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Abstract: Most research on the extraction of earthquake-caused building damage using synthetic
aperture radar (SAR) images used building damage certification assessments and the EMS-98-based
evaluation as ground truth. However, these methods do not accurately assess the damage character-
istics. The buildings identified as Major damage in the Japanese damage certification survey contain
damage with various characteristics. If Major damage is treated as a single class, the parameters
of SAR images will vary greatly, and the relationship between building damage and SAR images
would not be properly evaluated. Therefore, it is necessary to divide Major damage buildings into
more detailed classes. In this study, the Major damage buildings were newly classified into five
damage classes, to correctly evaluate the relationship between building damage characteristics and
SAR imagery. The proposed damage classification is based on Japanese damage assessment data and
field photographs, and is classified according to the dominant damage characteristics of the building,
such as collapse and damage to walls and roofs. We then analyzed the backscattering characteristics
of SAR images for each classified damage class. We used ALOS-2 PALSAR-2 images observed before
and after the 2016 Kumamoto earthquake in Mashiki Town, where many buildings were damaged by
the earthquake. Then, we performed the analysis using two indices, the correlation coefficient R and
the coherence differential value γdif, and the damage class. The results indicate that the backscattering
characteristics of SAR images show different trends in each damage class. The R tended to decrease
for large deformations such as collapsed buildings. The γdif was likely to be sensitive not only to
collapsed buildings but also to damage with relatively small deformation, such as distortion and
tilting. In addition, it was suggested that the ground displacement near the earthquake fault affected
the coherence values.

Keywords: synthetic aperture radar; ALOS-2; PALSAR-2; building damage assessment; backscatter
coefficient; coherence

1. Introduction

Disasters, especially major earthquakes, cause widespread human and economic losses
and severely impact society [1]. Rapid disaster response is necessary to minimize the losses
and impacts of earthquakes. Recently, vision technologies emerged as an effective way to
perform tasks such as structural health monitoring [2,3] and damage assessment [4]. Pow-
ered by such technologies, remote sensing using airborne and satellite-based technologies
play an increasingly important role in supporting rapid disaster response [5,6]. In addition,
in Japan, the use of optical satellite imagery and aerial photography was incorporated into
manuals for field survey–based damage assessment [7]. As observation techniques and
sensor resolution improve year by year, the use of remote sensing in disaster response is
likely to increase.

There are two types of satellite-based observations: optical sensors and synthetic
aperture radar (SAR). Optical sensors are passive sensors that require sunlight to observe
the Earth’s surface and cannot penetrate clouds, limiting their ability to observe when
disasters occur. On the other hand, SAR is an active sensor that emits microwaves, so it
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is less affected by rain and clouds and can be used regardless of weather conditions and
observation time. SAR is considered to be flexible for use in disaster damage assessment be-
cause of its ability to observe regardless of the observation conditions. In SAR observations,
sensors emit microwaves and record the amplitude and phase components of backscattered
waves from the ground surface, which can then be analyzed to detect changes in the ground
surface. SAR is also widely used to detect building damage, crustal deformation, land
subsidence, landslides, etc., because it has information on microwave intensity and phase
that is not available in optical images [8].

The early assessment of building damage is one of the most important issues in
disaster response because the distribution of building damage is closely related to saving
lives in emergencies [9]. Ge et al. compiled a comprehensive review of building damage
assessment during disasters using SAR [10]. Generally, building damage extraction is
performed by applying both pre-event and post-event data and is based on changes in the
intensity, phase, and polarization characteristics of SAR images before and after a disaster.
An approach to building damage assessment using only post-event data was also proposed
for cases where ideal pre-event data are not available [11,12].

Using intensity images to determine the building damage caused by earthquakes,
changes in backscatter coefficients are extracted as the building deforms before and after the
earthquake. As with optical imagery, SAR intensity images were widely used for disaster
monitoring [13,14]. The difference and correlation coefficients of backscatter coefficients
are often used to detect building damage using intensity images [15–17]. Matsuoka and
Yamazaki quantitatively analyzed the possibility of extracting damage distribution using
ERS-1 data observed before and after the 1995 Kobe earthquake and found that the dif-
ference in backscatter coefficients was larger and the correlation coefficient was lower in
severely damaged areas [18]. In addition, correlation coefficients are more sensitive to
subtle changes in the ground surface than to intensity differences [19].

Extracting disaster damage using interferometric coherence requires frequent pre- and
post-disaster observations, and if there are two pre-event images and one post-event image,
it is possible to extract the change in interferometric coherence between the pre-event
pair and the co-event pair. Interferometric coherence analysis was used for a variety of
applications, including the use of coherence changes to identify tsunami damage and
detect liquefied areas [20,21]. Coherence differential values and coherence ratios between
co-event and pre-event are often used in the detection of earthquake building damage
using coherence [22–24]. Arciniegas et al. studied building damage detection for the 2003
Bam and Iran earthquakes using the coherence differential values in ENVISAT images
and showed that the detection accuracy was better than intensity differences [25]. Ito
et al. proposed a damage estimation model based on the coherence ratio for the 1995
Kobe earthquake and validated it for the 1999 Kocaeli earthquake using ERS-1/2 SAR
images [26,27]. Liu et al. studied the extraction of collapsed building areas from PALSAR-
2 images for the 2016 Kumamoto earthquake concerning two indices, coherence and
coherence ratio, and showed that they were more accurate than the intensity parameter [16].

Polarimetric analysis (PolSAR) was proposed to detect changes in the scattering
mechanisms of surface targets before and after a disaster. For example, PolSAR analysis
was examined during the 2011 Tohoku earthquake and is effective in detecting damaged
and inundated areas [28,29]. Problems with this approach include the low spatial resolution
in full polarimetry mode and a low number of observations.

We briefly describe the evolution of research on building damage detection as SAR
resolution improves. Low-resolution sensors, such as ERS-1/2 and RADARSAT-1, launched
in the 1990s, have difficulty identifying individual building features because a single
pixel contains multiple ground targets. Therefore, the detection of building damage with
low-resolution SAR is limited to block-by-block detection in which multiple targets are
contained within a single block [15,20,23,24]. Since 2007, satellite-borne SARs, such as
TerraSAR-X, COSMO-SkyMed, RADARSAT-2, and ALOS-2, achieved spatial resolutions of
less than 3 m in the strip-map mode. These satellites have the potential to detect damage
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to individual buildings, and damage detection on a building-by-building basis is being
considered [17,24,30].

The damage classification of damaged buildings when evaluating the detection of
building damage by SAR varies depending on the purpose of the study and the building
dataset, and many studies divided the damage into two broad classes: severely damaged
buildings and other buildings. Liu et al. and Li et al. focused only on collapsed buildings
among the damaged buildings [17,31]. Matsuoka et al. and Arciniegas et al. focused on
particularly damaged buildings that were grade 4 or grade 5 in EMS-98 [18,25]. On the
other hand, few studies analyzed the relationship between SAR images and the detailed
damage extent, classifying each building according to the damage characteristics. Natsuaki
et al. classified buildings one by one based on EMS-98 for the Kumamoto earthquake
and analyzed the relationship with coherence in high-resolution SAR from ALOS-2 [32].
However, the sample size was only 186 buildings, and they were analyzed by subdividing
by the damage level and building size, so they did not have a sufficient number of samples
for some damage levels. Considering the application of SAR-based building damage detec-
tion to disaster response in Japan, it is necessary to quantitatively analyze the relationship
between SAR images and the detailed damage characteristics surveyed in the Japanese
residential damage assessment survey. However, EMS-98 evaluates the extent of damage to
buildings as a whole, and no study examined the relationship between damage characteris-
tics based on the items in the Japanese damage assessment survey. Paolo et al. validated the
performance of SAR imagery in post-earthquake damage detection for emergency response
management at several resolutions, and showed that COSMO-SkyMed StripMap HIMAGE
images at 3 × 3 m resolution can detect damaged buildings relatively well and can be used
effectively for emergency purposes [33]. The high-resolution mode of ALOS-2 has a similar
resolution to COSMO-SkyMed StripMap HIMAGE and could be shown to be effective
for post-earthquake damage assessment in Japan by examining the relationship between
damage characteristics based on Japanese damage assessment surveys.

In this paper, we classified damaged buildings one by one according to their damage
characteristics using a large dataset from the Japanese residential damage assessment
survey, and we analyzed the relationship between the damage and high-resolution L-
band SAR images. The intensity and coherence of ALOS-2 PALSAR-2 images of damaged
buildings from the 2016 Kumamoto earthquake were analyzed to evaluate the possibility
of building damage detection. The coherence was expected to include not only building
damage but also the effects of ground deformation. Therefore, we focused on buildings
with minor damage near the earthquake fault, and we examined the influence of ground
deformation on coherence based on the relationship between the coherence value and the
distance from the earthquake fault.

2. Kumamoto Earthquake and ALOS-2 Observation

A brief description of the 2016 Kumamoto earthquake is discussed in this paper: a
magnitude 6.5 earthquake occurred in Kumamoto, Japan, on 14 April 2016, followed by
a magnitude 7.3 earthquake on 16 April 2016. The main ground deformation occurred
along the Futagawa and Hinagu faults, extending 40 km from southwest to northeast. In
this paper, we focused on the damaged buildings in Mashiki Town and Uki City. Mashiki
Town is the area where the earthquake caused significant damage to buildings, while Uki
City is located some distance away from the earthquake fault and suffered relatively minor
damage to buildings. The earthquake faults here are faults that were confirmed to have
appeared on the ground surface during an earthquake. Figure 1 shows the location of
Mashiki Town, Uki City, the Futagawa Fault, the Hinagu Fault, and the earthquake faults.
Regarding the faults, we referred to the active fault map of the Geospatial Information
Authority of Japan (GSI) [34].
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tive boundaries and shoreline data were provided by GSI. 
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intensity of the received backscattered waves and is measured in dB. This index is ex-
plained in more detail in Section 3.2. The coherence is a dimensionless quantity with val-
ues ranging from 0 to 1, a measure of the degree of spatial interference between the phases 
of the two periods. The closer the value of the index to 0, the greater the change in the 
ground surface between the two periods. This indicator is described in more detail in Sec-
tion 3.3. For the intensity images in Figure 2a,b, the areas with higher backscatter coeffi-
cients than the other areas were urban areas with dense buildings. For example, the area 
northwest of Mashiki Town is an urban area and is shown brighter than the surrounding 
area in the images (a) and (b). For the coherence image in Figure 2c, no major earthquakes 
occurred between the two time periods, and backscatter is stable in urban areas with dense 
man-made structures. Therefore, the coherence value is close to 1 and appears bright in 
the image. For the coherence image in Figure 2d, a large earthquake occurred between the 
two time periods, and the coherence value approaches 0 in the urban area of Mashiki 
Town, because many buildings collapsed and the ground surface changed significantly. 

Figure 1. Study areas in the Kumamoto Prefecture, Japan. The black lines show the Futagawa and
Hinagu faults, and the blue lines show the location of the earthquake fault. Municipal administrative
boundaries and shoreline data were provided by GSI.

JAXA conducted emergency ALOS-2 observations for disaster response, and ALOS-2
successfully observed almost all areas of the affected area in high-resolution mode with
a ground resolution of 5 m. This paper used datasets observed on 7 March and 18 April
2016, and 11 and 30 March 2015. The satellite’s orbit was descending and the observations
were conducted from east to west. Figure 2 shows the backscattering coefficient and the
coherence images used for the analysis. The backscatter coefficient is a measure of the
intensity of the received backscattered waves and is measured in dB. This index is explained
in more detail in Section 3.2. The coherence is a dimensionless quantity with values ranging
from 0 to 1, a measure of the degree of spatial interference between the phases of the two
periods. The closer the value of the index to 0, the greater the change in the ground surface
between the two periods. This indicator is described in more detail in Section 3.3. For the
intensity images in Figure 2a,b, the areas with higher backscatter coefficients than the other
areas were urban areas with dense buildings. For example, the area northwest of Mashiki
Town is an urban area and is shown brighter than the surrounding area in the images (a)
and (b). For the coherence image in Figure 2c, no major earthquakes occurred between the
two time periods, and backscatter is stable in urban areas with dense man-made structures.
Therefore, the coherence value is close to 1 and appears bright in the image. For the
coherence image in Figure 2d, a large earthquake occurred between the two time periods,
and the coherence value approaches 0 in the urban area of Mashiki Town, because many
buildings collapsed and the ground surface changed significantly.
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November 2015–7 March 2016 pre-event pair; (d) coherence image of the 7 March 2016–18 April 
2016 co-event pair. 
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dwelling [7]. At that time, there were four categories of damage assessment: “Major dam-
age”, “Moderate + damage (Mod+ damage)”, “Moderate-damage (Mod- damage)”, and 
“Minor damage”. The Japanese residential damage assessment is supplemented by com-
parison with other earthquake damage assessment methods applied outside Japan. 
Formisano et al. used the post-earthquake damage and safety assessment (AeDES) form 
implemented by the Italian Civil Protection Department (DPC) to assess the earthquake 
vulnerability of buildings [35]. AeDES was proposed to quickly and efficiently assess the 
safety of buildings after an earthquake. The evaluation is based on a systematic visual 
inspection of the building, including structural elements and non-structural elements such 
as windows, doors, and ceilings, and has some similarities with Japanese residential 

Figure 2. These are ALOS-2PALSAR-2 images of the areas affected by the Kumamoto earthquake.
The areas circled in red are the study areas: (a) backscatter coefficient image of the 7 March 2016
pre-event; (b) backscatter coefficient image of the 18 April 2016 post-event; (c) coherence image of the
30 November 2015–7 March 2016 pre-event pair; (d) coherence image of the 7 March 2016–18 April
2016 co-event pair.

3. Methodology
3.1. Classification of the Damaged Buildings

In Japan, after a major disaster, the affected local governments conduct a damage as-
sessment of buildings based on the Japanese residential damage assessment survey manual.
This is an important assessment criterion because it is the basis for granting tax exemptions
to disaster victims and support funds for building reconstruction. According to the manual
established by the Cabinet Office, the degree of economic loss is determined by calculating
the percentage of damage to each part of the building, such as walls and roofs, and then,
adding them together to calculate the percentage of damage to the entire dwelling [7]. At
that time, there were four categories of damage assessment: “Major damage”, “Moderate
+ damage (Mod+ damage)”, “Moderate-damage (Mod- damage)”, and “Minor damage”.
The Japanese residential damage assessment is supplemented by comparison with other
earthquake damage assessment methods applied outside Japan. Formisano et al. used the
post-earthquake damage and safety assessment (AeDES) form implemented by the Italian
Civil Protection Department (DPC) to assess the earthquake vulnerability of buildings [35].
AeDES was proposed to quickly and efficiently assess the safety of buildings after an earth-
quake. The evaluation is based on a systematic visual inspection of the building, including
structural elements and non-structural elements such as windows, doors, and ceilings,
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and has some similarities with Japanese residential damage assessment in terms of survey
methodology. Guidelines for prompt post-earthquake assessment of housing in Andalusia
(Spain) were proposed, and the damage assessment presented in the guidelines combines
the severity of the damage and the percentage of its spread to quantify the damage to the
building and its risk [36]. This has some similarities with the Japanese residential damage
assessment in terms of damage quantification.

In this paper, we collected and analyzed a large dataset of the results of damage
assessment by the local government, survey sheets used for the assessment, and field
photographs of the buildings at the time of the survey. To minimize the impact of variations
in building size and characteristics on the results of our analysis, we only considered
wooden structures among the residential buildings for which damage assessment surveys
were conducted.

Of the four damage categories, “Major damage” could be determined without calcu-
lating the percentage of damage to each part of the building. Major damage is determined
when the following characteristics are confirmed in the simple visual survey of the appear-
ance.

• The building collapsed;
• The standard value of the unequal settlement due to the fact of ground subsidence or

liquefaction was exceeded;
• Seventy-five percent of the circumference of the foundation was destroyed or the

building is distorted significantly;
• The standard value of the building inclination without unequal settlement was ex-

ceeded.

In case these damage conditions are not found, a more detailed survey will be con-
ducted. In a detailed survey, the percentage of damage to the roof and the percentage
of damage to the walls and foundation are each calculated, and if the total percentage of
damage is 50% or more, the building is considered to be Major damage. The percentage of
damage to walls and roofs is set to be larger than that to walls and foundations. Figure 3
shows an example of a building determined to be categorized as Major damaged due to
the fact of each type of damage and an example of a building determined to be Major
damaged based on a detailed survey. No buildings damaged by unequal subsidence were
identified among the subject buildings. The damaged buildings in Figure 3 show that the
damage varied greatly from building to building, even though they were all classified as
Major damage. Some of the previous studies attempted to extract damage separately for
buildings classified as Major damage and others [15], but the large variation in the damage
characteristics of buildings classified as Major damage possibly affected the results of the
extraction.

In this paper, to understand the sensitivity of the SAR observations to each type of
damage, buildings with Major damage were classified according to the type of damage
and then analyzed. Based on the survey sheets used for damage assessment and field
photographs of damaged buildings, we classified the buildings with Major damage, 1469
in Mashiki Town and 251 in Uki City, into five classes. The five classes of buildings with
Major damage, as well as Minor damage, Mod- damage, and Mod+ damage, are shown in
Table 1. Table 1 summarizes the characteristics and number of buildings in each damage
class. A total of 4650 buildings in Mashiki Town and 6292 buildings in Uki City are treated.
Table 1 also shows the correspondence between Class 1 through Class 5 and the pictures of
the Major damage buildings in Figure 3. Classes 1 and 2 mainly include buildings that were
determined to be in the Major damage category by detailed surveys and buildings with
foundation circumferences of 75% or more. Both classes are damaged without building
deformation. Class 3, Class 4, and Class 5 are buildings that were determined to be in the
Major damage category by the simple visual survey of appearance and have damage that
can be judged visually from the exterior with deformation of the building.
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Table 1. Characteristics of each damage class and the number of buildings.

Damage Class Characteristics of Damage Correspondence
to Figure 3

Number of Buildings

Mashiki Town Uki City

Major
damage

Class 5 Collapsed (a) 399 21

Class 4 Large interlayer deformation (not collapsed) (b) 132 22

Class 3 Large distortion or large inclination (c) 192 64

Class 2 Damage to roof and walls (including foundation) (e) 392 89

Class 1 Damage to walls (including foundation) (d), (f) 354 56

Mod+ damage 40~50% of economic damage to the building - 386 177

Mod- damage 20~40% of economic damage to the building - 1001 672

Minor damage Below 20% of economic damage to the building - 2695 5191

Total 4650 6292

The differences between the proposed damage classification and the European Macro-
seismic Scale 1998 (EMS-98), which is commonly used for building damage assessment,
are explained. In EMS-98, the damage is defined by grade for masonry buildings and
reinforced concrete buildings, but damage is not defined in detail for wooden buildings
due to the small number of such buildings in Europe [37]. The buildings targeted in this
study were wooden buildings, and the proposed damage classification focused on wooden
buildings that are determined to be Major damage. Additionally, while EMS-98 classifies
buildings by the degree of damage, the proposed damage classification classifies buildings
by their dominant damage characteristics, such as roof damage, collapse, and distortion.

The number of undamaged buildings in both Mashiki Town and Uki City is extremely
small in the building data treated in this paper, making it impossible to compare buildings in
each damaged class with those in the undamaged class. Therefore, buildings categorized as
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Minor damage were treated as a class of buildings with little change in the SAR observations
due to the earthquake.

3.2. Backscattering Coefficient

The backscatter coefficient is the ratio of the power of the scattered wave at the radar
position from the unit ground surface to the power of the scattered wave when microwaves
incident on the unit ground surface are scattered uniformly, and it is an indicator of the
strength of the received wave. Since the power of the received wave varies depending on
the observation conditions, such as the distance between the satellite and the Earth’s surface,
wavelength, and angle of incidence, it can be converted to a backscattering coefficient to
enable comparison between images with different observation conditions. The formula for
the backscatter coefficient in the case of ALOS-2 PALSAR-2, which was the subject of this
paper, is shown in Equation (1) [38]:

σ0[dB] = 10log10〈DN2〉+ CF1 (1)

where σ0 is the backscatter coefficient, DN is the brightness value (intensity) of the image,
and CF1 is a constant determined by JAXA, the operational source. 〈〉 denotes the averaging
process.

We used the correlation coefficient R of the backscatter coefficient as a measure of the
intensity in our analysis. R was calculated from the intensity images at the two time periods
before and after the earthquake. The correlation coefficient R is expressed in Equation (2):

R =
N∑N

i=1 σaσb −∑N
i=1 σa∑N

i=1 σb√
(N∑N

i=1 σa2 − (∑N
i=1 σa)

2
)∗(N∑N

i=1 σb
2 − (∑N

i=1 σb)
2
)

(2)

where σa is the backscatter coefficient before the earthquake on 7 March 2015, and σb is
the backscatter coefficient after the earthquake on 18 April 2016. N refers to the number
of pixels within the window size to be calculated. R is calculated by the window size
centered on the pixel that overlaps the center of gravity of the building polygon. The
ground resolution of the high-resolution mode of PALSAR-2 is approximately 5 m. To
increase the area ratio of the building within the window, the window size in this study
was set to 3 × 3 pixels.

3.3. Coherence

Coherence is a measure of the degree of spatial interference between the phases of
two time periods with values ranging from 0 to 1. It measures the alignment of the phases
within a window size region of the calculation. If the observed ground surface changes
between the two periods, the distance from the satellite changes and, thus, the phase varies.
Thus, coherence responds to changes in the Earth’s surface, and since it has sensitivity
below the wavelength of microwaves, it can be used as an indicator of changes in the
Earth’s surface.

The coherence is obtained by aligning SAR images from two periods with similar
observation conditions and then calculating the complex correlation. When the two-time
SAR images are C1 and C2, and the coherence is γ, the formula for calculating the coherence
is as shown in Equation (3).

γ =
|〈C1C2〉|√
〈|C1|2〉〈|C2|2〉

(3)

C represents the conjugate of the complex number C, and 〈〉 represents the averaging
process. The coherence calculation is obtained using C1 and C2 contained within the
window size. As with the correlation coefficient R, the window size was 3 × 3 pixels. The
coherence of the building was the coherence of the pixel overlapping the center of gravity
of the building polygon.
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We used the coherence differential value γdif as a measure of coherence in our analysis.
γdif was calculated using two pre-earthquake and one post-earthquake ALOS-2 PALSAR-2
image. The coherence differential value γdif is expressed as in Equation (4).

γdi f = γpre − γco (4)

γpre refers to the coherence calculated for the pre-event pair, and γco refers to the coherence
calculated for the co-event pair. The reason for taking the difference from γpre here is
to reduce the influence of the spatial positioning of the satellite and the noise randomly
generated by vegetation. γdif takes values between −1 and 1 and approaches 1 when the
change in the ground surface is large and the phase coherence is poor.

3.4. Extraction of Indices

This section describes the process of extracting indicators contained in SAR images of
buildings. Figure 4 shows a flowchart of the research process that includes dataset creation.
The point data that represent building centers are created from 3D LiDAR point clouds
provided by [39] to extract the indices of the pixels overlapping the center of the building.
Specifically, the centroids of building roofs in the point clouds are computed. Then, the
building centers are obtained by projecting the centroids onto the ground plane. After
geocoding the backscatter coefficients and coherence images, they were superimposed on
the building center data to extract indices for each period. R and γdif for each building were
calculated and used as a dataset from the extracted indices.
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Figure 4. Flowchart of the research process. The SAR images and the point data representing the
building center were created and superimposed to obtain the SAR images parameters at each building.
R and γdif were calculated from the parameters for each building to create a dataset, which was then
used for statistical analysis.



Remote Sens. 2023, 15, 2181 10 of 18

4. Results
4.1. Correlation Coefficient of the Backscatter Coefficient R

A box-and-whisker diagram of the correlation coefficient R for each damage class is
shown in Figure 5. The vertical axis shows the correlation coefficient R, and the horizontal
axis shows the damage class. Classes 1 through 5 are damage classes for buildings that
were classified as Major damage. Values more than 1.5 times the interquartile range (IQR)
away from the first and third quartiles were judged to be outliers and represented by white
dots in the figure. For Mashiki Town, the median values for Minor damage, Mod- damage,
and Mod+ damage were similar at 0.73, 0.70, and 0.72, respectively, and there was no
significant difference in the quartile range. The medians of Class 1, 2, 3, 4, and 5 for Major
damage were 0.62, 0.64, 0.56, 0.51, and 0.45, decreasing as the damage increased, and the
interquartile range also tended to be lower. For Uki City, the median values for Minor
damage, Mod- damage, and Mod+ damage were similar at 0.90, 0.88, and 0.89, respectively,
and the quartile range fell within the range of 0.75 to 1.0. The medians of Class 1, 2, 3, 4,
and 5 for Major damage were 0.81, 0.85, 0.86, 0.82, and 0.73, respectively, and although
Class 5 had a relatively low value, it did not show the same decreasing trend as Mashiki
Town. The quartile range also showed no clear decreasing trend even when the damage
class increased, except for Class 5.
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Figure 5. Box-and-whisker plots of the correlation coefficient of the backscatter coefficient R for each
damage class.

To test for significant differences between Mashiki Town and Uki City in damage class,
the Mann–Whitney U test was conducted for each damage class. Since the distribution
of the correlation coefficient R was not confirmed to be normal, this test method was
employed. The Mann–Whitney U test is one of the nonparametric tests used to test the
difference of medians between two independent samples [40]. As it is a nonparametric
test, this test can be used when the distribution does not follow a normal distribution. The
sample size was set to 20, in line with Class 5 in Uki City, which had a smaller number of
buildings, and the significance level was set at 0.05. The results of the test are shown in
Table 2. Yellow cells indicate that there was a significant difference. Significant differences
were found between Mashiki Town and Uki City in all damage classes.



Remote Sens. 2023, 15, 2181 11 of 18

Table 2. Results of significant difference test for Mashiki Town and Uki City in R of each damage
class (yellow indicates a significant difference was determined).

Damage
Class Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5

p-Value 7.2 × 10−3 1.2 × 10−2 1.5 × 10−3 6.7 × 10−3 8.3 × 10−3 1.5 × 10−4 9.6 × 10−3 1.7 × 10−3

The Mann–Whitney U test was also conducted to examine significant differences
between damage classes. The results of the test are shown in Table 3. For the results for
Mashiki Town, only Class 5 showed significant differences in all comparisons between
Minor damage, Mod- damage, and Mod+ damage. Two sets of significant differences
were found in the test between Major damage classes: Class 5–Class 1 and Class 5–Class 4.
Regarding the results for Uki City, there was no class of Major damage buildings for which
a significant difference was confirmed in all comparisons between Minor damage, Mod-
damage, and Mod+ damage. There were also no combinations where there were significant
differences in the tests between the Major damage classes.

Table 3. Results of the significant difference test for R between the damage classes (yellow indicates a
significant difference was determined).

Mashiki Town
Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 6.7 × 10−2 3.2 × 10−1 2.6 × 10−1 Class 1 - 3.0 × 10−1 1.1 × 10−1 4.3 × 10−1 2.7 × 10−2

Class 2 1.6 × 10−2 1.2 × 10−1 1.1 × 10−1 Class 2 - - 2.7 × 10−1 2.8 × 10−1 6.0 × 10−2

Class 3 5.3 × 10−3 8.6 × 10−2 3.8 × 10−2 Class 3 - - - 1.3 × 10−1 1.9 × 10−1

Class 4 6.3 × 10−2 3.1 × 10−1 2.7 × 10−1 Class 4 - - - - 1.9 × 10−2

Class 5 1.1 × 10−4 1.4 × 10−3 2.4 × 10−3 Class 5 - - - - -
Uki City

Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 8.2 × 10−2 4.1 × 10−1 1.1 × 10−1 Class 1 - 1.9 × 10−1 2.9 × 10−1 3.2 × 10−1 7.8 × 10−2

Class 2 3.2 × 10−2 3.4 × 10−1 3.6 × 10−2 Class 2 - - 1.9 × 10−1 3.2 × 10−1 2.4 × 10−1

Class 3 7.4 × 10−2 2.1 × 10−1 1.2 × 10−1 Class 3 - - - 2.4 × 10−1 7.4 × 10−2

Class 4 5.7 × 10−2 4.3 × 10−1 6.7 × 10−2 Class 4 - - - - 1.1 × 10−1

Class 5 1.0 × 10−2 1.4 × 10−1 9.0 × 10−3 Class 5 - - - - -

4.2. Coherence Differential Value γdif

A box-and-whisker diagram of the coherence differential value γdif for each damage
class is shown in Figure 6. The vertical axis shows the coherence differential value γdif,
and the horizontal axis shows the damage class. Class 1 through Class 5 are the damage
classes for the buildings categorized as Major damage. As in Figure 5, values more than
1.5 times the IQR away from the first and third quartiles were determined to be outliers
and represented by white dots in the figure. For Mashiki Town, the median values for
Minor damage, Mod- damage, and Mod+ damage were 0.26, 0.34, and 0.37, respectively,
increasing with the severity of the damage, and the quartile range also increased. The
medians of Class 1, 2, 3, 4, and 5 for Major damage were 0.44, 0.41, 0.47, 0.53, and 0.56,
respectively, and increased as the damage increased, with the quartile range also increasing.
For Uki City, the median values for Minor damage, Mod- damage, and Mod+ damage
were 0.06, 0.10, and 0.15, respectively, increasing with greater damage, and the interquartile
range was also increasing. The medians of Class 1, 2, 3, 4, and 5 for destruction were 0.16,
0.18, 0.20, 0.24, and 0.27, respectively, increasing with greater damage, and all classes of
Major damage were at least 0.2 lower than those in Mashiki Town. The quartile range
showed no clear decreasing trend even as the damage class increased, except for Class 5.
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Figure 6. Box-and-whisker plots of the coherence differential value γdif for each damage class.

To examine the significant differences between Mashiki Town and Uki City in the
damage classes, we ran the Mann–Whitney U test on each damage class, as well as the
correlation coefficient R. The results of the test are presented in Table 4. The yellow cells
indicate that a significant difference was determined. All damage classes found significant
differences between Mashiki Town and Uki City.

Table 4. Results of the significant difference test for Mashiki Town and Uki City in γdif of each damage
class (yellow indicates a significant difference was determined).

Damage
Class Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5

p-Value 6.9 × 10−7 7.1 × 10−6 9.0 × 10−5 1.0 × 10−6 6.9 × 10−7 2.0 × 10−6 2.3 × 10−5 6.0 × 10−7

The Mann–Whitney U test was conducted to examine the significant differences
between the damage classes. The results of the test are shown in Table 5. For the results for
Mashiki Town, significant differences were found in Classes 3, 4, and 5 for all comparisons
between Minor damage, Mod- damage, and Mod+ damage. The four groups that showed
significant differences in the test between the Major damage classes were Class 5–Class
1, Class 5–Class 2, Class 3–Class 2, and Class 4–Class 2. Regarding the results for Uki
City, Class 4 and 5 were the Major damage classes for which significant differences were
confirmed in all comparisons between Minor damage, Mod- damage, and Mod+ damage.
The four combinations with significant differences in the test between Major damage classes
were Class 5–Class 1, Class 5–Class 2, Class 5–Class 3, and Class 4–Class 1.

Table 5. Results of the significant difference test for γdif between the damage classes (yellow indicates
a significant difference was determined).

Mashiki Town
Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 2.3 × 10−4 2.8 × 10−2 7.0 × 10−2 Class 1 - 2.2 × 10−1 1.8 × 10−1 1.6 × 10−1 1.1 × 10−2

Class 2 1.0 × 10−4 8.6 × 10−2 1.6 × 10−1 Class 2 - - 1.3 × 10−2 1.3 × 10−2 1.2 × 10−3

Class 3 7.9 × 10−7 2.8 × 10−4 4.2 × 10−3 Class 3 - - - 4.6 × 10−1 1.6 × 10−1

Class 4 3.5 × 10−7 1.7 × 10−4 2.2 × 10−3 Class 4 - - - - 1.6 × 10−1

Class 5 2.3 × 10−7 3.3 × 10−5 6.7 × 10−4 Class 5 - - - - -
Uki City

Minor Mod- Mod+ Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 1.6 × 10−2 9.9 × 10−2 4.8 × 10−1 Class 1 - 1.3 × 10−1 1.7 × 10−1 1.5 × 10−2 3.4 × 10−4

Class 2 1.0 × 10−4 2.0 × 10−3 7.4 × 10−2 Class 2 - - 4.8 × 10−1 9.0 × 10−2 3.3 × 10−3

Class 3 7.4 × 10−4 1.4 × 10−2 1.6 × 10−1 Class 3 - - - 8.2 × 10−2 6.2 × 10−3

Class 4 1.7 × 10−4 1.5 × 10−3 1.5 × 10−2 Class 4 - - - - 7.0 × 10−2

Class 5 2.9 × 10−6 2.3 × 10−5 5.1 × 10−4 Class 5 - - - - -
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4.3. Relationship between Earthquake Faults and the Coherence Differential Value γdif

Significant differences in the coherence differential value γdif between Class 1, 2, and
buildings categorized as Minor damage were observed in both Mashiki Town and Uki
City. Class 1 and 2 were buildings with damage to walls and roofs that did not deform the
building, and the significant difference between Class 1, 2, and Minor damage was thought
to be due to the presence of factors other than building damage. Kagawa et al. examined
the effect of ground deformation on coherence by simulation and found that changes in
ground slope had a significant effect on coherence [41]. This suggests that the significant
difference between Class 1, 2, and Minor damage was influenced by ground displacement.

To confirm the effect of the ground deformation on coherence, we analyzed the
relationship between the distance from the damaged building to the earthquake fault
and the difference in coherence, γdif, for buildings categorized as Minor damage in Mashiki
Town. Since there are no data documenting ground deformation over the entire affected
area, the distance from the earthquake fault was applied as a rough indicator of the degree
of ground deformation, assuming that the closer one was to the earthquake fault that
appeared on the ground surface during the earthquake, the greater the ground deformation.
The target buildings were selected as Minor damage buildings because the damage was
minor and the variation in coherence due to the fact of changes in the buildings was
small. Figure 7 shows the distribution of earthquake faults and buildings categorized as
Minor damage. The locations of the earthquake faults were based on the active fault maps
published by the Geospatial Information Authority of Japan [34].

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

Class 3 7.4 × 10−4 1.4 × 10−2 1.6 × 10−1 Class 3    8.2 × 10−2 6.2 × 10−3 

Class 4 1.7 × 10−4 1.5 × 10−3 1.5 × 10−2 Class 4     7.0 × 10−2 

Class 5 2.9 × 10−6 2.3 × 10−5 5.1 × 10−4 Class 5      

4.3. Relationship between Earthquake Faults and the Coherence Differential Value γdif 

Significant differences in the coherence differential value γdif between Class 1, 2, and 

buildings categorized as Minor damage were observed in both Mashiki Town and Uki 

City. Class 1 and 2 were buildings with damage to walls and roofs that did not deform the 

building, and the significant difference between Class 1, 2, and Minor damage was 

thought to be due to the presence of factors other than building damage. Kagawa et al. 

examined the effect of ground deformation on coherence by simulation and found that 

changes in ground slope had a significant effect on coherence [41]. This suggests that the 

significant difference between Class 1, 2, and Minor damage was influenced by ground 

displacement. 

To confirm the effect of the ground deformation on coherence, we analyzed the rela-

tionship between the distance from the damaged building to the earthquake fault and the 

difference in coherence, γdif, for buildings categorized as Minor damage in Mashiki Town. 

Since there are no data documenting ground deformation over the entire affected area, 

the distance from the earthquake fault was applied as a rough indicator of the degree of 

ground deformation, assuming that the closer one was to the earthquake fault that ap-

peared on the ground surface during the earthquake, the greater the ground deformation. 

The target buildings were selected as Minor damage buildings because the damage was 

minor and the variation in coherence due to the fact of changes in the buildings was small. 

Figure 7 shows the distribution of earthquake faults and buildings categorized as Minor 

damage. The locations of the earthquake faults were based on the active fault maps pub-

lished by the Geospatial Information Authority of Japan [34]. 

 

Figure 7. Distribution map of the buildings categorized as Minor damage and the earthquake faults 

in Mashiki Town (blue dots indicate the Minor damage buildings, and red lines indicate the earth-

quake faults). Building points and the earthquake faults are plotted on the map provided by ESRI. 

The distance from the buildings categorized as Minor damage to the earthquake fault 

was divided into 100 m increments, and a box-and-whisker diagram of the coherence dif-

ferential value γdif for each distance category is shown in Figure 8. The median value of γdif 

within 100 m of the earthquake fault was 0.37, and the median value of γdif above 700 m 

was 0.17. The median value tended to decrease as the distance from the earthquake fault 

increased. The interquartile range also tended to take lower values as the distance in-

creased, and the range became narrower. 

Figure 7. Distribution map of the buildings categorized as Minor damage and the earthquake faults in
Mashiki Town (blue dots indicate the Minor damage buildings, and red lines indicate the earthquake
faults). Building points and the earthquake faults are plotted on the map provided by ESRI.

The distance from the buildings categorized as Minor damage to the earthquake fault
was divided into 100 m increments, and a box-and-whisker diagram of the coherence
differential value γdif for each distance category is shown in Figure 8. The median value
of γdif within 100 m of the earthquake fault was 0.37, and the median value of γdif above
700 m was 0.17. The median value tended to decrease as the distance from the earthquake
fault increased. The interquartile range also tended to take lower values as the distance
increased, and the range became narrower.
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for the buildings categorized as Minor damage.

5. Discussion
5.1. Factors Affecting the Correlation Coefficient R and Sensitivity to Building Damage

In R for Mashiki Town and Uki City, the median value for the same damage class
was lower in Mashiki Town, confirming a significant difference between the two areas in
all damage classes (Figure 5, Table 2). The reason why the R values of the buildings in
Mashiki Town tended to be lower and noncorrelated even for buildings with the same
damage characteristics may be that Mashiki Town had a higher concentration of Major
damage buildings than Uki City (Figure 9), and the backscatter characteristics of the target
buildings were altered by the collapse of adjacent buildings and their debris.
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Figure 9. Distribution map of the buildings categorized as Major damage in Mashiki Town and Uki
City (brown dots indicate the Major damage buildings).

Classes 3, 4, and 5 are damage classes involving building deformation, and the median
and interquartile range tended to decrease with more deformed damage. Except for the
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Mod- buildings in Uki City, the Class 5 collapsed buildings show significant differences
from the Mod+ damage and below, and R is likely to be lower for buildings deformed to
the point of collapse. However, for Class 3 and 4 buildings with large distortion or tilt in
Uki City, there was no significant difference from those in the Mod+ damage or below class,
suggesting that the change in R due to the fact of building damage, such as distortion or
tilting, was small. Significant differences were determined for Class 3 buildings in Mashiki
Town compared to the Minor and Mod+ classes, but this may be due to factors other than
damage to the target buildings, such as debris around the buildings and adjacent buildings.

For Classes 1 and 2, which do not involve building deformation, there was also not a
significant enough difference from all classes below Mod+ damage to suggest that damage,
such as peeling roofs and cracked or peeling walls, may have had little effect on R.

5.2. Factors Causing Changes in the Coherence Differential Value γdif and Sensitivity to Building
Damage

The increase in γdif was caused by an increase in the random displacement of scatterers
on the ground surface. Compared to γdif in Uki City, the median values for all damage
classes in Mashiki Town were higher by more than 0.2, confirming a significant difference
between the two regions (Figure 6, Table 4). Similar to R, buildings with the same damage
tended to differ between the two regions, but the trend was more pronounced for γdif.
The reason for the different trends could be the effects of the debris and adjacent building
damage other than damage to the subject building as in R. In addition, the correlation
between γdif, and the distance from the earthquake fault for buildings categorized as Minor
damage in Mashiki Town suggests that ground deformation may be related.

Classes 3, 4, and 5 are damage classes involving building deformation, and the median
and interquartile range tended to increase with more deformed damage. Significant differ-
ence tests with the classes of Mod+ damage and below confirmed significant differences
in Classes 3, 4, and 5 in Mashiki Town and Classes 4 and 5 in Uki City. This suggests that
not only collapsed buildings but also building deformation, such as tilting and distortion,
affect γdif.

For Classes 1 and 2 without building deformation, the difference between Classes 1
and 2 was not significant between the classes with and without roof damage, and so, γdif
did not change due to the small random displacement caused by roof damage. Since we
can confirm a significant difference between Classes 1 and 2, and buildings whose damage
was Minor, damage such as cracks and peeling of walls may affect γdif. However, since the
difference was not significant enough between Mod- damage and Mod+ damage, damage
without building deformation was not suitable for detection by γdif.

Comparing the sensitivity of R and γdif to building damage, the median and interquar-
tile range for each damage class and the results of significance tests indicate that γdif was
more sensitive to both damages with and without building deformation. However, upon
reviewing the overall distribution of each damage class, there were many overlapping
areas, and it was difficult to determine the damage with a high degree of accuracy using
γdif alone, and so, some additional effort was required, such as adding an indicator or
applying a correction to γdif.

5.3. Influence of Earthquake Fault on the Coherence Differential Value γdif

Figure 8 shows that γdif tended to be larger at smaller distances from the earthquake
fault. The increase in γdif occurred when different directions or amounts of displacement
occurred at the ground surface and there was a nonuniform phase change within the
coherence window size. Buildings categorized as Minor damage were not considered to
affect the phase difference, indicating that the ground deformation was greater closer to
the earthquake fault.

However, there was variation in the value of γdif even in the same distance category,
and the distance from the fault alone did not accurately represent local ground deformation,
and it was not possible to separate components due to the fact of ground displacement from
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those due to the fact of building damage from γdif. Fujiwara et al. used SAR interferograms
from ALOS-2 to extract the lineaments of the Kumamoto earthquake, and the lineaments
represented earthquake faults, liquefaction, and landslides [42]. The locations of earthquake
faults surveyed by GSI overlapped well with the locations of the lineaments, and more
lineaments were found than earthquake faults. Lineaments were thought to capture ground
deformation in more detail and possibly provide a clearer assessment of the impact of
ground deformation when compared to γdif.

6. Conclusions

The purpose of this paper was to correctly evaluate the relationship between building
damage characteristics and SAR images. First, to evaluate the damage characteristics of
the buildings in detail, the 1469 buildings in Mashiki Town and 251 buildings in Uki City
categorized as Major damage were classified into five new damage classes based on the field
photographs and damage survey sheets. Then, to analyze the characteristics of backscatter
from ALOS-2 PALSAR-2 observations, we compiled a box-and-whisker diagram of the
correlation coefficient R of the backscatter coefficient and the coherence differential value
γdif, and conducted a significance difference test between the damage classes.

The results showed that the backscatter characteristics of the SAR images showed dif-
ferent trends for different damage classes. The R tended to decrease for large deformations
such as collapsed buildings. On the other hand, damage with small or no deformation,
such as distortion, tilting, or damage to building surfaces, had little effect on the R. The γdif
was likely to be sensitive not only to collapsed buildings but also to damage with relatively
small deformation, such as distortion and tilting, while it was stable for walls and roofs
without deformation. The types of building damage to which the values are sensitive were
identified for each of the R and the γdif. However, even though each damage class showed
different trends, there were many overlapping areas in the overall distribution of both R
and γdif for each damage class, and improvements are needed to detect building damage
with high accuracy. A comparison of the damaged buildings in Mashiki Town and Uki
City in the same class and the relationship with the distance of buildings categorized as
Minor damage from the earthquake faults suggest that the ground deformation near the
earthquake fault affected γdif.

Finally, the scope of further research will be discussed. The buildings included in this
study were limited to wood-frame houses, and in order to understand the relationship
between damage levels and SAR images for other building types, a new dataset of damage
levels for that type of building would need to be created and analyzed. In addition, since
the present analysis did not take into account the condition of the soil beneath the building,
one area for further study would be to analyze the backscatter characteristics of the SAR
images linking geological conditions and building damage levels.
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