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Abstract: The expansion of urban areas has resulted in a substantial increase in demand for water
ecosystem services. To address this issue, this study aims to investigate how the interaction between
urbanization and water ecosystem services changed in response to different levels of urbanization in
the Dongjiang River Basin from 1985 to 2020. The research examines four water ecosystem services
(water yield, soil retention, and water purifications of N and P) and three types of urbanizations
(population urbanization, economic urbanization, and land urbanization) to identify spatial het-
erogeneities among developed urban areas, developing urban areas, and rural regions, as well as
their dynamic interactions. The findings indicate that water ecosystem services and urbanizations
tend to be spatially polarized, with high values downstream and low values upstream. Although
they have become more closely aligned, there is a local mismatch under basin-level homogeneity.
Urbanization has migrated and centralized in a southward direction, while water ecosystem services
have moved westward. This difference of migration results in an increasing trade-off in the west band
of Dongjiang River. In particular, the developing urban area has been strengthening the function of
the transition zone between the developed urban area and rural area, resulting in a dramatic decrease
in synergy. The synergy of the rural area dominates the increasing synergy of the entire basin, but the
developed urban area tends to lower the water ecosystem services that lag behind urbanization. The
study recommends that policymakers consider different urban levels when developing urbanization
plans and water resource management strategies, and implement measures to maintain the synergy
in the rural area and mitigate the trade-off in the developing area.

Keywords: urban levels; InVEST; synergy; trade-off; spatial heterogeneity

1. Introduction

Water is a critical resource that sustains the entire Earth’s ecosystem and provides
essential ecological services that support natural ecosystem structures, processes, and
functions, while also maintaining human life and production activities [1]. The scarcity of
water resources, deterioration of water ecosystems, and their impact on other ecosystems
have become global challenges in recent years, making the study of water ecosystem
services increasingly important [2]. China’s rapid urbanization since the reform and
opening up period has resulted in an increasing demand for water ecosystem services, and
achieving sustainable development between urbanization and water ecosystems has been
extensively studied.
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Water ecosystem services refer to the natural environmental conditions and utilities
that are essential for human survival, maintained by the water ecosystem and its ecological
processes [3,4]. These services focus broadly on sustaining the environment and providing
benefits to humans [5,6]. The Millennium ecosystem assessment (MA), as reported by the
United Nations, has categorized ecosystem services into four functions: supply, regulation,
culture, and support [4,7]. Several methods, including the evaluation method, material
quality method, and energy method, have been applied to evaluate these functions [8–10].
Among these, the material quality method has been widely used due to its ability to
retrieve the amount of ecosystem services accurately and intuitively. Notably, the Integrated
Valuation of Ecosystem Services and Trade-offs (InVEST) model is one of the most effective
tools for evaluating various ecosystem services, as it can integrate both the evaluation
method and the material quality method [11]. For instance, Yang et al. [12] used the InVEST
model to evaluate the water yield service in South China and obtained satisfactory results.
The SDR module from InVEST was also applied by He et al. [13] to study the spatial
distribution of soil erosion in the Qihe River Basin in the Taihang Mountains in China.
Additionally, Yang and Huang [14] analyzed and simulated the water yield and purification
services of the Bosten Lake basin in the arid region of Northwest China based on InVEST.

Urbanization poses a significant threat to water ecosystem services, and its impact
has become a major research topic in geography. Researchers have studied the relation-
ship between water yield and urbanization in several regions, including the Beiyun River
Basin [15] and Xiangjiang River Basin [16] in China. It was found that urban expansion
would lead to a certain increase in water yield despite high water demand [16]. Urban
green spaces have been found to play a positive role in water regulation and purifica-
tion [17]. However, previous studies lacked dynamic interaction in terms of spatial and
local relationships and ignored the influence of different urbanization levels. Due to the
positive relationship between urbanization and water yield [18], the mismatch between
regions with high levels of urbanization (demander) and high-water ecosystem service
(supplier) was often overlooked [19]. Therefore, it was necessary to study the interactive
processes between urbanization and water ecosystem services in space to obtain more
information on how water ecosystem services respond to difference urbanization levels
and whether this response persists, changes, or even reverses.

Various methods, including the correlation coefficients [20], trade-off degree [6], and
spatial autocorrelation model [21], have been employed to examine the trade-off and syn-
ergy between urbanization and ecosystem services. However, the correlation coefficients
and trade-off degree methods overlook the spatial clustering modes and dependencies
between urbanization and ecosystem services. The bivariate spatial autocorrelation model
can overcome this limitation and measure the spatial clustering patterns between urbaniza-
tion and ecosystem services. Thus, the bivariate spatial autocorrelation model was applied
in this research to investigate the local variations in cluster patterns between urbanization
and water ecosystem services, providing more detailed insights into the developed urban
area, developing urban area and rural area.

The Dongjiang River Basin (DRB) represents a critical water resource in the eastern
region of the Pearl River Basin and is affected by various water ecology issues of significant
impact. Given its importance as a fundamental constituent of the Pearl River Delta’s
economy, this area has undergone rapid urbanization, exhibiting notable spatial variation
across the basin. This study employs the DRB as the research region and assesses the
spatiotemporal heterogeneity of water ecosystem services and urbanization from 1985 to
2020, utilizing the InVEST model and grid analysis. The study utilizes geographically
weighted centers and standard deviation ellipses to track their movements over time from
a global perspective. Furthermore, it explores the spatial relationship between urbanization
and water ecosystem services through a bivariate spatial autocorrelation model, with
the goal of providing a scientific reference for the sustainable development of watershed
urbanization and water ecology.
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2. Study Area

The Dongjiang River is located in southern China (113◦25′–115◦53′E, 22◦27′–25◦12′N,
as depicted in Figure 1) and is one of the three primary water systems in the Pearl River
Basin. Originating from the Yajibo Mountain in Jiangxi Province, the river flows through
the cities of Heyuan, Huizhou, and Dongguan before eventually reaching the Pearl River
Delta and entering the sea via the northern and southern waterways. The Dongjiang
River Basin (DBR) covers a total area of 3.6 × 104 km2 and has a maximum elevation
of 1489 m. The DRB is characterized by a subtropical monsoon climate, with an annual
average temperature of approximately 20 ◦C. The highest temperatures occur in July and
August, reaching up to 35 ◦C. The annual precipitation ranges from 1500 to 2500 mm, with
the majority of the rainfall occurring from May to September.
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Figure 1. The study area. (a) The location of the Dongjiang River Basin (DRB) in China. (b) The
topography and administrative regions in the DRB. (c) The land use/land cover distribution in the
DRB in 2020.

The DRB exhibits significant terrain differences and corresponding urbanization pat-
terns, making it an ideal area to explore differences in urbanization models. The level
of urbanization in the DRB increases from upstream to downstream, transitioning from
economically underdeveloped regions to the most developed areas in China, with popula-
tion concentration increasing towards the downstream areas. Additionally, the DRB is a
relatively complete and closed system with less interference from external water systems.
The hydrological and geomorphological features within the basin exhibit significant dif-
ferences, transitioning from mountainous areas in the upstream to plain areas with river
networks in the downstream. The spatial heterogeneity of the water network structure is
strong, making it suitable for studying water ecological spatial heterogeneity. Therefore,
selecting the Dongjiang River Basin as the study area is conducive to analyzing the spatial
relationship between urbanization and water ecological system services.

Studying the relationship between water ecology and urbanization has high appli-
cation value, particularly with regards to the most crucial source of drinking water in
the Guangdong–Hong Kong–Macao Greater Bay Area, which is one of the largest ur-
ban agglomerations globally. Under the pressure of water supply for megacities such as
Guangzhou, Dongguan, Shenzhen, and Hong Kong, the per capita water resources are
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just one-third of the national average. Consequently, the water supply capacity of the
Dongjiang River has reached its limit, while the demand for water continues to rise, result-
ing in a tense supply–demand contradiction. Therefore, optimizing the aquatic ecological
structure and function from the perspective of urban water spatial regulation to solve the
problem of water supply–demand contradiction is an urgent demand under the sustainable
development strategy of the Guangdong–Hong Kong–Macao Greater Bay Area.

3. Materials and Methods
3.1. Materials

This study employed the InVEST model to evaluate four types of water ecosystem
services. To collect multiple datasets from various sources, we referred to Table 1 for input
parameters.

The Digital Elevation Model (DEM), named the Global Digital Elevation Model
(GDEM), was acquired from the Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER). It was released jointly by America’s National Aeronautics and Space Ad-
ministration (NASA) and Japan’s Ministry of Economy, Trade, and Industry (METI) at a spa-
tial resolution of 30 m. In 2019, Version 3 was issued with additional stereo pairs, revealing
significant improvements from Versions 1 and 2 (https://asterweb.jpl.nasa.gov/gdem.asp
(accessed on 10 May 2022)). We downloaded the mirrored GDEM in China from the
Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 24 April 2022)). Addition-
ally, according to previous studies [22,23], the river networks were extracted via DEM, with
small tributaries being removed to reflect the main structure of the network.

This study utilized the annual Land Use and Land Cover classification (LULC) data
with a spatial resolution of 30 m [14]. The land cover types were classified into seven
categories, including cropland, forest, shrub, grassland, water, barren, and impervious land.
The datasets from 1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2020 were used in this study,
with a five-year phase considered reasonable to reflect urban development track based on
previous studies [16,24,25]. Although rapid urbanization occurred in DRB starting from the
early 1980s, it was challenging to acquire standard data from that time period. Therefore,
1985 was chosen as the starting year, as it was the earliest year from which all necessary
materials could be obtained.

The sand, silt, clay, and organic carbon contents were obtained from the Harmonized
World Soil Database (HWSD) at a spatial resolution of 1 km. Meanwhile, root depth data
were acquired from the International Soil Reference and Information Center (ISRIC) at a
spatial resolution of 30 m. Prior to calculating the soil retention, all data were resampled to
30 m.

Meteorological data, including precipitation and temperature, were extracted from
32 meteorological stations around the study area for the years 1985, 1990, 1995, 2000,
2005, 2010, 2015, and 2020. As precipitation is known to exhibit variation with elevation
due to the influence of topography on atmospheric processes, the CoKriging method
was employed to develop a spatial model of the relationship between precipitation and
DEM. The resulting model was then used to interpolate precipitation values at unsampled
locations. Notably, this method yielded more precise interpolated precipitation values than
traditional interpolation methods that do not consider the topography.

The population demographic statistics and GDP statistics were collected from the
city statistical yearbook for the years 1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2020.
The data were gathered from administrative units within the DRB, which includes Shen-
zhen, Dongguan, Guangzhou, Huizhou, Heyuan, Shaoguan, Ganzhou, and Meizhou.
Administrative vector data attributes, obtained from the National Geomatics Center of
China (http://bzdt.ch.mnr.gov.cn/index.html (accessed on 10 May 2022)), were used to
assign population and GDP. These data were then rasterized using the grid spatialization
method [26].

To classify urbanization levels, nighttime lights (NTL) data were utilized. Wu et al. [27]
developed the time-series DMSP-OLS-Like data of 1km to address cross-sensor inconsisten-

https://asterweb.jpl.nasa.gov/gdem.asp
http://www.gscloud.cn/
http://bzdt.ch.mnr.gov.cn/index.html
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cies by integrating DMSP-OLI (1992–2013) and SNPP-VIIRS (2013 to present). According
to Zhang et al. [28], an NTL value greater than 50 was classified as an urban area and less
than 50 as a rural area. Urban–rural boundaries were established in 1992, 1995, 2000, 2005,
2010, 2015, and 2020, and three urbanization levels were divided into developed urban
area, developing urban area, and rural area. For example, in 2020, if an area was urban in
both 2020 and 2015, it was considered a developed urban area. If it was urban in 2020 but
rural in 2015, it was categorized as a developing urban area. Otherwise, it was deemed a
rural area. It is important to note that urbanization levels were not included in the data
for 1985 and 1990. Additionally, due to the loss of NTL data before 1992, the urban–rural
boundary in 1990 was replaced with the boundary established in 1992.

Table 1. Data list.

Data Type Source

DEM Geospatial data cloud
LULC [14]

Soil information HWSD & ISRIC
Meteorological data 32 meteorological stations
Population and GDP City statistic yearbook
Night light images DMSP-OLS-Like Data [27]

3.2. Methods

This study aimed to evaluate the spatial interactions between water ecosystem services
and urbanization across different urban levels in the DRB. To achieve this, the Compre-
hensive Ecosystem Services Index (CESI) was created using the InVEST model to evaluate
water yield, soil retention, and water purification of phosphorus and nitrogen. Addition-
ally, the Comprehensive Urbanization Index (CUI) was created using three urbanization
indicators, including population density, GDP density, and built-up rate. For the basin
scale, spatial migration trend analysis was conducted using the geographically weighted
center and standard deviation ellipse to examine the general movement and directional dif-
ference of urbanization and water ecosystem services. For the local scale, bivariate spatial
autocorrelation analysis was conducted to reveal the spatial heterogeneity of interaction
between water ecosystem services and urbanization in response to different urban levels
(developed urban, developing urban, and rural) (Figure 2).

All data were reprojected to the Albers equal area projection to account for the area
effect. Parameters related to water ecosystem services were interpolated to a 30 m resolution
using the Kriging method since most of the original data were at that resolution. On
the other hand, parameters related to urbanization were rasterized to a 1 km resolution
using the grid spatialization method [26]. Finally, both the water ecosystem service and
urbanization data were unified into a 1 km resolution by Kriging for interactive analysis.

3.2.1. Water Ecosystem Services Assessment Based on the InVEST Model

The InVEST model is a comprehensive tool that integrates various biophysical and
socio-economic data to provide a range of ecosystem service assessment capabilities, and
therefore is widely used [24,29,30] to evaluate water ecosystem services. This model was
used to assess the four water ecosystem services, namely water yield, soil retention, and
water purification of phosphorus (P) and nitrogen (N), using the corresponding modules
of the InVEST model. Based on previous studies [6,31], the values of these services were
normalized and combined into a CESI index that represents the overall level of water
ecosystem services provided. Because all four services were deemed essential, they were
given equal weight [6,32].
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CESI =
4

∑
i=1

ESi (1)

where ESi is one of the four ecosystem services introduced as follows:

1. Water yield

The Water Yield model is one of the core modules in the InVEST model, which is
designed to quantify the water provision ecosystem service by estimating the amount and
timing of surface water flow from a landscape. It is based on the principle of the water
balance equation (Equation (2)), which calculates the difference between the amount of
water that enters and leaves a given area. The module considers various factors that affect
water yield, including precipitation, evapotranspiration, soil water holding capacity, and
land cover type. Further information about the water yield module can be found in the
InVEST user guide [33].

Y(x) =
(

1− AET(x)
P(x)

)
P(x) (2)

where Y(x) is the annual water yield of pixel x, AET(x) is the actual annual evapotranspi-
ration of pixel x on the corresponding LULC, and P(x) is the annual total precipitation of
pixel x.

2. Soil retention

The Sediment Delivery Ratio (SDR) module was used to quantify the proportion of
sediment generated within a watershed that is delivered to a river network. The module
considers the interactions between the land use/land cover, soil properties, rainfall, and
topography to predict the potential sediment yield of a watershed. This can be expressed
by Equation (3).

SR = RKLS−USLE (3)
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RKLS = R× K× LS (4)

USLE = R× K× LS× C× P (5)

where SR is soil retention, RKLS is the potential soil loss, USLE is the actual soil loss, R is
the rainfall erosivity, K is the soil erodibility, LS is the slope length gradient factor, C is the
cover management factor, and P is the support practice factor.

The Universal Soil Loss Equation (USLE) is a widely used model in InVEST to calculate
the annual average rate of soil loss caused by rainfall and runoff at the pixel size. It is based
on the idea that soil erosion is caused by the interaction of several factors, such as the impact
of soil and water conservation practices (P) as well as specific crop or vegetation cover (C).
For mountainous areas, adjustments were made to P and C based on the land use/land
cover types (Table 2), as outlined in previous studies [33–35]. For other parameters, please
refer to reference [6].

Table 2. The referencing values of the cover management factor (C) and support practice factor (P).

Land Use/Land Cover C P

Cropland 0.5 1
Forest 0.05 0.3
Shrub 0.03 0.2

Grassland 0.06 0.2
Water 0 0
Barren 0.1 0.1

Impervious 0 0

3. Water purification of N and P

The Nutrient Delivery Ratio (NDR) module is one of the modules in the InVEST
model that is designed to estimate the nutrient export and delivery from a watershed to the
downstream water bodies. The module estimates nutrient loads from different sources and
combines it with land use/land cover data and hydrologic and erosion data to simulate
the transport of nutrients through the watershed, as shown in Equation (6). It also takes
into account the nutrient retention capacity of the watershed, such as nutrient uptake
by vegetation, nutrient retention in the soil, and nutrient retention in wetlands, before
estimating nutrient delivery to downstream water bodies. In this study, nitrogen (N) and
phosphorus (P) were chosen as the key nutrients.

Ax = Hx · Px (6)

Hx = Nx/Nw (7)

Nx = log
(
∑u Yu

)
(8)

where Ax is the pollution load value of pixel x, Hx is the hydrological sensitivity, Px is the
output coefficient, Nx is the runoff coefficient, Nw is the mean runoff coefficient over the
basin, and ∑u Yu is the total water yield from the upstream basin fed into pixel x.

3.2.2. Urbanization Assessment

Urbanization was identified through four dimensions, including population urbaniza-
tion, economic urbanization, land urbanization, and social urbanization [36,37]. However,
social urbanization is abstract and difficult to qualify spatially. As population, economic,
and land urbanizations can reasonably reflect social urbanization, we exclude social urban-
ization from our analysis. Therefore, we used population density, GDP density, and built-up
rate as proxies for measuring population, economic, and land urbanization, respectively,
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based on previous studies [28,37,38]. These parameters were then spatialized and mapped
using LULC at 1 km resolution.

The three indicators were normalized and aggregated into CUI using Equation (9).

CUI =
1
3
(

PU′ + EU′ + LU′
)

(9)

where PU′, EU′, and LU′ are normalized population urbanization, economic urbanization,
and land urbanization, respectively.

3.2.3. Spatial Migration Trend Analysis

This study explored the distribution shape, migrated direction, and trends of urban-
ization and water ecosystem services using two analytical methods: the geographically
weighted center and standard deviation ellipse. The former was utilized to analyze the
general movement of an object [39], while the latter measured the directional distribution
of movement and was widely applied to sociological and geographical spatial analy-
sis [40–42]. These equations have been extensively applied in determining impervious
surface expansion [43,44] and pest distribution analysis [45].

1. Geographically weighted center

The geographically weighted center method is a spatial analysis technique used to
identify the central point of a distribution for the urbanization (CUI) and water ecosystem
services (CESI), as shown in Equation (10). In order to estimate the tracking routes of
these centers over time, the least square method is often utilized, which provides valuable
insights into the overall migrated orientation of urbanization or water ecosystem services.
Moreover, the angles of tracking routes are used to quantify changes in orientation.

Xw =
∑n

i=1 wixi

∑n
i=1 wi

, Yw =
∑n

i=1 wiyi

∑n
i=1 wi

(10)

where xi and yi are the coordinate pairs of feature i, wi is the geographical weight of CUI
or ECSI, and n is the number of features. The weighted values are based on their distance
from the center point, with closer cells receiving higher weights.

2. Standard deviation ellipse

The standard deviation ellipse is a graphical representation of the spread and ori-
entation of a two-dimensional dataset. It determines the standard deviation of x- and
y-coordinates relative to feature center, resulting in the derivation of the axes of the ellipse.
The standard deviation ellipse can provide information on the dispersion and shape of the
dataset, as well as the correlation between the two dimensions. The difference in major and
minor axes indicates the direction of oblateness, where a larger difference signifies a more
significant direction. The size of the area enclosed by the ellipse is indicative of spatial
range, with larger areas suggesting dispersion and smaller ones indicating clustering.

3.2.4. Spatial Trade-Offs and Synergies Analysis

The bivariate Moran’s Index, as one of the bivariate spatial autocorrelation models [46],
is a statistical method used to measure the spatial autocorrelation between urbanization
and water ecosystem services simultaneously, which was commonly employed by re-
searchers [24,37,47] to analyze the spatial correlation between multiple variables.

Bivariate Moran’s Index is based on the Moran’s I statistic, which is a measure of
spatial autocorrelation for a single variable. The bivariate version (Equation (11)) of the
Moran’s I statistic is used to measure the spatial dependence between two variables.

IL = ze
i ∑n

j=1 wijzu
j (11)
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where IL is the bivariate Moran’s index, n is the number of features, wij is the spatial weight
matrix, ze

i is the CESI of feature i, and zu
j is the CUI of feature j.

The output of the analysis is a single coefficient (IL) that ranges from −1 to 1. If IL is
close to −1, it implies trade-off correlation and indicates whether the location has a high
level of water ecosystem services surrounded by a low urbanization level (HL) or whether
it has fewer water ecosystem services surrounded by high urbanization (LH). If IL is close
to 1, it implies synergetic correlation and indicates whether the location has a high level of
water ecosystem services surrounded by a high urbanization level (HH) or whether it has
fewer water ecosystem services surrounded by lower urbanization (LL). If IL is close to 0, it
indicates no spatial correlation. Therefore, four spatial clusters were identified in Figure 3.
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Figure 3. Spatial clusters and relationship between water ecosystem services and urbanization.

4. Results
4.1. Spatio-Temporal Variations in Water Ecosystem Services

The total water yield of the DRB experienced fluctuations and a decrease from 1985
to 2020 (Figure 4a). Specifically, the water yield dropped by 38.9%, from 3.7 × 1010 m3 in
1985 to 2.2 × 1010 m3 in 2020. Although there was an increase of 50% during the 1990s,
it continued to fluctuate until it reached a minimum level between 2015 and 2020. The
trend of soil retention mirrored that of the water yield, with a decline from 8.8 × 109 t to
7.0 × 109 t during 1985–2020, representing a reduction of 20.4% (Figure 4a). There was also
a rebound of 13.6% in the 1990s, followed by a drop of 22.7% from 2000 to 2020.
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Figure 4. Temporal variations of single water ecosystem service. (a) Variations of water yield and soil
retention. (b) Variations in water purifications of N and P.

Water purification services showed a contrasting trend for N and P output. The N
output demonstrated a wavelike decrease of 2.6% from 8.2 × 106 t in 1985 to 8.0 × 106 t
in 2020 (Figure 4b). In contrast, the P output exhibited an increase of 9.9%, rising from
7.4 × 105 t to 8.1 × 105 t (Figure 4b). Taking both outputs into account, it is evident that the
water purification services have become degraded due to the higher increment of P output.

In terms of spatial distribution, the water yield and purification services exhibited
high values in the southwest, while registering low values in the northeast (Figure 5a).
However, soil retention presented an opposite trend (Figure 5b). In the northeast, all service
values indicated a downward trend from 1985 to 2020, gradually weakening towards the
southwest (Figure 5e–h). Specifically, the water yield and purification of P were reversed
in the southwest. Conversely, the services of water yield and soil retention improved in
the southwest, but degraded in the northeast. Meanwhile, water purification services
improved in the northeast and became degraded in the southwest.

Considering all the services, the CESI demonstrated a high value in the southwest
that progressively decreased toward the northeast (Figure 6a). This finding was consistent
with the distribution of water yield and purification of N and P, but contradicted the trend
for soil retention. The CESI decreased in the northeast and increased in the southwest
(Figure 6b), in line with the trend observed for all ecosystem services.
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4.2. Spatio-Temporal Characteristics of Urbanization

Only the CUI is shown in Figure 7 because the three urbanization types were consis-
tently distributed. The CUI exhibited a high value in the southwest and decreased towards
the northeast. Urbanization was most concentrated in the DRB delta, which experienced
the fastest growth in cities. The level of urbanization in the DRB displayed an incessant
upward trend, with downstream regions developing substantially faster than the middle
and upper reaches.
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Figure 7. The spatial distribution of (a) CUI in 2020 and its annual mean trend (b) during 1985–2020.

Compared to water ecosystem services, urban distribution remained relatively uni-
form, displaying high values in the southwest and low values in the northeast. This
suggested that highly developed areas offered relatively high-quality ecological services.
Additionally, trend analysis indicated a similar pattern, with the southwest exhibiting a
higher rate of urban development and ecosystem service improvement than the northeast.
This implied that rapid urban development corresponded to improved water ecological
services.

4.3. Spatial Migration Trend Analysis

The geographically weighted center of the CUI was situated in the downstream area
of the DRB, while the CESI was centered in the middle reaches, proximal to the geometric
center of the entire watershed (Figure 8). Both centers exhibited temporal shifts, and their
trends were comparable, indicating that they both tended to migrate downstream in a
northeast–southwest direction, with the CUI moving a greater distance than the CESI.

CUI displayed a relatively high migration rate before 2000, which subsequently de-
creased rapidly and rotated in a clockwise direction. Similarly, CESI weakened after
1995 and migrated clockwise. The greatest migration transpired between 1990 and 2000,
encompassing both CUI and CESI.



Remote Sens. 2023, 15, 2265 13 of 21Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 8. Migration routes of geographically weighted center. These coordinates were normalized 

under the condition that the migration angle was unchanged. The dotted line was the least square 

estimation of migration routes with R2. The angle is measured with respect to east, which is taken 

as 0 degrees. The origin of the coordinate axis (0, 0) represents the year 1985. 

The standard deviation ellipse of the CUI exhibited a northeast to southwest direc-

tion, indicating that the urban development of the DRB was significantly directional and 

aligned with water ecosystem services (Figure 9a). This directionality was consistent with 

the distribution of the river, suggesting a robust constraint from the hydrological net-

work. However, their trends displayed a marked divergence. 

During 1985–2020, the area of the CESI ellipse fluctuated, and its shape remained 

almost constant. The ellipse’s oblateness increased, indicating that the directionality was 

enhanced, and the water ecosystem services were closer to the rivers. Conversely, the 

area and oblateness of the CUI ellipse both decreased, suggesting that urbanization was 

becoming increasingly centralized, and the constraining effect of the river was dimin-

ishing. 

Figure 8. Migration routes of geographically weighted center. These coordinates were normalized
under the condition that the migration angle was unchanged. The dotted line was the least square
estimation of migration routes with R2. The angle is measured with respect to east, which is taken as
0 degrees. The origin of the coordinate axis (0, 0) represents the year 1985.

The migration angles of the centers demonstrated significant discrepancies, despite
both migrating from the northeast to the southwest. The averaged migration angle of CUI
was 65.7◦, signifying a southward movement, while the averaged angle of CESI was 44.1◦,
indicating a westward movement. The difference in their angles was 21.6◦, suggesting that
the water ecosystem services and urbanization were not entirely synchronized, leading to a
potential trade-off in the mismatch zone.

The standard deviation ellipse of the CUI exhibited a northeast to southwest direction,
indicating that the urban development of the DRB was significantly directional and aligned
with water ecosystem services (Figure 9a). This directionality was consistent with the
distribution of the river, suggesting a robust constraint from the hydrological network.
However, their trends displayed a marked divergence.

During 1985–2020, the area of the CESI ellipse fluctuated, and its shape remained
almost constant. The ellipse’s oblateness increased, indicating that the directionality was
enhanced, and the water ecosystem services were closer to the rivers. Conversely, the
area and oblateness of the CUI ellipse both decreased, suggesting that urbanization was
becoming increasingly centralized, and the constraining effect of the river was diminishing.

4.4. Spatial Trade-Offs and Synergies Analysis

To investigate the variations of trade-offs and synergies across different levels of
urbanization, the developed urban area, developing urban area, and rural area were
classified, as depicted in Figure 10. The majority of the DRB regions were categorized as
rural areas, accounting for 83.3% of the entire DRB in 2020 and distributed in the middle
and north regions. The developed and developing urban areas were clustered together in
the southwest, constituting 13.4% and 3.3% of the DRB in 2020, respectively.
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Between 1995 and 2020, the developed area underwent a significant expansion, increas-
ing from 8.9× 102 km2 to 4.7× 103 km2, while the rural area contracted from 3.4 × 104 km2

to 2.9 × 104 km2. Two periods of rapid urbanization were observed: 1995–2000 (P1) and
2010–2020 (P2). The developing urban areas in 2000, 2015, and 2020 were all 1.1 × 102 km2,
indicating that the urban area expanded 1.1 × 102 km2 and 2.2 × 102 km2 in P1 and P2,
respectively.

The proportion of synergies in the DRB showed a notable increase over time, rising
from 4.2% in 1985 to 33.7% in 2000, and then gradually to 40.4% in 2020 (Figure 11a). In
contrast, the proportion of trade-offs slightly decreased from 20.0% in 1985 to 14.2% in 2020.
Synergies and trade-offs exhibited opposing trends, with fluctuating patterns after 2000,
moving up and down at precisely opposite rates.

However, significant differences were observed in the variation of subregions based
on urbanization levels. Only the rural area exhibited a similar trend of increased synergy
to that of the DRB, rising significantly from 15.3% in 1995 to 35.4% in 2020 (Figure 11d),
while trade-offs slightly increased. In contrast, the developed (Figure 11b) and developing
(Figure 11c) urban areas both showed decreasing trends for synergies. The developed urban
area was dominated by synergy, which slightly decreased from 90.3% to 74.8% during
1985–2020, while the synergy in the developing urban area plummeted from 80.8% to 14.3%.
After 2010, more than 50% of the regions in the developing urban area were insignificant,
indicating that the developing urban area, as the boundary or transition zone between the
developed urban area and rural area, was strengthened. For trade-offs, all urbanization
levels exhibited a slightly increasing trend after 1995, consistent with the DRB.
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(a) The whole study area of DRB. (b) Developed urban area. (c) Developed urban area. (d) Rural area.

Regarding the spatial distribution, the LL cluster of synergy expanded from 71 km2

to 1.1 × 104 km2, dominating the northeast and east (Figure 12). This expansion was the
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largest contribution to the synergy increase trend in DRB, as shown in Figure 11a. The HH
cluster was predominantly concentrated in the southwest, expanding from a small patch
to almost the entire southwest, with an area from 1.4 × 103 km2 to 3.8 × 103 km2. The
maximum expansion process occurred before 2000, during which the LL cluster increased
127 times, and the HH increased 1.1 times.
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Figure 12. Trends of spatial trade-offs and synergies between water ecosystem service and urbaniza-
tion in (a) 1985, (b) 1990, (c) 1995, (d) 2000, (e) 2005, (f) 2010, (g) 2015, and (h) 2020, the black space is
statistically insignificant. Spatial patterns of HH or LL indicated the synergy; otherwise, it was the
trade-off.

As shown in Figure 11, the trade-offs, including HL and LH, tended to slowly increase
in all urbanization levels. This increase was mainly induced by the expansion of HL in the
northwest, consistent with the results induced by the difference in migration angles. As the
CUI moved to the south and CESI moved to the west (Figure 8), a mismatch occurred in the
northwest. In the Northeastern Huizhou City, the patterns of HL and LL translated to each
other over the years (Figure 12e–h), which was the reason for the fluctuation of trade-offs
up and down after 2000 in the rural area (Figure 11d). The conversion from HH to LH in
2015 (Figure 12g) dominated the whole Shenzhen City, leading to the abnormal fluctuation
of trade-off and synergy in the developed urban area, as shown in Figure 11b.

The non-significant area showed a monotonically decreasing trend from 3.2 × 104 km2

to 1.7× 104 km2. In 1985, it was widespread throughout the study area but was dispersedly
distributed in 2020. These changes implied that the relationship between water ecosystem
services and urbanization became closer with pronounced spatial aggregation.
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5. Discussion

The analysis of the whole DRB revealed that the increase in synergy was mainly due
to the increment of cluster LL in the rural area. This finding suggests that the vast rural area
plays a pivotal role in promoting the harmonious development of water ecosystem services
and urbanization in the DRB. Therefore, it is imperative for the government to focus on
coordinating the economy and ecosystem of the rural area. However, both developed
and developing urban areas experienced a decline in synergies and an increase in trade-
offs. The primary reason for this was the increment of cluster LH, which indicates that
the improvement of water ecosystem services lagged behind the pace of urbanization.
Notably, in Shenzhen City, the insufficiency of ecosystem services could potentially hinder
sustainable economic development in the future. In contrast, Dongguan City, which is
adjacent to Shenzhen City, managed to maintain synergy (cluster HH) since 2005. In the
west bank of the middle Dongjiang River, the trade-off increased due to the expansion of
cluster HL. Nevertheless, the surplus of water ecosystem services as a sending system [48]
could support interregional flows and offset the ecological deficit in the urban area.

The spatial distribution of water ecosystem services is significantly influenced by vari-
ous factors, including precipitation, topography, and land cover. Water yield was positively
associated with precipitation, and its trend was dominantly influenced by precipitation.
Soil retention was affected by topography and vegetation cover, owing to strong erosion
in the mountains and soil fixation by dense vegetation. Land cover, which is considered
one of the most critical factors influencing ecosystem services [44,49], was utilized in the
NDR module to simulate water purification. This approach represented a potential state
with some deviation from the measured nutrient content. The water yield exhibited more
significant variations than the other services, dominating the changes in CESI. According
to the trend analysis and bivariate spatial autocorrelation model, there were unusual mi-
grations and spatial patterns of synergy and trade-off in 1990. This was primarily due
to lower precipitation than in previous years, leading to an abnormal distribution of the
water yield and CESI. This finding highlights the significant influence of meteorological
changes on the results. Therefore, it is crucial to ensure the availability of reliable meteoro-
logical data sources and other underlying surface data, as the underlying surface properties
significantly impact the water cycle processes [50,51].

For the entire basin, the difference in migration between CESI and CUI suggested
that the improvement of water ecosystem services lagged behind urban development,
which could exacerbate water conflicts in the future. However, this situation did not occur
at the local scale. In some regions, the synergic relationship between urbanization and
water ecosystem services has expanded in the past, as urbanization kept pace with water
ecosystem services. This delay in conflicts provided a feasible way for the sustainable devel-
opment of urban water ecosystems. However, the mismatch of migration routes (Figure 8)
has left a gap in space, particularly in the northwest regions, which have been dominated
by the trade-off relationship (Figure 12). In such situations, the aquatic ecosystem would
face significant pressure from urbanization, further increasing the risk of water conflicts.
These regions are predominantly located in the transition zone between developed and
underdeveloped areas, and the government managers should pay more attention to them.

The synergies observed between water ecosystem services and urbanization were
consistent with the findings of other studies that have indicated a positive relationship. For
instance, Zhou et al. [18] highlighted that urban expansion could increase surface runoff
and base flow, while the increase in construction land could also enhance water yield and
soil retention services [52]. However, water purification services were negatively related
to urbanization, which is consistent with the findings of Gao et al. [52] and Li et al. [24].
Nevertheless, as the water purification change accounted for a smaller proportion than the
other two services, it did not reverse the CESI trend.

The models and methods employed in this study were limited to multisource data
from meteorological stations, land use/land cover, and statistical yearbooks. However,
there were only 32 meteorological stations around the study area, which may make it
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challenging to accurately represent the spatial distribution of meteorological factors, despite
the use of spatial interpretation considering topography. Moreover, the land use and land
cover data retrieved from remote sensing satellites of Landsat missions posed considerable
challenges in mapping the long time-series classification. The availability of Landsat 5,
which was the only operational platform prior to 1999, was further limited by following the
commercial pre-order acquisition plan before 1990 [53–55], and it lost its relay capability
in 1992 [56]. Additionally, the urbanization data retrieved from the statistical yearbook
using the downscaling method also had some uncertainties in terms of spatial information.
Furthermore, statistical errors during the demographic census needed to be corrected to
restore the real distribution.

In this study, migration analysis and the bivariate spatial autocorrelation model were
utilized to explore the correlation between water ecosystem services and urbanization.
However, their quantitative relationship remains unclear, raising the question of how they
affect each other and to what extent. Further attribution analyses are necessary to provide
more detailed insights into the dynamics of water or urban ecology systems. It is worth
noting that the spatial relationships were affected by the scale of analysis. Li et al. [24]
reached the opposite conclusions to those of Chen et al. [57] and Xia et al. [58] when
analyzing the impact of land use and land cover on the services of water yield and soil
erosion, depending on the landscape pattern scale. While land use was examined at the
basin scale, land cover was analyzed at the pixel scale. Therefore, future studies should
account for this scale difference when analyzing spatial relationships. Furthermore, it is
important to acknowledge that the bivariate Moran’s Index is sensitive to outliers, which
can distort the results and lead to incorrect conclusions. Additionally, this method assumes
that the data follow a normal distribution, and if the data are not normally distributed, the
results may be inaccurate.

6. Conclusions

In our study, we utilized the migration trend analysis and bivariate spatial autocorrela-
tion model to investigate the variation of interaction between water ecosystem services and
urbanization in different levels of urbanization, with the aim of revealing a local mismatch
under basin-level homogeneity. Our analysis revealed several key findings:

1. The water ecosystem service exhibited a spatial polarization, with a decrease in the
northeast (upstream) and an increase in the southwest (downstream). Among the
three services analyzed, namely water yield, soil retention, and P purification, only N
purification showed an improvement during 1985–2020.

2. Urbanization was found to result in a spatial polarization that was consistent with
water ecosystem services. The developed urban area was concentrated downstream
and exhibited a faster growth rate than the underdeveloped cities upstream.

3. The mismatch of migration routes was the main cause of increasing trade-off. While
both water ecosystem services and urbanization exhibited a similar direction of
distribution, their spatial migration showed significant differences. Specifically, the
urban area was increasingly centralized and moved southward. On the other hand,
the aquatic ecosystem moved westward. This deviation in migration angles resulted
in a trade-off (cluster HL) in the west band of middle Dongjiang River.

4. The interactions between water ecosystem services and urbanization responded
differently to different urban levels. Particularly in the developing urban area, as
a transition zone between the developed urban area and rural area, it faced a great
challenge of dramatically decreasing synergies. Furthermore, the rural area dominated
the increasing synergies of the entire basin, which plays a pivotal role in promoting
the sustainable development of urban-water space configuration.

This study recommends that policy-makers consider the spatial heterogeneity of water
ecosystem services and urbanization in different urban levels when developing urban-
ization plans and water resource management strategies. Additionally, implementing
measures to maintain the synergy in the rural area and mitigate the trade-off in the de-
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veloping urban area is crucial. In terms of future research, the study attempts to explore
the solutions to the water resource supply–demand conflict from the perspective of the
ecosystem service flow, in order to optimize the spatial allocation of urban-water resources
in the Dongjiang River Basin.
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