = 1.05, k = 0 tol = 1e−7;
While not converge do
1: Update

(
Ast)k+1 by Algorithm 1;

2: Update
(
S st)k+1 by (19);

3: Update Yk+1 by (21);
4: Update µk+1 by (22);
5: Check the convergence conditions
‖(Ast)

k+1
+(S st)

k+1−Dst‖F
‖Dst‖F

< tol or ‖
(
S st)k‖0 = ‖

(
S st)k+1‖0;

6: Update k: k = k + 1;
7: Output:

(
Ast)k,

(
S st)k.

2.5. Steps of the Method

Figure 6 showed the entire course of infrared cirrus detection scheme based on pro-
posed measure, which was described as follows:

1. Inputting the image. Given the current frame fi ∈ Rn1×n2 and its adjacent 2× s frames
fi+y ∈ Rn1×n2(y ∈ (−s, 1) ∪ (1, s)). Each frame of the image traversed the whole
image through a sliding window of size m×m to obtain an Num image patch;
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2. Construction of the STT model. For each image of fi ∈ Rn1×n2 , an STT Dst ∈ Rm×m×h

was constructed according to the proposed model, where h = 9× (2× s + 1);
3. Using visual saliency to separate cloudy areas and cloudless areas. For each frontal

slice of the input STT Dst, the visual saliency was calculated respectively, and STT
SΩ

st ∈ Rm×m×h and SΩ−
st ∈ Rm×m×h containing the prior information of the cirrus

is obtained;
4. Separate background and cirrus. Taking STT Dst as the input tensor, Dst was decom-

posed into background patch tensor Ast and cirrus patch tensor S st by Algorithm 2;
5. Image reconstruction and cirrus detection. The obtained background patch tensor

Ast and cirrus patch tensor S st were reconstructed to obtain the background image
fa ∈ Rn1×n2 and the cirrus image fs ∈ Rn1×n2 . Then the detection result was obtained
by one or more set threshold segmentation.
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3. Experimental Results and Analysis
3.1. Experimental Preparations

This paper tests six representative cirrus infrared image sequences, as shown in
Figure 7.

The experimental data are derived from the near-infrared band of the Landsat8
dataset [52]. From the diagram, Sequence a included some cirrus with a large imaging area
and dense distribution. Sequence b is dotted, densely distributed in the upper right, and
sparsely distributed in the lower left. Sequence c is a sparsely distributed massive cirrus
image. Sequence d is a punctate cirrus concentrated in the lower right. Sequence e is a
cirrus showing a silky state. Sequence f is a cirrus image with dense distribution of the
whole image. These six sequences contain the form and distribution of most cirrus, making
the experimental results more universal.

To receive appraisal for the proposed method objectively, it should be compared
with the false alarm source detection method based on other optimization-based meth-
ods. Objective evaluation methods include receiver operating characteristic (ROC) curve,
Precision-Recall (PR) curve, and F-measure.
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Figure 7. (a–f) represent 6 original infrared images of different scenes.

3.2. Evaluation Metrics

The ROC curve and the PR curve are supervised evaluations, and real cirrus images
need to be manually marked. The corresponding concepts of TP, FP, FN and TN are
illustrated by the Table 1.

Table 1. Concepts of TP, FP, FN and TN.

Actual Positive Actual Negative

predicted positive TP FP

predicted negative FN TN

TP represents the number of pixels that are considered to be cirrus in the detection
results and marked as cirrus in the ground truth. FP represents the number of pixels that are
considered to not be cirrus in the detection results but marked as cirrus in the ground truth.
FN represents the number of pixels that are considered to not be cirrus in the detection
results but marked as cirrus in the ground truth. TN represents the number of pixels that
are considered to not be cirrus in the detection results and not marked as cirrus in the
ground truth.

The above four indicators cannot accurately represent the performance of the detection
method. A detection measure with a large TP value may also have large FN and FP
values. Therefore, it is necessary to consider combining multiple indicators to evaluate the
performance of detection. TPR and FPR are two commonly used evaluation indexes, and
the corresponding definitions are as below:

TPR =
TP

TP + FN
(23)
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FPR =
FP

FP + TN
(24)

The ROC curve sets the abscissa as FPR and the ordinate as TPR. When a ROC curve
obtained by a certain detection measure is close to the upper left corner, the area under
the curve (AUC) is large, indicating that the measure has excellent detection performance.
However, if the detection result image is fully marked as the cirrus, the TPR and FPR will
be set to 1, so the evaluation effect of the ROC image is still good. In this case, we need
another curve to evaluate the detection measure.

PR curves set the abscissa as recall and ordinate as precision. The corresponding
definitions are as below:

precision =
TP

TP + FP
(25)

recall =
TP

TP + FN
(26)

When the PR curve is close to the upper right corner, the area under the curve is large,
indicating that the method has excellent detection performance.

Although there is no necessary relationship between recall and precision, the two
indicators are mutually restrictive. A useful measure to evaluate the conflict between
them is F-measure (also known as F-score). F-measure is the weighted harmonic mean of
precision and recall and can be described as follows:

F−measure =

(
α2+1

)
(precision× recall)

α2 × precision + recall
(27)

when α2 is set to 1, the F-measure is also called F1-score.

3.3. Parameter Analysis

The proposed model contains some key parameters, such as image patch size, and
regularization parameters λ and β. These parameters will affect the detection performance
of the proposed model for different forms of cirrus and the robustness to various scenarios.
Therefore, To achieve better performance in different scenarios, appropriate parameter
settings should be selected. We selected the appropriate parameter by single variable
measures and comparative experiments, and then analyzed the result according to the
ROC curve and PR curve. In the experiment, when studying the optimization of a certain
parameter, other parameters are fixed, and one of the parameters is adjusted.

3.3.1. Patch Size

The sliding window size represents the positive slice size of the STT, so the image
patch size not only has a significant influence on the accuracy of the cirrus detection, but
also affects the calculation time. On the one hand, we want to use larger image patches
to ensure that the cirrus is sparse enough in a forward slice, but larger image patches will
increase the computational complexity of singular value decomposition, thus increasing the
computational time. On the other hand, a smaller image patch will reduce the processing
complexity of the model, but it will also reduce the sparsity of the volume cloud, resulting
in the need for more iterations to reach the iterative stopping condition in the process of
optimization. To study the influence of image patch size, we changed the patch size from
40 to 80. The ROC curve and PR curve of the 6 test sequences are shown in Figures 8 and 9.
Considering the ROC curve, PR curve and running time, the size of the image patch is set
to 60.
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3.3.2. Regularization Parameter

In the proposed model, the regularization parameters λ and β control the balance
between low-rank components and sparse components as the weights of cloudy and cloud-
free regions. According to the empirical value, We set β = k× λ. A larger k means there are
more small clouds in the cloud-free area. However, the mask in our study contains mostly
cloudy areas, and only a few clouds may be in the cloud-free area, so the k is set to 25.

For the regularization parameter λ in the cloudy region, similar to the proposed tensor
model for infrared detection, λ is set to λ = L/

√
min(n1, n2)× n3. Change L from 0.02 to

0.1. The ROC curve and PR curve of the 6 test sequences are shown in Figures 10 and 11.
For a large-volume cirrus, changing the regularization parameter has little effect on the
detection ability, but the corresponding operation time will increase due to the increase in
optimization times. For a smaller cirrus, when λ continues to increase, the components
belonging to the cloud will be separated from the low-rank components, resulting in a
decrease in detection performance. Considering the ROC curve, PR curve and running
time, when λ = 0.02, the best performances can be obtained.
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3.4. Method Comparison

It is difficult to qualitatively analyze the results of cirrus detection with different
methods. (Some methods may perform better in local cirrus detection and perform poorly
in other locations of the image. In this case, qualitative analysis is difficult to compare
the advantages and disadvantages of various methods). Therefore, in this section, the
quantitative analysis method will be used to compare the methods. In the proposed
method, patch size is set to 60, regularization parameter λ = 0.02, and we use 5 frames
(2 frames before the current frame, the current frame, and 2 frames after the current frame)
to build a tensor. The comparison indicators are the ROC curves, PR curves and F-measure
values of various methods. The following methods are compared: IPI [44], LOGTFNN [30],
PSTNN [6], TMESNN [29], KSVD fractal [28] and DivisorstepTP [53].
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Figures 12 and 13 shows the ROC curve and PR curve of all methods. As discussed
above, the traditional optimization-based method uses a single regularization parameter,
and the detection effect is poor for a larger cirrus. The method proposed in this paper can
not only detect a large cirrus, but also has better detection performance than other methods
based on optimization for a small cirrus with different distributions.

Table 2 shows the F-measure the above methods in 6 test image sequences. The bold
values indicate the maximum value. It can be seen that the proposed method maintains a
good detection effect.

Table 2. F-measure of six methods.

. IPI LOGTFNN PSTNN KSVD Fractal TMESNN DivisorstepTP Proposed

Seq1 0.1257 0.3324 0.0059 0.6303 0.1430 0.2986 0.8374

Seq2 0.7008 0.4495 0.5711 0.7478 0.6832 0.3420 0.7612

Seq3 0.2786 0.3706 0.2554 0.5563 0.1777 0.1387 0.8129

Seq4 0.7645 0.6785 0.7645 0.7960 0.6740 0.5842 0.8443

Seq5 0.6863 0.5587 0.3942 0.7548 0.6129 0.5405 0.8874

Seq6 0.6303 0.6769 0.7395 0.8205 0.6463 0.5849 0.8488
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4. Discussion

For cirrus detection, researchers have proposed methods based on physical model
classes, machine learning and low-rank sparse decomposition. However, the use of physical
model methods requires atmospheric radiation, geophysics and other related knowledge,
while machine learning methods require a certain amount of data and corresponding labels
as training samples, which is costly. The low-rank sparse decomposition measure fully
utilizes the attributes of background and cirrus, which is closer to the essence of the image.
In particular, the derived TRPCA model transferred the infrared image into a third-order
tensor, and then used the low-rank nature of the infrared background and sparsity of the
cirrus for detection, which results in a great detection accuracy.

The traditional IPT model is used to detect small targets. Compared with small targets,
cirrus are larger and have a certain shape. Therefore, it is not feasible to directly apply the
IPT model to cirrus detection. To ensure that the infrared tensor model can be successfully
used for cirrus detection, we propose a cirrus detection method based on non-convex tensor
rank surrogate. Firstly, to enhance the low rank of the cirrus tensor, time information is
introduced to construct an STT model, which enhances the sparsity of the cirrus in a certain
range. Secondly, after the experiment, it is found that a single balance coefficient cannot
achieve the optimization solution. After that, the visual saliency is introduced as a priori
to divide the cloudy and cloudless regions, and different balance coefficients are given.
To solve the measure, an optimization method based on ADMM is designed. Finally, the
detection results are segmented by one or more adaptive thresholds to obtain the final
detection results.

This method is quantitatively compared with IPI, LOGTNN, TMESNN, PSTNN, KSVD
fractal and DivisorstepTP. In Figures 12 and 13 and Table 2, the ROC curve for the proposed
method is closer to the upper left corner, and the PR curve of this method is closer to
the upper right corner. In Table 2, the F-measure shows that the proposed method can
achieve the best performance in all test sequences. In summary, the NTS measure has a
great accuracy for cirrus sources.

5. Conclusions

We proposed an NTS-based cirrus detection measure, which focused on the accurate
representation of background rank of infrared image and sparse enhancement of cirrus. For
the purpose of representing the tensor rank, we used t-SVD decomposition and extended
the non-convex surrogate based on Laplace function. To enhance the sparsity of the cirrus,
by introducing spatial-temporal patches, an STT model conforming to the characteristics
of infrared images was obtained through experimental comparison. By using the visual
saliency of cirrus, a mask based on cirrus was generated, so that the improved model could
be used for cirrus detection, which laid a foundation for the detection of false alarms in
a similar large volume. To solve the model, an optimization method based on ADMM
was designed. By combining the optimization function with ADMM, the problem was
solved and its iteration was optimized. The experimental results showed that the measure
could detect different forms of cirrus in different scenarios, and its quality indicators
such as ROC curve, PR curve and F-measure also showed better performance than other
optimization-based algorithms.

However, our proposed method is based on sequence images, and the construction of
a spatial-temporal tensor is complex. In the process of solving the model, multiple singular
value decomposition and optimization iterations are needed. Therefore, there is a lack
of real-time performance. Additionally, our method is designed for small sample data
and lacks scene applicability compared to deep learning methods. We can improve its
performance by combining traditional features with deep learning in the future.
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