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Abstract: Autonomous vehicles (AVs) are predicted to change transportation; however, it is still
difficult to maintain robust situation awareness in a variety of driving situations. To enhance AV
perception, methods to integrate sensor data from the camera, radar, and LiDAR sensors have been
proposed. However, due to rigidity in their fusion implementations, current techniques are not
sufficiently robust in challenging driving scenarios (such as inclement weather, poor light, and sensor
obstruction). These techniques can be divided into two main groups: (i) early fusion, which is ineffec-
tive when sensor data are distorted or noisy, and (ii) late fusion, which is unable to take advantage
of characteristics from numerous sensors and hence yields sub-optimal estimates. In this paper, we
suggest a flexible selective sensor fusion framework that learns to recognize the present driving
environment and fuses the optimum sensor combinations to enhance robustness without sacrificing
efficiency to overcome the above-mentioned limitations. The proposed framework dynamically
simulates early fusion, late fusion, and mixtures of both, allowing for a quick decision on the best
fusion approach. The framework includes versatile modules for pre-processing heterogeneous data
such as numeric, alphanumeric, image, and audio data, selecting appropriate features, and efficiently
fusing the selected features. Further, versatile object detection and classification models are proposed
to detect and categorize objects accurately. Advanced ensembling, gating, and filtering techniques
are introduced to select the optimal object detection and classification model. Further, innovative
methodologies are proposed to create an accurate context and decision rules. Widely used datasets
like KITTI, nuScenes, and RADIATE are used in experimental analysis to evaluate the proposed
models. The proposed model performed well in both data-level and decision-level fusion activities
and also outperformed other fusion models in terms of accuracy and efficiency.

Keywords: sensor fusion; autonomous vehicles (AVs); object detection; contextual awareness

1. Introduction

Autonomous vehicles (AVs) function in complex, dynamic situations with a wide
variety of actors. To ensure safety in all driving environments, an AV needs to be able to
swiftly and reliably interpret the environment. To deal with the uncertainties prevalent in
difficult driving situations, the majority of contemporary AVs are outfitted with efficient
and intelligent sensors and employ sensor fusion algorithms. Even with these techniques,
AD is a very challenging undertaking, and accurate perception requires powerful deep-
learning systems. Manufacturing-standard AV perception systems continue to frequently
fail in challenging circumstances, despite recent advancements [1]. Increasing the size
and complexity of AV algorithms and adding more sensors to them in order to cover as
many driving circumstances as possible is a naive approach to the issue [2]. But since
AVs are energy-constrained entities, using larger algorithms results in a shorter driving
distance, higher costs, and higher power and thermal demands on the vehicle. Addition-
ally, in some situations, combining additional sensors can actually produce less accurate
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results. Thus, algorithms that can adjust to dynamically changing driving contexts as they
arise without increasing processing demands are necessary for robust and accurate AV
perception. In deep convolutional neural networks (CNNs), which are commonly used in
AV perception systems, sensor readings are processed through a number of convolutional
layers to form spatial features. The detection of items in various areas of the visual scene
is then accomplished using these attributes. Weather, lighting, and physical obstructions
are just a few examples of variables that might affect sensor performance. Algorithms for
sensor fusion try to integrate the advantages of each sensor to provide a more precise result.
However, in dynamic environments, the scene’s context is frequently ignored or completely
disregarded by the fusion method. Most of the current fusion models perform the fusion
function only once during their life cycle, whether it is early fusion using the raw sensory
data or late fusion after the object detection and feature extraction process are completed.
Additionally, the majority of works employ static fusion techniques, which are independent
of the operating environment of the AV. Numerous Cyber Physical System (CPS) appli-
cations have found success using context-aware sensing techniques. Humans naturally
adapt their decisions and concentration when driving based on contextual information
about the driving situation (such as the weather, lighting, type of road, and high-level
visual elements). In complex driving scenarios, contextual information can also influence
AV perception and enable more reliable fusion. The focus of this paper is on three main
research issues: (i) developing a sensor fusion strategy that is robust in the face of a variety
of scene contexts, noise sources, and sensor error types; (ii) leveraging scene context to
enhance sensor fusion performance; and (iii) developing an effective multi-sensor fusion
strategy for energy-constrained AV edge devices.

In this research, we offer an innovative fusion model which is a context-aware sensor
fusion method that actively recognizes the driving environment and makes use of it to fuse
particular sensor data from various modalities at various model depths. The proposed
fusion model can increase the robustness of AV perception while reducing the computing
demands on the energy-constrained AV edge platform by employing a selective sensor
fusion strategy. Our research is the first to examine a context-aware selective sensor fusion
method that can dynamically adapt the vehicle’s perception and use the fusion model
accordingly. The key contributions of this research are as follows:

• We propose a versatile fusion architecture that performs an early and late fusion of
heterogeneous sensory data.

• We provide intelligent, context-sensitive gating tactics that boost resilience by dynami-
cally deciding which fusion mechanism to use based on the situation at hand.

• We show that our methodology trumps existing methods on a demanding real-world
dataset with a variety of driving scenarios, including adverse climatic conditions, poor
lighting, and different location types.

• We use an industry-standard AV hardware platform to implement our strategy, and we
develop applications using Python. This ensures that our strategy can be practically
implemented in a real AV with comparable energy consumption, latency, and memory
usage to cutting-edge approaches.

The rest of the paper is organized as follows: Section 2 provides a detailed background
theory and the motivational aspects related to the proposed models. Section 3 summarises
the existing literature pertaining to various fusion models and strategies. Section 4 briefs
the overall proposed approaches followed by Section 5, which illustrates the experimental
setup used to implement the proposed model and a detailed analysis of the proposed
fusion models. Finally, Section 6 summarises the contributions, overall analysis, and future
directions related to this study.

2. Background and Motivation

We describe the theoretical background used to design the proposed fusion model.
This research fuses the data based on three cases listed below:

• Datasets having similar structure (identical columns with similar data types)
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• Datasets having different columns
• Datasets that have dissimilar structures (columns having different data types)

Based on the above three cases, an appropriate mathematical approach must be
identified to organize the data from different datasets. Upon analyzing, we identified that
maximum likelihood concepts can be used to find the similarity between the data from
different datasets. Maximum likelihood estimation (MLE) is a technique used in statistics
to estimate the parameters of a statistical model for the given observations. This is done by
identifying the parameter values that maximize the likelihood that the observations will be
made given the parameters.

x = Zy + e (1)

The basic equation used to estimate the measurement to be fused is estimated using
Equation (1), where y ∈ Rny , x ∈ Rnx and Z ∈ R(nx×ny) is a measurement matrix which
provides a mapping between the state of the system and the estimated measurements.
The first approach is to find the difference between the measurement to be fused and
the actual parameter for which the likelihood is to be estimated. The difference must be
minimum in order to obtain maximum accuracy.

miny ‖ x− Zy ‖2 (2)

The difference is calculated using Equation (2).

ŷ = (ZTZ)−1ZTx (3)

From the above calculations, the partial derivative with respect to y is obtained and
the value is set to zero from which the least square solution is obtained using Equation (3).

ŷ = (ZT R−1Z−1)ZT R−1xi (4)

But if we represent the error, e, in a way that makes it zero mean, E(e) = 0 with
E(ee

′
) = R, where R represents the error covariance, the result produces a weighted

least-squares matrix based on the noise covariance matrix and can be calculated using
Equation (4).

ŷn = [
n

∑
i=1

ZT
i RiZi]

−1.
n

∑
i=1

ZT
i Rixi (5)

We now take into account the scenario of fusing sensor information. In a batch process,
the following can be used to derive the lowest variance, unbiased estimator as listed in
Equation (5). Generally speaking, fusion filters work better the more data they have. This
reasoning, among other sources of estimation mistakes, falls apart in situations when there
are inconsistencies in the measurement models. These circumstances frequently exist in
autonomous driving (AD) [3] and can impair the accuracy of sensor data. Inaccurate
R values in Equation (5) can result in model convergence and/or filter discrepancies,
both of which are known issues. Think about a camera sensor on an AV that has rain
covering the lens, for instance. In that instance, it can produce overly optimistic predictions
in which the R-value does not accurately represent the level of observed noise. In this
research, we demonstrate that fusing all available sensor readings in some circumstances
is not ideal and may even lower prediction performance. The results reveal some distinct
patterns: (i) cameras forecast fewer false positives but find it hard in extreme weather
conditions, as demonstrated by the images taken in the rain and snow where the camera
lens is obscured (ii) radars can struggle in scenes with many objects blocking or deflecting
measured data, as demonstrated in the urban setting, but remain robust in inclement
weather such as rain and snow; and (iii) LiDAR can encounter high noise levels in a densely
packed scene and can skip items.

Table 1 provides a summary of the qualitative performance of each modality for
different situations.
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Table 1. Summary of the quality performance of each modality.

Scene Camera Radar LiDAR Fusion

Urban × × × X
Rainy × X X X
Foggy × X X X
Snowy × X × X
Night × X × X

Theory behind Data and Decision Level Fusion

The theory behind data fusion is discussed in this section. The raw sensory data
collected from different sensors possess multimodal characteristics, which undergo prepro-
cessing tasks like data cleaning, data level, and decision level fusion to create an accurate
context for effective decision-making in the AVs. At regular intervals of time, the data
collected from sensors are denoted as Objid.

Idobj = π(I f r) (6)

From the samples collected, we have to detect the objects of our interest, which is
estimated using Equation (6), where I f r represents the object collected from the sensors and
π represents a function that helps to identify the acquired objects. In Equation (6) π refers
to a machine learning model (ML) and d refers to the number of objects detected from the
sensor. In our study, we use two types of ML models one for classification and the other
for regression. The study plans to use fast R-CNN models embedded with the ResNet-18
backbone. Detailed discussion regarding the implementation of the models is covered in
the experimental analysis section.

Idobj = Idobj(class)
, Idobj(reg)

= {1..d} (7)

Idi
obj(class)

ε{1, 2, ......k} (8)

Two types of operations are performed over the collected frames. One is classifica-
tion and the other is prediction. Normally data from other sensors namely thermal and
GPS must be integrated with the identified and classified objects from the image frames
obtained from advanced LiDAR or Velodyne sensors [4,5]. The operations are illustrated in
Equations (7) and (8). From Equation (7), the objects classified from the input sensor I f r
are represented using Equation (8), where k represents the number of classes considered
in the problem. The numbers in the set represent a predefined object (e.g., 1:car, 2:truck,
3:van, etc.).

Idi
obj(reg)

= {u1, v1, u2, v2}εR2 (9)

Similarly, the regression parameter in Equation (7) represents the location of the
objects in the image frame as demonstrated in Equation (9), where u1, v1, u2, v2 denotes the
dimension of the boundary boxes of the RPN model which detect and locate the objects.
We introduce two stages of fusion types namely early and late data fusion. In early fusion,
the data are fused before passing them to the mapping function. It is a clustering function
where the objects are grouped based on their similarity. The clustering module segments
the objects and groups them. In late fusion, the grouped objects are further classified and
their corresponding location is identified.

Id∗obj = π(γ(Id f r1, Id f r2.........Id f rs)) (10)
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The features obtained from different sensors are fused at an earlier stage before moving
them for late fusion. The mechanism is represented in Equation (10).

Idobj1, Idobj2, Idobj3 = π1(Id f r1), π2(Id f r2)...πs(Id f rs) (11)

This mechanism creates individual data segments, which are further fused using the
mapping function π. The late fusion method is illustrated in Equation (11).

The AVs context varies dynamically due to the quality of the images acquired by
the sensors. The sensor’s image quality is affected by bad weather conditions, different
lighting conditions, and different road geometry. Hence, the mapping function π must
adapt according to the prevailing environmental conditions of the AVs. To satisfy the above-
mentioned statement, an appropriate object detection model must serve as the mapping
function π. This mapping function serves as an ensembling function to select the optimal
object detection model from the subset of the obtained object detection models. Here, π
represents the ensemble object detection models and π∗ represents the best subset among
the ensemble object detection models for a given input X.

γ = δ(Id f r) (12)

The representation of the contextual information from the collected data is illustrated
in the Equation (12), where γ represents the contextual identification model.

π∗ = ρ(γ) (13)

Again, we need a mechanism ρ for selecting π∗ from the identified contextual model
γ, which is illustrated in Equation (13).

Idobj = π∗(Id f r) (14)

Now the subset of the ensembled object detection models can be obtained from
Equation (14). The goal of δ and ρ is to select the subset of the object identification models
from the branches of π∗ for creating the context γ to maximize the object detection process
for the given input Id f r.

3. Related Work

We now review the existing literature to find the actual problems associated with
heterogeneous sensory data fusion. More sensors can aid in improving outcomes of con-
ventional sensor fusion techniques with established dynamics, noise, and measurement
models [6]. By boosting trust or offering readings over a larger observation area to expand lev-
els of success, fusion across several homogeneous sensors can help in reducing uncertainties.

3.1. Sensor Fusion

By delivering data from a variety of feature sets for the same job, fusing heterogeneous
sensors can help lower sensing uncertainty. Even with extremely nonlinear and dynamic
systems like AV perception systems, the integration of all sensors does not always result
in higher estimations. Many recent research articles prove that meaningful information is
extracted from the fused data. To provide resilience against data corruption, a graphical
odometry system is given as a selective sensor fusion strategy in [7]. Utilizing data-driven
models that take measurement accuracy and vehicle-environment dynamics into account,
the authors conduct feature selection. In [8], this approach is expanded to a generalized
model for deep pose estimation with selective sensor fusion. These efforts, however, only
use late fusion over the results of sensor-oriented Deep Learning (DL) models, which
restricts their effectiveness. Authors in [9] have proposed an efficient algorithm to enhance
the inefficient power supply of traditional LiDAR sensory systems. The authors established
a correlation between the speed of the vehicles and the power consumption of the LiDARS,
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to alter the power of the sensors dynamically based on the speed. Similarly, ref. [10]
proposes an innovative strategy for the sensors fixed in the robots. Their model adjusts
the sensory frequency dynamically based on the current perception of the robots. These
methods are mostly concerned with increasing sensor effectiveness. Our method is the first
to advocate selective fusion for AVs with a dynamic gating component, in contrast to prior
similar works. Our method maximizes resilience by deciding on numerous modalities
and fusion locations, as well as the actual reason and the period when fusion occurs in
the model. Similar to this, a number of studies have examined the use of environmental
semantics inside a data fusion framework. Authors in [11] have completed an extensive
survey on the role of contextual awareness towards the state variables associated with the
environment and traditional fusion approaches. Studies conducted in [12,13] depict that
the robustness of their fusion models increases by using the AVs fitted with context-aided
sensors. In contrast to prior research, our proposed strategy achieves more reliable results
by using DL models to increase the perception awareness of the observed scenes rather than
static fusion rules. In [14], authors use sophisticated pattern mining within a CNN for object
detection in extremely high-resolution pictures to retrieve the perceived data. Our method
extracts the context of a scene using a variety of heterogeneous sensory inputs, in contrast
to their approach, which focuses on extracting the perception information from the selected
salient scenes in photographs. Yet another interesting empirical analysis conducted by [15],
guided us through the key factors to be considered before developing decision models
for AVs.The author’s ideas helped to organize the fused data before creating the context
and decision rules. Gathering heterogeneous data and further analyzing them for further
processing is a mandatory task of this study. As an initiative, an exclusive survey is carried
out on various issues related to various factors that influence the creation of contextual
awareness in AVs. The survey covers three major areas and various issues related to data
fusion, contextual awareness, and decision-making in AVs [16].

This paragraph highlights various factors related to spatial data collected from dif-
ferent sensors. LiDAR and Velodyne sensor data are represented as 3D point cloud data.
Hence, advanced spatial computing technologies are required to capture, process, and in-
teract with the 3D data for effective decision-making in AD. Again data fusion plays an
important role in the preprocessing stage to improve the accuracy of the 3D data. An ex-
clusive survey completed by [17] highlights the importance of emerging concepts like
multi-object detection, tracking tools, big geospatial data analytics, and cloud and edge
computing technologies that contribute towards implementing versatile AD perception
algorithms for effective decision-making. Ref. [18] have proposed an algorithm to cali-
brate the parameters related to the data collected from thermal and LiDAR sensors. Since
thermal cameras and LiDAR vary in the type of information they gather, adequate data
transformation is essential to ensure the reliability of recognition and further processing.
The author’s fusion model converts and transforms the acquired data collected from differ-
ent sources of spatiotemporal coordinate frame. Similarly, ref. [19] have proposed a novel
spatial calibration system to translate the data collected from different sensors to spatial
coordinates. Further, the authors have also proposed a multi-spectral fusion algorithm to
fuse heterogeneous data collected from different sources such as thermal cameras, cameras,
advanced sensors, and an object tracking model to locate the objects. The author’s fusion
model used LitDAR data for the target location, radar for target velocity, and target type
from the camera. In yet another interesting study [20] have proposed a fusion model to
fuse LiDAR and camera data. The author’s fusion model can convert three-dimensional
space data to a two-dimensional plane using space and time synchronization techniques.
Further, the authors have customized the YOLO model and have proposed clustering
algorithms for object detection and tracking. They have also used their fused data in
regression models to predict roadside events like congestion, accidents, etc. Exclusive
surveys made by [1,2] cover the key challenges related to the calibration of spatial and
temporal data acquired from different sources before fusing them. Ref. [21] have proposed
a 6G envisioned blockchain-based scheme for the cellular vehicle-to-everything (CV2X)
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systems. Their approach effectively optimizes and uses the existing edge services provided
for 5G CV2X through network virtualization. The authors aggregate the data collected from
6G sensors and place them in the data plane. From the data plane through the edge servers
data is propagated to the autonomous vehicles. The authors have proposed innovative
strategies to preprocess the 3D spatial data and also to translate the other 2D data acquired
from different sources to 3D data format.

3.2. Fusion in Object Detection

In conventional object detection techniques, spatial characteristics are extracted from
the inputs of the CNNs to locate the objects present in the scene [22]. Since the environ-
ment’s physical characteristics have an impact on performance, object tracking in AVs is
more difficult. Both [3,23] investigate object identification in AVs, with [3] concentrating
on probabilistic techniques while [23] explores 3D detection techniques. In both articles,
modeling sensor uncertainty is found to have gaps. Sensor fusion techniques, as described
in the preceding subsection, can aid in reducing some measurement errors.

The two basic types of fusion techniques used in object detection are feature-level (or
early) fusion and decision-level (or late) fusion. Early fusion techniques are capable of
extracting a large number of multi-modal features from the input, but they can be vulnerable
to sensor noise and outliers, which reduces their robustness [24,25]. Although late fusion
techniques are more resistant to sensor noise, they are limited in their ability to merge
intermediate data from different sensors [26]. Combining early and late fusion methods is
still unique to the proposed fusion model. The proposed fusion model is a unique strategy
that uses a multilayer approach to identify the different objects in the AVs contextual
systems. Similarly, the work in [27] uses branching CNN models, which takes more time
for training and generating new tasks. Using branches created to estimate attributes on
visually comparable classes, the authors of [28] examine effective strategies for single-
image classification. The authors use an adaptive form of dropout during training whereby
entire branches are eliminated when they are not selected by the gating function. Ref. [28]
proposes a single image classification model, where the author uses a branching CNN
model approach to extract the features from visually similar classes. The authors use an
adaptive form of dropout during training, whereby entire branches are discarded when
they are not selected by the gating function. A network called TridentNet [29] also deals
with the issue of scale variation in identifying the objects. This architecture has three
branches, which share attributes and topology along the branches to speed up training and
interpretation. Their approach also enforces identical actions over feature maps further
calling for branches with similar structural characteristics; the proposed fusion model
dynamically fuses the heterogeneous data collected from multiple sensors for reliable object
detection using a multi-branch approach. It also incorporates the perception created into a
versatile branching process. Our method is particularly distinctive since it allows branches
to be specialized to certain sensors or groupings of sensors to increase robustness in a
variety of driving circumstances [30,31].

The proposed research uses an advanced multilayered CNN model to identify multi-
ple objects efficiently. It uses a gated architecture that uses a pipeline mechanism to identify
the halting pipelines which branch the multiple objects organized in each pipe layer. This
mechanism efficiently minimizes the time in classifying the objects. Few related studies
supporting this mechanism are analyzed, to further enhance the suggested mechanism. Au-
thors in [32] have proposed an image categorization model using CNN model approaches.
Each branch in their CNN model produces changes only if a subset of objects is selected for
training. This lacks the concepts of gating.

From the analyzed literature most of the fusion models use limited heterogeneous
sensor modalities as their input for their models, which diminishes the expected accuracy
in data fusion and context creation. Further, the models proposed in the literature are
either more complex or consume more time in object detection, classification, and context
creation tasks. Further, many authors’ approach is not generic and their proposed models
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perform well for a specific dataset. The efficiency of the fusion models in terms of training
is not discussed in many studies [33–35]. Since most of the sensory data are image-based,
which uses more resources, the optimal data size for which the authors proposed model’s
performance attains the maxima is not revealed in many studies. In order to overcome these
pitfalls, this study has proposed a generic fusion framework to fuse individual data formats
collected from different sources. Further, a multifaceted framework is proposed to create an
accurate context for instant decision-making. The framework performs various tasks like
object detection, classification, and data fusion to create an accurate context. A customized
Region Proposal Network (RPN) and CNN model are used to detect and classify the objects
acquired from multiple sources. New ensembling techniques are proposed to select the
optimal object detection and classification model. Advanced gating and filtering concepts
are used to organize the proposed models. Advanced CNN model along with 18-layer
RSNet architects are used to implement the proposed framework. The CNN model acts
as a backbone in which the eighteen layers of the ResNet are branched. Every layer of the
ResNet has an RPN model attached. This approach increases the execution time of the
framework. Since an image frame contains multiple objects, every layer of ResNet will
associate itself with an identified object from the RPN model. Hence, at a single point
of execution, eighteen different objects will be classified minimizing the overall object
identification and classification time. This study also proposes and illustrates a novel
mechanism for context-creation and decision-making strategies in AVs.

4. Proposed Study

Figure 1 illustrates the structure of our proposed architect.

Figure 1. Proposed architecture.

Initially, raw data are collected from multiple sensors. The raw sensory data are pre-
processed to improve their accuracy. Further, they are classified based on their appropriate
formats. After differentiation, different formats of data-corresponding features related to
each format of data are extracted. Finally, using the extracted features, the heterogeneous
data is fused for further processing. In our previous study, we proposed an innovative
hybrid fusion model to fuse image data only. In this study, we have further extended
our strategies to fuse all formats of related sensory data. The previous hybrid image
fusion model is further enhanced by adding deep learning model concepts and branching
methods. A unique gateway mechanism is proposed to effectively improve the efficiency
of the object detection mechanism. Further, the study has proposed a versatile multifaceted
framework for decision-level fusion. The framework comprises an object detection model
and customized CNN models to effectively detect and classify multiple objects captured
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from the AVs surrounding environment. The object detection model inherits the concepts
of the RPN model. Innovative mapping functions and gateway approaches are integrated
with our framework to enhance the data level fusion activities. The implementation of
these strategies is covered in the sections that follow. Further, the framework contains
appropriate modules for creating an accurate context associated with the AVs surrounding
environment. The study also proposes a novel mechanism to frame simple rules from the
created context for effective decision-making. The following sections explain how this
research fuses heterogeneous data based on the three cases.

4.1. Problem Formulation

Figure 1 illustrates the overall flow of our data level fusion, whereas Figure 2 illustrates
the enhanced fusion model, which elaborates on the processing of various tasks depicted
in Figure 1. The first stage of Figure 2 represents various sensors available in the market for
acquiring data to create the context for the AVs. The new architect uses an advanced CNN
model which acts as a stem for every individual sensor. The CNN model representing
every sensor is initially trained with its spatial features. The accumulated features collected
from different stems are stored in a shared stem. In real-time scenarios, different modalities
collected from different sensors are passed to a new layer of the CNN model which acts as
the gateway to the shared stem.

 

Figure 2. Enhanced data level fusion architecture.

ψ =
N

∑
i=1

Ci ∈ S(alphanumeric, numeric, image, video) (15)

The shared stem identifies the sensor modality obtained from the gateway and maps
the data to an appropriate fusion model using the proposed mapping function depicted in
Equation (15). For image data, the objects of interest are first identified using the proposed
RPN model and further fused for accuracy using the proposed hybrid image fusion model.
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4.2. Proposed Fusion Models
4.2.1. Proposed Data Level Text Fusion Model

Figure 3 illustrates the flow of the proposed data-level text fusion model. This model
preprocesses the data and helps to fuse alphanumeric and numeric data obtained from
different sensors, particularly from thermal and GPS sensors. Algorithm 1 explains the
procedure used to fuse the text data after successful preprocessing.

Algorithm 1: Proposed text fusion algorithm

1 EOL: end of line
2 A: First record
3 B: Alternate record
4 Begin
5 Input
6 The data record from the GPS and move to an Excel file
7 Compare alternate records
8 Count the number of columns of A and B
9 If the column count is the same

10 Repeat while EOL
11 Compare the ASCII value of each column of alternate records A and B
12 If the ASCII values are the same then
13 If the data is numeric (or) alphanumeric then
14 Tokenize the data
15 Remove punctuation marks
16 Eliminate commonly occurring words
17 Reduce each word to a stem
18 Index the data
19 Check for similarity
20 If the columns are the same fuse the records by taking union A ∪ B
21 Else
22 Considering the records are dissimilar move to the next record
23 Repeat the same procedure for the rest of the columns
24 End repeat
25 End

Figure 3. Proposed text fusion model.
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4.2.2. Proposed Object Detection and Classification Models

Though there are several frequently used object detection models such as Fast CNN,
RPN, YOLO, SSD, etc., there are certain drawbacks that affect the performance of the
models. Frequently occurring problems are viewpoint variation, deformation, occlusion,
cluttered background, slow and complex training conditions, difficulty to process longer
sequences, etc. In order to overcome these drawbacks this study has proposed an efficient
object detection model, which inherits the functionalities of an RPN model. Algorithm 2
depicts the flow of the proposed object detection model. The study uses the edge detection
algorithm proposed in our previous study [36] to check whether there exists an edge in the
image frame. Using the edge information the proposed object detection model identifies
the objects and draws a box over the circumference of the object. The identified objects
along with their coordinate information are stored in a file.

function get_image_info(image)
return (coordinates, image_info)

category = (img[i], w) (16)

The study has developed a function using Python, which takes the image frame
as its input and returns the identified objects along with their coordinate information
as the output. The identified objects and their associated weights (randomly assigned
values between 0 and 1) are used to frame the proposed kernel function represented in
Equation (16). One layer of the CNN model is mapped with this kernel function. The CNN
model identifies the object type and helps in framing the decision rules.

Algorithm 2: Proposed object detection algorithm

1 eol: end of a line
2 eoa: end of the array
3 Begin
4 Input the image frame
5 Do
6 Read pixel information from each line
7 Check whether the pixel is an edge of the image
8 If yes mark the coordinate position of the edge
9 While 6= eol

10 From the edge_list identify the minimum and maximum coordinate values
11 The information gained forms the boundary of the image (u1v1, u2v2)
12 Create a box over the identified coordinates
13 Any information within the box is the identified object
14 Store the identified object in an image array
15 Do
16 Read the image information from the array
17 Pass to a CNN model
18 Obtain the category of the classified object
19 While 6= eoa

In this study, we have proposed and implemented a customized RPN model to detect
the objects related to context building for the AVs. The objects are first located using
the boxes, which are created by the proposed RPN model during the training phase.
The boundary of the boxes u1, v1, u2, v2 along with its object information is stored in a
database. During the testing phase, the RPN model again creates boxes to identify the
objects; now, the intersection area between the training and the testing boxes is estimated
along with their union information. The ratio between the intersection area and the union
area gives the Intersection Over Union (IoU) value. If the difference is low, then the
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likelihood of the detected object is high; otherwise, the likelihood is minimum. Then we
select the box with the maximum likelihood using the proposed (IoU) algorithm.

IoU =
Area o f Intersection o f boxes

Area o f Union o f boxes
(17)

Likewise, the (IoU) is estimated for all the detected objects and accordingly classified
using the CNN model. (IoU) is calculated using Equation (17).

Figure 4 depicts the object detection outcomes for various scenarios from RADIATE
datasets to demonstrate the implementation of the proposed (IoU) mechanism. In three
distinct driving settings, statistics from three sensor modalities, namely camera, radar,
and lidar, are displayed from left to right as follows: (a) sunny, (b) rainy, and (c) snowy day.
The solid yellow boxes in the scenes represent real-world things. The detections for each
sensor input were produced using a deep-learning-based object detection pipeline that
used FasterR-CNN with a ResNet-18 backbone. The usual method for fusing detections
from all sensors is represented by the fusion method, which is depicted in purple in the
final column for each scene. We also display our Proposed fusion approach in the same
column, which selectively fuses sensors based on the context extracted from the data. We
can investigate fusion across the three different scenes using the final column of Figure 4.
The fusion strategy outperforms a single sensing modality for the majority of items. There
are certain limitations to this strategy, though. A field-of-view (FOV) mismatch occurs
when combining detections from multiple modalities in (a). Additionally, the projections
from the other sensors significantly shifted the main camera observations for the central
object to the right. The fusion method clearly forecasts more anomalies in (c), which diverge
from the truth. The proposed fusion model which uses a subset of sensory data results
in a more accurate approximation across all the images acquired from different sensors
and cameras. The necessity for a specific sensor fusion strategy that can instantly adapt to
various settings is motivated by this conclusion.

 

Figure 4. Analysis of three contexts’ worth of object detection using several sensors in a qualita-
tive manner.

4.2.3. Proposed Hybrid Image Fusion Model

The objects identified are fused using hybrid image fusion, proposed in our previous
study [36]. Since data acquired from advanced sensors are 3D point cloud data and those
from thermal and image cameras are in 2D format, advanced transformations are essential
to convert 2D images coordinated to 3D spatial coordinates. The following paragraphs
elaborate on the key mechanism behind the proposed image fusion model. Figure 5
illustrates the functioning of the proposed hybrid image fusion model. Our early study
extracted four features namely the edge, height, width, and color intensity using the
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proposed feature extraction model to fuse the data.. Initially, the 2D sentinel model that
is acquired is normalized using the weight mean filter method. This process converts
the 2D pixel to 3D pixel information. In the next stage, advanced vector projections and
matrix transformations are required to convert 2D image coordinate systems to 3D spatial
coordinate systems. Finally, to acquire the original 3D image, the research has used the QR()
decomposition method to obtain the inverse matrix information of the fused 3D image.

Figure 5. Proposed Hybrid image fusion model.

Before processing the fusion process initially, the intensity of each wavelength is sub-
tracted from both the values of 2D sentinel and 3D images. The mean intensity wavelength
for both the 2D and the 3D images is calculated using the weighted mean filter method.
In terms of mathematics, the weighted mean filter (WMF) is equivalent to global opti-
mization. It can successfully filter images without causing significant edge blur. Within a
local window, it is an operator that replaces the current pixel with the weighted median of
nearby pixels.

The proposed image fusion model uses three important preprocessing steps before
reaching the final fused image (i) projection (ii) transformation and (iii) retaining color
intensity. This study just highlights the important equation derived to perform the above-
mentioned tasks. The detailed derivation is discussed in our previous study [36].

Pv =
u.v
u.u

u (18)

The projection task helps to convert the 2D images to 3D format. In the general
projection of a vector v on vector, u is performed using the Equation (18).

PBk(E) =
BT

k .B
BT

k Bk
Bk. (19)

Applying Equation (18) in our image data leads to the expected 3D transformation as
illustrated in Equation (19), Where Bk is a column of vector B.

The third and final step is retaining the original color intensity of the fused image.
Though the multispectral fused image obtained from the proposed fusion method helps
to improve the accuracy of the acquired 2D images, it lacks in producing the actual color
intensity. In order to improve the RGB color intensities of the fused 3D image, the pixel
values of the fused images are integrated with the Brovey fusion model, which computes
the mean of individual Red, Green, and Blue intensity values. The obtained mean value is
multiplied by the PAN (Panchromatic matrix values).
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F̂ = Rnew =
R

R + G + B
XPAN(1)XPBk (E)

Gnew =
G

R + G + B
XPAN(2)XPBk (E)

Bnew =
B

R + G + B
XPAN(3)XPBk (E)

(20)

The results obtained are finally multiplied with the Equation (20) to get the full-fledged
3D fused image with the actual RGB color intensities. Algorithm 3 explains the flow of the
proposed hybrid image fusion model.

Algorithm 3: Proposed Hybrid image fusion Algorithm

1 Input 2D image
2 B:3D GF-3 image
3 Assign Variables
4 A: No of wavelength of 2D image
5 B: No of wavelength of 3D image
6 NA: No of pixels in 2D image
7 NB: No of pixels in 3D image
8 NF: No of pixels in fused 3D image
9 (wi - weights, E-normalized pixel values, S-image matrix after transformation)

10 Projection of 2D to 3D
11 for i = 1.. NA do
12 Compute wi for 2D image matrix
13 Compute projection of A on B using equation PBk (E)
14 end for
15 Transformation to vector
16 For j = 1..NB
17 Compute E using equation
18 Compute B′using equation
19 Compute S using σ′ and E′ with
20 for i = 1.. NA do
21 Compute B′ using Equation (19)
22 end for
23 for k = 1..NF
24 Compute RGB intensities for the fused panchromatic
25 image projected on a 3D image using Brovey fusion Equation (20)
26 Output
27 B = Fused Image

4.2.4. Proposed Audio Fusion Model

In current scenarios, audio data play a vital role in many applications which are
executed using the decibel signals of audio waves. Similar to other data formats, there
are ample ways to generate audio signals. Related to the context of AV, there are some
operations in AD that can be controlled by voice messages. Due to technical problems, there
are possibilities of distracted audio waves or irrelevant audio information which might force
the AVs to take inaccurate decisions. To overcome this challenge, this study has proposed a
versatile audio fusion model. Figure 6 illustrates the flow of the functionality of the audio
fusion model. Three important audio features, energy, Mel Frequency Cepstral Coefficient
(MFCC), and frequency, are extracted using PyWavelets, an advanced Python library.

Cw(a, b) =
∫ ∞

−∞
x(t)Ψ∗a,bdt = 1/

√
a
∫ ∞

−∞
Ψ∗(t− b/a)dt (21)
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In the first step, the audio waves are transformed into a set of spectrograms using
the proposed Equation (21). Spectrograms enhance the visual representation of the audio
waves, where we can exactly identify the strength of the audio waves. Uniform histograms
denote steady signal strength whereas variable histograms depict the uncertainty in the
audio signals, where Cw(a,b) is a function of parameters (a and b). The (a) parameter is the
dilation of the wavelet (scale) and b defines a translation of the wavelet and indicates the
time localization., (Ψ∗a,bdt) is the complex conjugate of the analyzing mother wavelet (Ψ(t)).

x(t) = 1/KΨ

∫ +∞

α=0
(int+∞

b=−∞Cw(a, b)Ψa,b(t)db/a2)da = 1/KΨ

∫ b+∞

0
D(α, t)da (22)

The coefficient (1/
√

a) is an energy-normalized factor. In the next step, the spec-
trograms are converted into digitized audio data using enhanced inverse Fourier trans-
formation, which is depicted in Equation (22), where D(α, t) = int+∞

b=−∞Cw(a, b)Ψa,b(t)db.

Ca,b = 1/2π
∫ +∞

−∞
x(ω)Ψ∗a,b(ω)dω (23)

Now after fusing the digitized audio data, adequate reverse transformation is per-
formed to convert the digitized data back to the original audio data using enhanced Fourier
transformation, illustrated in Equation (23).

Figure 6. Proposed audio fusion.

4.2.5. Decision Level Fusion

Figure 7 illustrates the mechanism behind the decision-level fusion. In the initial
step, data from sensors from different sensors are collected and stored in the appropriate
database. Using the proposed fusion models salient features are extracted from different
sensory data and stored as individual modalities represented as u1, u2 . . . . . . uM. The study
frames two hypotheses based on the threshold values obtained from different modalities.
If the hypothesis is satisfied the fusion manager fuses the data; otherwise, the model rejects
the input data. In our study, numeric data collected from thermal cameras take first place,
alphanumeric data collected from GPS takes second and image data collected from LiDAR
sensors and audio data from ultrasonic sensors take third and fourth places, respectively.

f (ui) =

{
1 if hypothesis is satisfied
0 otherwise

(24)
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Equation (24) illustrates the theory behind the functioning of the fusion manager,
where f (ui) is the function that represents the functionality of the fusion.

Hypothesis1 : I f (u1 ∧ u2 ∧ .......uM) > threshold

(OR)

I f (u1 ∨ u2 ∨ .......uM) > threshold

(25)

Hypothesis2 : I f (u1 ∧ u2 ∧ .......uM) < threshold

(OR)

I f (u1 ∨ u2 ∨ .......uM) < threshold

(26)

Logical AND and OR operators are used in constructing the two hypotheses listed
below in Equations (25) and (26), respectively.

Threshold =
M

∑
i=1

k

∑
j=1

(xi,j) ≥ ASCII values o f various data f ormats. (27)

 

Figure 7. Mechanism of decision level fusion.

The threshold value is calculated using the Equation (27), where (M) is the number
of classes representing different modalities, (xi,j) represents every individual vector of a
corresponding class. Both hypotheses have two options, for the first hypothesis, either all
individual modalities must have their ASCII values greater than or equal to their threshold
values. The hypothesis is also valid if any one of the modality’s ASCII values is greater than
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or equal to its threshold value. The second hypothesis is true if either of the first hypotheses
is false. Figure 8 illustrates the flow of the logic behind the decision-level fusion.

 

Figure 8. Flow of decision level fusion.

Figure 9 illustrates the organizing of data collected from different sensors before the
actual fusion happens to create the AV context. In the first segment of Figure 9a knowledge
base is constructed from the data collected from thermal cameras, which give the climatic
conditions prevailing in the AVs environment. The next segment is the GPS, which collects
the location of the AVs. The data collected from the GPS are in textual format. Both the
numeric and alphanumeric data collected from the thermal cameras and GPS devices
are preprocessed using our proposed data-cleaning model [37]. To fuse the textual data,
the study has proposed an innovative fusion model, which is illustrated in Algorithm 1.
After fusing, the data are trained and tested using an advanced CNN model. The outcome
of the second segment is accurate location information. The third segment discusses
the image data collected from the LiDARs. Mandatory features are extracted using our
proposed feature extraction models [36]. After extracting the appropriate image features
the actual objects are detected using the proposed advanced RPN model. An ensemble of
models is performed to select the optimal model for object detection. The outcome of the
third segment is the actual object detected. The object detected using the RPN model is
again fed into a customized CNN model to classify the object detected. Later information
collected from all the sensors is fused into a unique format to create an accurate perception.

4.2.6. Proposed Context Creation Mechanism

Figure 10 illustrates the architect of the proposed context creation mechanism. This
study uses two approaches to create context from the fused data. In the first approach,
a predefined context is created using the nuScenes dataset. Normally, the context consists
of vital information such as city, latitude, longitude, motorway, area, weather condition,
and identified object using RPM model. Using the proposed fusion function, different
sensory data are fused according to Hypothesis 1. The conceptual information obtained
from the fused data is compared with the predefined conceptual information obtained from
the nuScenes dataset. The top three records which have the similarity index equivalent to
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the predefined conceptual data are considered for framing. To further improve the accuracy
of the obtained conceptual information, the study proposes a gating system that compares
the contextual feature map with the features used to construct the map.

Figure 9. Functionality of data fusion framework.

Figure 10. Final fusion architecture.

The sequence of operations performed in decision-level data fusion is as follows.
The thermal camera gives the climatic information. The GPS sensors give the location of the
objects. The RPN model identifies the objects and the CNN model classifies them. Based
on the location information and the object classification information the study can easily
frame the context information for every individual vehicle in the frame [38].

Data from thermal cameras: T1
Data from GPS: G1
Data from PCN (Objects Identified): Obj1
Classified data from CNN: C1

FinalFusion = T1 ∪ G1 ∪Obj1 ∪ C1 (28)

Figure 11 illustrates the mechanism behind the decision-level fusion and Equation (28)
depicts the formulation of decision level fusion.
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Figure 11. Mechanism of decision level data fusion.

5. Experimental Analysis

In this section, we discuss the detailed experimental analysis performed on the pro-
posed fusion models. Table 2 depicts the tools and the experimental setup details related to
the study.

Table 2. Experimental set up.

Hardware

Processor Processor: 2*Intel Xeon Gold 5218 16 core

Memory Storage Memory: 128 GB DDR4-2999
Storage: 2TB SSD

Graphics Card Nvidia quadro 8 GB

Software

Operating System Microsoft Windows 10 Pro 64 for Workstations

Tools Python (3.10.8), MatLab (2022a (R2022a))

Python Packages

· NumPy
· SciPy
· Scikit-learn
· Theano
· TensorFlow
· Keras
· PyTorch.
· Pandas. In-demand Machine Learning Skills

Dataset RADIATE, nuScenes, KITTI

5.1. Dataset Details

The Velodyne HDL-32e LiDAR, the ZED stereo camera, and the Navtech CTS350-X
radar all contributed labeled data to the RADIATE collection. The proposed study used this
dataset to train and test our object detection models using supervised learning. The RA-
DIATE dataset includes data for a variety of driving conditions, including driving in the
city, rain, snow, night, and highway. In rare circumstances, fog, rain, or snow visually
obscures many sensors. The following annotated object classes are included in the dataset:
“vehicle, van, truck, bus, motorbike, bicycle, pedestrian, group of pedestrians”. This dataset
offers a difficult standard for assessing the resilience of object identification models in a
variety of driving conditions. Next, the nuScenes is a public dataset created by a team
working for Motional concern. The company releases a subset of its data to the research
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community, to perform advanced research related to AD to ensure safe and reliable driving.
The team collected 1000 driving scenes from 415 cities, including Boston and Singapore,
which have dense and challenging driving scenarios [39]. Scenes of a 20-s duration were
painstakingly chosen to display a variety of amusing driving techniques, traffic conditions,
and unanticipated actions. The nuScenes’ vast complexity will spur the creation of tech-
niques that allow safe driving in cities with numerous things in each scene. The researchers
can explore the applicability of computer vision algorithms across various locales, weather
conditions, vehicle kinds, vegetation, road markers, and left versus right traffic by collecting
data in various contexts. Finally, the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) contains suitable vision tasks built using an AD environment [40].
This dataset is widely used to evaluate the performance of the models developed for
mobile robotics and AD platforms. It consists of detailed vehicular information recorded
using advanced sensors, high-resolution RGB, greyscale stereo cameras, and 3D scanners.
The drawback associated with the dataset is it does not contain the segmented information
of the images, rather the researchers have to develop customized segmentation algorithms
to effectively use this dataset for their analysis. To overcome this issue, we have integrated
advanced image segmentation procedures in our proposed object detection models and
fusion models.

5.2. Model Implementation

To implement the proposed fusion architecture, we are using Fast-CNN embedded
with ResNet-18 architecture and RPN models. ResNet-18 serves as the backbone of the
RPN model. This study uses the R-CNN model as a stem and RPN model as its branches.
An RPN model is implemented in every layer of the ResNet to identify the objects from
every individual scene collected from the LiDARs. The R-CNN model which acts as a stem
classifies the objects identified by the RPN model. Finally using Equation (28), different
modalities of data collected from different sensors and cameras are fused to obtain the
actual context related to different autonomous vehicles.

5.3. Overall Analysis

The upcoming sections provide the results obtained from the detailed analysis of
the proposed models. Table 3 illustrates the performance of different proposed fusion
strategies for different levels of configuration. A sample of 1000 images from the RADIATE
dataset is used for the evaluation. From the results obtained, it is evident that there is a
proportionate increase in energy consumption, latency time, and memory occupied for
different configurations. This proves that the proposed approach is stable and robust.

Table 3. Overall performance of the proposed models.

Fusion Method Configuration Energy
(J)

Latency
(ms)

Memory
(MB)

None Radar or LiDAR
Single Cam

0.935
0.927

21.65
21.67

754
743

Early Fusion
L/R Cam
L/R Cam + LiDAR
L/R Cam + LiDAR + RADAR

1.194
1.356
1.627

27.23
30.12
34.25

756
743
728

Late Fusion
L/R Cam
L/R Cam + LiDAR
L/R Cam + LiDAR + RADAR

1.856
2.726
3.649

42.66
61.78
82.25

924
1023
1139

Proposed Fusion
3-Branch (ResNet + RCNN)
5-Branch (ResNet + RCNN)
7-Branch (ResNet + RCNN)

3.345
5.006
6.476

72.15
100.26
120.56

1261
1362
1465
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mAP = 1/N
N

∑
i−1

APi (29)

In order to determine the efficiency of object detection by the proposed object detection
models, the study uses the mean average precision (mAP) score. The mAP is the ratio
between the average precision for each class over the total number of classes as depicted
in Equation (29). Table 4 and Figure 12 illustrate the mean average precision scores of
different stages of proposed fusion approaches. Again, the proportional increase in the
scores highlights that the proposed fusion approach is well-organized, stable, and reliable.

Table 4. mAP scores for different fusion models.

Fusion Method Configuration mAP
(%)

None
Single Camera
Radar
LiDAR

67.21
67.50
67.58

Early Fusion
L/R Cam
Radar + LiDAR
Camera + LiDAR

69.23
69.45
69.55

Late Fusion

L/R Cameras
Radar + LiDAR
L/R Cameras + LiDAR
Radar + LiDAR + L/R Cameras

71.25
71.43
71.23
71.00

Proposed Fusion
3-Branch (ResNet + RCNN)
5-Branch (ResNet + RCNN)
7-Branch (ResNet + RCNN)

74.32
79.34
82.31

60

65

70

75

80

85

None Early Late Prposed Fusion

(3 Branches)

Prposed Fusion

(5 Branches)

Prposed Fusion

(7 Branches)

A
v

er
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g
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m
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P
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Prposed Fusion Model
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Prposed Fusion
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Prposed Fusion

(7 Branches)

Figure 12. Average mAP comparison of different proposed fusion models.

5.3.1. Comparison with Other Related Studies

The proposed fusion model was compared with [41]. In the proposed and referred
approaches, a thousand sample scenes from the RADIATE dataset were used to evaluate
their models. Two types of comparisons were performed to evaluate the proposed and



Remote Sens. 2023, 15, 2256 22 of 28

referred approaches. In the first comparison, the models were compared using the key
metrics of energy, latency, and memory. Table 5 portrays the observed results. In the
second comparison, in order to estimate the efficiency and accuracy of object detection,
the mean average precision (mAP) scores were estimated using the proposed and referred
object detection strategies. Table 6 illustrates the results obtained. In both comparisons,
the proposed approach performed better than the other approach.

Table 5. First comparison.

Fusion Method Configuration

(Proposed) (Other Work [31])

Energy
(J)

Latency
(ms)

Memory
(MB)

Energy
(J)

Latency
(ms)

Memory
(MB)

None
Radar or LiDAR
Single Cam

0.935
0.927

21.65
21.67

754
743

0.954
0.945

21.85
21.57

769
767

Early Fusion
L/R Cam
L/R Cam + LiDAR
L/R Cam + LiDAR + RADAR

1.194
1.356
1.627

27.23
30.12
34.25

756
643
728

1.192
1.379
1.615

27.36
31.36
36.86

768
694
750

Late Fusion
L/R Cam
L/R Cam + LiDAR
L/R Cam + LiDAR + RADAR

1.856
2.726
3.649

42.66
61.78
82.25

924
1023
1139

1.959
2.878
3.769

43.99
64.09
84.32

923
1087
1239

Proposed Fusion 3-Branch (ResNet + RCNN) 3.245 72.15 1001 3.317 73.84 1080

Table 6. Second comparison.

Fusion Method Configuration

Proposed Fusion (Other Work [31])

mAP
(%)

mAP
(%)

None
Single Camera
Radar
LiDAR

67.41
67.21
67.58

65.33
69.42
61.86

Early Fusion
L/R Cam
Radar + LiDAR
Camera + LiDAR

69.25
69.45
69.55

65.33
71.63
65.99

Late Fusion

L/R Cameras
Radar + LiDAR
L/R Cameras + LiDAR
Radar + LiDAR + L/R Cameras

70.25
71.43
71.23
71.00

65.71
65.33
66.20
71.16

Proposed Fusion
3-Branch (ResNet + RCNN)
5-Branch (ResNet + RCNN)
7-Branch (ResNet + RCNN)

74.32
79.32
82.31

74.54
78.51
81.31

We also compared the accuracy of the proposed object detection model with other
popular object detection models. Sensitivity and average precision rate metrics were
used to estimate the accuracy of the object detection models. High-level applications
were developed using Python to accomplish these tasks. Nesterian Accelerated Gradient
(NAG) optimizer is used to calibrate the behavior of different models. We used the KITTI
dataset and from Figure 13, it is evident that the proposed object detection model’s sensory
values decrease when the number of false positives per frame increases during the testing
phase. In another comparison, the mAP of the proposed object detection model decreases
appreciably over increased (IoU) values compared to the other object detection models, as
illustrated in Figure 14. These inferences prove that the proposed object detection model is
more accurate than the other object detection model.
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Figure 13. Sensitivity vs. false positive per frame for different object detection models.

Figure 14. Average precision vs. IoU.

5.3.2. Performance of Hybrid Image Fusion Model

This section exclusively discusses the performance of the proposed hybrid image
fusion model. Various metrics were used to evaluate the image fusion model. Since, in
the field of AV, a major portion of the data acquired and processed is in image format,
various evaluations are performed to examine the performance of the model. Images from
nuScenes and RADIATE datasets were used to evaluate the model. Table 7 depicts various
metrics used to estimate the performance of the hybrid image fusion model. Apart from
our proposed Hybrid image fusion model, extensive applications were developed using
Python to implement popular image fusion models like Intensity Hue Saturation (HIS),
Subtractive, and Gram–Schmidt(GS) transformation-based fusion models. Table 8 depicts
the performance of the specified image fusion models along with the proposed Hybrid
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image fusion model for different metrics portrayed in Table 7. Further, Figure 15 illustrates
the outcome of the performance of different image fusion models for multiple images
collected from nuScenes and RADIATE datasets. From the inferences, it can be seen that
the proposed Hybrid image fusion model outperforms other popular image fusion models.

Table 7. Metrics used to evaluate the performance of proposed Hybrid Image Fusion model.

Metric Name Purpose

Accuracy (Acc) To compare accuracy

Efficiency (Eff) To evaluate the performance of the models

Standard Deviation (SD) To estimate the contrast

Average Gradient (AG)
To express small detail contrast and
texture changes, as well as the
sharpness of the image

Spatial Frequency (SF)
To measure the overall activity level
of the image

Peak Signal to Noise Ratio (PSNR)
To compute the visual error between the
fused image and the reference Image

Correlation Coefficient (CC)
To find the similarity between the reference
image and the fused image 

      

      

      

      

Proposed

Image

Fusion

Original Images
PCA WMFGS GS

Figure 15. Performance comparison of different image fusion models. PCA-Principle Component
Analysis, WMFGS-Weighed Mean Filter based Gram–Schmidt transform, GS-Gram–Schmidt transform.

Table 8. Performance of image fusion models for different metrics.

Images Model SD AG SF PSNR CC

1 GS 305.3385 9.4444 60.0375 89.6709 0.6908
HIS 363.5207 9.5403 133.8691 95.5200 0.7078
Subtractive 375.7824 9.4150 133.5344 94.5325 0.7107
Proposed 380.298 10.2148 135.6382 96.2867 0.9472

2 GS 289.3498 9.6105 78.5329 90.0781 0.6040
HIS 325.7555 9.7290 177.7829 93.0075 0.6077
Subtractive 339.9461 10.4368 178.6462 93.0360 0.6360
Proposed 365.4752 11.4976 180.5643 94.2335 0.8235

3 GS 625.3025 10.5363 131.9687 114.0561 0.7434
HIS 646.8171 10.8526 132.6416 95.5631 0.7313
Subtractive 657.6024 9.9434 120.6161 95.6224 0.7344
Proposed 370.2539 11.3145 123.6213 93.25 0.6543
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5.3.3. Sample Rule Framing Mechanism

Figure 16 illustrates the proposed rule framing mechanism. Different data formats
representing temperature, location, identified objects, and their classified types are orga-
nized in randomly generated Mongo database tables. From Figure 16 the circled three cars
namely car1, car2, and car3 violate the common traffic rules. Car1 violates the lane crossing
event while car3 is not moving, which causes congestion to car2. From the information
provided in the table, the rules for lane crossing and congestion are framed as follows.

Rule 1: If the location of object1 > the estimated threshold value of the lane

For lane crossing, the actual boundaries of the lane are estimated from the actual positions
of the moving objects using the proposed RPN model. The obtained boundary information
of the lanes is kept as the threshold values. Any vehicle which exceeds the threshold value
violates lane crossing.

Rule 2: If the location of object1 = location of object2

Similarly, if the location of two objects is almost identical it means the objects are static.
From Figure 16, the locations of car2 and car3 are almost similar, indicating car3, which is
not moving, causes congestion to car2.

1

2

3

Temperature Location Classified Object

24  °C 40.748440, -73.984559 Car1

24   °C 45.748440, -79.984559 Car2

24   °C 46.748440, -81.984559 Car2

Figure 16. Sample rule framing mechanism. (1. Location of Car1, 2. Location of Car2, 3. Location
of Car3).

6. Conclusions

This study proposed a multifaceted fusion framework. In this study, we have pro-
posed a versatile fusion framework to effectively fuse heterogeneous data in two stages,
namely early and late fusion to further improve the accuracy of the data for effective
decision-making in the AVs. This study has developed conversant models and kernel
functions for object detection, classification, and fusion. This study has proposed inno-
vative models for extracting features and fusing them for different data formats such as
text, numeric, image, and audio. Furthermore, this study proposed a novel mechanism
and versatile models for performing decision-level fusion in order to frame the accurate
context of the AVs perceived environment. High-level ensembling and gating techniques
were proposed to select the optimal object detection and classification model to perform the
accomplished tasks. Additionally, a rule-framing mechanism is suggested to frame effective
decision rules from the created context. Three widely used datasets, namely RADIATE,
nuScenes, and KITTI, were used to evaluate the proposed models. The proposed approach
was compared with other works and found to outperform them. The proposed method
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works well with the existing environmental setup. The performance of the framework
must be further evaluated when additional sensors producing different data formats are
added to the existing experimental setup. We intend to convert this approach to a more
generalized framework in the future. More work is needed to fine-tune the models and
optimize the key parameters used in the proposed models. In addition, we intend to set up
a real-time environment to evaluate the performance of the proposed models. One such
example is depicted in Figure 17. This setup will be deployed as a real-time roadside unit
in a densely populated area to collect real-time data for assessing the performance of our
proposed models.

Figure 17. Real-time data collection.
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