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Abstract: The objects in remote sensing images are normally densely packed, arbitrarily oriented, and
surrounded by complex backgrounds. Great efforts have been devoted to developing oriented object
detection models to accommodate such data characteristics. We argue that an effective detection
model hinges on three aspects: feature enhancement, feature decoupling for classification and
localization, and an appropriate bounding box regression scheme. In this article, we instantiate
the three aspects on top of the classical Faster R-CNN, with three novel components proposed.
First, we propose a weighted fusion and refinement (WFR) module, which adaptively weighs multi-
level features and leverages the attention mechanism to refine the fused features. Second, we
decouple the RoI (region of interest) features for the subsequent classification and localization via
a lightweight affine transformation-based feature decoupling (ATFD) module. Third, we propose
a post-classification regression (PCR) module for generating the desired quadrilateral bounding
boxes. Specifically, PCR predicts the precise vertex location on each side of a predicted horizontal
box, by simply learning the following: (i) classify the discretized regression range of the vertex, and
(ii) revise the vertex location with an offset. We conduct extensive experiments on the DOTA, DIOR-R,
and HRSC2016 datasets to evaluate our method.

Keywords: oriented object detection; feature enhancement; feature decoupling; bounding box regression

1. Introduction

Object detection is fundamental, yet challenging. As the objects in remote sensing
images are normally densely packed and arbitrarily oriented [1,2], oriented object detection
has become a research hotspot over the past few years. It requires rotated or quadrilat-
eral bounding boxes to compactly enclose arbitrarily oriented objects [2]. This line of
research has achieved considerable success, driven by available large-scale remote sensing
datasets [3–5], high-performance computation platforms, and recent advances in deep
learning [6–10].

The current deep learning-based detection frameworks are well shaped. We focus
on the two-stage frameworks [11,12]. In general, the classical pipeline (e.g., that of Faster
R-CNN [6]) proceeds in two steps. First, a region proposal network (RPN) generates several
object proposals based on the multi-level features extracted by a general backbone [13],
possibly with a feature pyramid network (FPN) [7,14]. Second, a series of RoI (region of
interest)-related operations (e.g., RoI Pooling and RoI Align) produce RoI features, which
are sent to a single detection head to accomplish both classification and localization. There
remains much room for improvement, including architectural details, strategic designs, etc.
In relation to our work, the following are the most concerning issues: (i) the multi-level
feature fusion of the FPN for feature enhancement [8,9,15], and (ii) the fact that the learning
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mechanisms of the tasks of classification and localization are divergent but use the same RoI
features, which can result in feature misalignment and conflict between the two tasks [1,16].

Features matter. In a deep learning model, deep semantic information and shadow
detailed information play complementary roles in object detection. A classical FPN provides
a top–down pathway that introduces high-level semantic information into shadow features.
In order to achieve comprehensive feature fusion among different levels, some researchers
have made valid modifications based on the FPN structure [8,9], yielding enhanced feature
pyramids. It is worth noting that ability to stress local information is also necessary so as to
tackle the information redundancy induced by feature fusion [17]. Apart from building
holistic representations, we regard catering to the preference of subsequent tasks as part
of feature engineering. Object detection ends with a combination of classification and
regression (localization). The two tasks show different emphases on RoI features. Thus,
obtaining task-specific RoI features deserves effort and falls exactly into the concept of
feature decoupling [16,18,19].

To a large extent, the emphasis laid on object orientations tells apart conventional
object detection from oriented object detection. There exist a large number of methods
that use rotated bounding boxes to locate arbitrarily oriented objects in remote sensing
images [11,20,21] by means of introducing an additional angle prediction branch to the con-
ventional object detection framework (e.g., Faster R-CNN [6]). Irrespective of its simplicity
in implementation, directly adding an angle prediction branch suffers from non-negligible
drawbacks. In such detectors, a minor angle deviation could lead to a significant IoU
(intersection over union) drop, and, thus, result in inaccurate localization. In other words,
the final detection performance is highly reliant on the predicted angles. Unfortunately, the
additional angle prediction branch itself is prone to causing training instability because
of the problems of angular periodicity and bounding box boundary discontinuity [2,22].
In order to overcome the drawbacks of angle prediction, a few methods [23,24] employ
quadrilateral bounding boxes to locate oriented objects. Specifically, Xu et al. [23] proposed
gliding the four vertices of a horizontal bounding box to generate the desired quadran-
gle. Qian et al. [24] focused on directly predicting the locations of the four vertices of
a quadrangle. In this article, we also focus on using quadrilateral bounding boxes to locate
oriented objects.

With the above analyses in mind, we argue that an effective detection model hinges
on three aspects: feature enhancement, feature decoupling for classification and localiza-
tion, and an appropriate bounding box regression scheme. In this article, we select the
classical Faster R-CNN [6] as the basic detector, and propose three novel components to
strengthen it. First, a weighted fusion and refinement (WFR) module accounts for feature
enhancement. It adaptively weighs the multi-level features produced by FPN and leverages
the attention mechanism [25–28] to refine the fused features. Second, a lightweight affine
transformation-based feature decoupling (ATFD) module produces decoupled features
for subsequent classification and localization. Third, a post-classification regression (PCR)
module facilitates regressing quadrilateral bounding boxes. Given a predicted horizontal
box, we discretize the regression range (i.e., box height or width) of each vertex into several
bins and apply a simple classifier to predict which bin a vertex should belong to, so that
only the vertex offsets with regard to corresponding ground truths need to be regressed.

This article is extended from our conference version [29]. In contrast with our pre-
liminary work, this long version includes the following contributions. We propose the
WFR module, which contains two types of feature enhancement methods. The weighted
fusion part supplements high-level deep features (low-level shadow features) with de-
tailed information (semantic information). The attention-based feature refinement part is
used to highlight discriminative regions. Overall, this feature enhancement process, along
with feature decoupling and the bounding box regression scheme, shape our three-aspect
considerations for building a strong oriented object detection model. We conduct more
extensive experimental evaluations on three large-scale datasets. The results validate our
considerations and the corresponding modules proposed.
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2. Related Work
2.1. Feature Fusion

Deep learning models extract multi-level features. In general, high-level deep features
convey rich semantic information, while low-level shadow ones possess abundant detailed
information related to specific objects. Most advanced vision methods [7,30] set multi-level
feature fusion as default to deal with the scale shift of objects. From another point of
view, this suggests that both semantic information and detailed information are crucial for
accurate object detection.

Feature Pyramid Network (FPN) [7] utilizes a top–down pathway to enrich the shadow
features with high-level semantic information. Liu et al. [8] introduced a bottom–up path-
way, based on the FPN, to supplement deep features with low-level detailed information.
Kong et al. [17] combined the features across different spatial locations and scaled with
lightweight global attention and local reconfigurations. Zhao et al. [31] obtained multi-
level feature pyramids via alternating two U-shaped modules. Instead of hand-drafted
architectural designs, Ghiasi et al. [9] obtained pyramidal architectures by applying the
neural architecture search technique within a scalable search space.

We conduct a weighted feature fusion of the pyramidal features produced by FPN.
The weights are data-relevant and adaptively learned for each pyramidal level. The fused
features go through an attention-based feature refinement procedure to implicitly alleviate
the information redundancy induced by feature fusion.

2.2. Feature Decoupling

The classification and localization tasks in object detection are commonly completed
by a shared detection head in most advanced detectors. Normally, the classification task
favors discriminative regions, while the localization task works on precisely locating objects
with their boundaries. In light of this, some researchers have paid close attention to the
feature misalignment and conflict arising from using the same features for the two different
tasks [16,18,19].

Jiang et al. [18] found that those features generating high classification scores usually
produce coarse bounding boxes. To compensate, they introduced an extra branch to predict
the IoUs between bounding boxes and corresponding ground truths as the localization
scores, and used the products of classification scores and localization scores as the sorting
criterion in the non-maximum suppression (NMS) post-processing procedure. Although
the sorting criterion is relatively reliable, the two scores still originate from the same
features. Wu et al. [19] proposed Double-Head R-CNN that utilizes two specific branches
for classification and localization, separately. Double-Head R-CNN effectively disentangles
the shared information and parameters of the two tasks. However, the problems of feature
misalignment and conflict still exist because the RoI features fed into the two branches are
generated from the same proposals. More recently, Song et al. [16] proposed generating
disentangled proposals for the classification and localization tasks so as to decouple the
two tasks from the spatial dimension.

In contrast to the above-mentioned methods, we alleviate the problems of feature mis-
alignment and conflict by using lightweight affine transformation to derive transformation-
invariant features for classification, and, thus, achieve decoupling of the RoI features.

2.3. Oriented Bounding Boxes

There have been many strategies proposed for obtaining the desired rotated or quadri-
lateral bounding boxes. Ma et al. [20] directly placed a large number of rotated anchors on
each location of feature maps to generate proposals, incurring heavy computational bur-
dens. Ding et al. [11] proposed generating rotated proposals from horizontal ones, avoiding
the need for dense rotated anchors, but incurring expensive computational costs. There are
also some methods using horizontal proposals to generate rotated or quadrilateral bound-
ing boxes [21,32,33]. For instance, Yang et al. [21] introduced an angle-related parameter to
the Faster R-CNN head and located arbitrarily oriented objects using rotated rectangles.
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Their extended work [33] further investigated instance-level denoising to enhance the de-
tection of small and cluttered objects. Xu et al. [23] and Qian et al. [24] utilized quadrangles
to locate oriented objects. Specifically, Xu et al. [23] described an oriented object using
the gliding offsets of four vertices, in addition to the conventional horizontal bounding
box representation. Qian et al. [24] directly regressed the four vertices of a quadrangle
and devised a modulated rotation loss to optimize the regression process, largely eliminat-
ing the problems of angular periodicity and bounding box boundary discontinuity [2,22].
Apart from the above strategies, a series of works [34,35] model the rotated objects as
Gaussian distributions and build the regression loss with certain distributional distance
measurements, e.g., Wasserstein distance and Kullback–Leibler Divergence.

We use quadrilateral bounding boxes to locate oriented objects and propose a post-
classification regression module. Given a horizontal bounding box, we discretize the
regression range (i.e., box height or width) of each vertex into several bins. A simple
classifier is used to predict which bin a vertex should belong to, followed by the regression
of the offsets with regard to corresponding ground truths.

3. Methodology

We describe our method in detail in this section. We have three-aspect considerations
for building a strong oriented object detection model: feature enhancement, feature de-
coupling for classification and localization, and an appropriate bounding box regression
scheme. Correspondingly, we propose a weighted fusion and refinement (WFR) module,
a lightweight affine transformation-based feature decoupling (ATFD) module, and a post-
classification regression (PCR) module. We implement them on top of the classical Faster
R-CNN [6], as shown in Figure 1. Note that the detailed architectures of the backbone in
the feature pyramidal network (e.g., Backbone-FPN in Figure 1) and the region proposal
network (RPN) are omitted for simplicity.

Figure 1. Illustration of our method. On top of Faster R-CNN, we introduce a weighted fusion and
refinement (WFR) module, an affine transformation-based feature decoupling (ATFD) module, and
a post-classification regression (PCR) module. WFR receives the pyramidal features P∗ and derives
an enhanced feature pyramid F∗. After obtaining the RoI features, ATFD performs task-specific
feature decoupling for the subsequent classification and regression. The regression is split into the
prediction of regular HBB and that of orientation-relevant parameters responsible for converting
the predicted HBB into quadrilateral bounding boxes. PCR facilitates the prediction of orientation-
relevant parameters. M The number of classes is in the HBB prediction part. n The number of bins is
in the post-classification regression module.

We briefly introduce the detection pipeline of our method below. See Figure 1 for
an illustration. The backbone extracts multi-level features of the input images and an
FPN enriches the semantic information of the shallow features. The output pyramidal
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features produced by FPN, indicated as P2∼P6, are sent to our WFR module for feature
enhancement. We denote the enhanced pyramidal features as F2∼F6, and collectively
refer to the rest of the components as the head. In the head, a standard RPN utilizes
F2∼F6 to generate horizontal proposals, separately. After that, RoI (region of interest)
features are obtained through a series of RoI-related operations (e.g., RoI Pooling and
RoI Align). The ATFD module is introduced to decouple the RoI features for subsequent
classification and localization. The detection framework ends with a horizontal bounding
box (HBB) prediction part and our PCR module. The HBB prediction part regresses
horizontal bounding boxes and completes classification, based on the two sets of decoupled
RoI features. Our PCR module predicts orientation-relevant parameters, with which we
can easily convert the horizontal bounding boxes into quadrilateral bounding boxes.

3.1. Weighted Fusion and Refinement

The WFR module accounts for feature enhancement. It receives the pyramidal features
produced by FPN and outputs the enhanced pyramidal features. We aim for task-relevant
foregrounds to be emphasized and task-irrelevant backgrounds to be suppressed [36]. To
this end, we conducted a weighted fusion and use the attention mechanism to refine the
fused features, as shown in Figure 2.

Figure 2. Illustration of our proposed WFR module.

We use a straightforward implementation to achieve adaptively weighted fusion, with
the aim of supplementing the pyramidal features with useful information. Given P2∼P6,
we put a separate weight generator at each level to measure the importance of the features at
the corresponding level. Each weight generator is in the form of a two-layer convolutional
neural network. The outputs are scalars, indicated as v2∼v6. The final weights w2∼w6 are
obtained through a Softmax function as follows:

wi =
evi

6
∑

j=2
evj

, i = 2, 3, . . . , 6 (1)

w2∼w6 are assigned to the features at corresponding levels. Then, the weighted features
are uniformly upsampled to the size of P2, so as to be fused by element-wise summation.
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We denote the fused features as F ∈ RH×W×256. The values H and W are height and width,
respectively. The channel number of F is 256, the same as that of the pyramidal features
produced by FPN.

We employ an attention-based refinement network mainly composed of convolutional
layers. The refinement network receives F as input. There are two branches realizing
channel and spatial attention in parallel. The channel attention branch contains global
average pooling and two 1× 1 convolutional layers to generate channel weights with a size
of 1 × 1 × 256. Meanwhile, the spatial attention branch contains two 1 × 1 convolutional
layers and two 3 × 3 convolutional layers to generate spatial weights with a size of
H×W × 1. The two forms of weights are broadcast to the same size of F, i.e., H×W × 256,
and fused by element-wise multiplication. Denoting the final attention weights as Watt
and the refined features as F̂, we formulate the operating steps of the refinement network
as follows:

F̂ = (Watt ⊗ F)⊕ F

= {σ[ f1×1( f1×1( fgap(F)))⊗ f1×1( f3×3( f3×3( f1×1(F))))]⊗ F} ⊕ F
(2)

where f1×1, f3×3, and fgap denote 1 × 1 convolution, 3 × 3 convolution, and global average
pooling, respectively. σ denotes the sigmoid function.

After the above weighted fusion and refinement, the refined features F̂ are downsam-
pled to accord with the original sizes of feature pyramids. Simple one-by-one element-wise
summation operations yield the enhanced pyramidal features F2∼F6 to be sent to the head.

3.2. Affine Transformation-Based Feature Decoupling

The ATFD module aims at decoupling the RoI features R ∈ RH′×W ′×C to tackle the
feature misalignment and conflict resulting from the same features being used for the
two different tasks. Our implementation is simple. In feature decoupling, we only fasten
on classification and let the localization task directly operate on R. Considering that the
classification task prefers transformation-invariant features, we use affine transformation
to derive the features for classification, indicated as R̂.

In general, the affine transformation is formulated as follows:

[
x
y

]
= Aθ

 x0
y0
1

 =

[
θ11 θ12 θ13
θ21 θ23 θ33

] x0
y0
1

 (3)

where (x0, y0) and (x, y) are the source coordinate and target coordinate, respectively.
Aθ ∈ R2×3 is the affine transformation matrix. θθθ is a vector comprising the parameters of
the affine transformation matrix, i.e., θ∗∗. Inspired by the Spatial Transformer Networks [37],
we adopt a single fully-connected layer to predict θθθ, as shown in Figure 3.

Figure 3. The architecture of the proposed ATFD module. FC denotes a fully-connected layer.

Our ATFD is lightweight. In the module, the RoI features R are first flattened into a
vector with the size of 1× 1× CH′W ′. A single fully-connected layer (FC) maps the vector
into θθθ. Then, a grid generator Aθ(G) receives θθθ to create a sampling grid, indicating which
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elements of R should be sampled. Given R and Aθ(G), a sampler produces the transformed
RoI features R̂ used for classification. Note that a bilinear sampling operation is used in the
sampler to tackle the misaligned mapping between the source and target coordinates. The
process can be formulated as follows:

Rc
i =

H′

∑
j=1

W ′

∑
k=1

Uc
jkmax(0, 1− ‖xs

i − k‖)max(0, 1− ‖ys
i − j‖), i = 1, 2, . . . , H′W ′, c = 1, 2, . . . , C (4)

where Rc
i denotes the transformed RoI feature value for pixel i in channel c. Uc

jk denotes
the original RoI feature value at location (j, k) in channel c.

(
xs

i , ys
i
)

denotes the source
coordinate of pixel i.

3.3. Post-Classification Regression

The PCR module converts the predicted horizontal bounding boxes into the desired
quadrilateral bounding boxes, so as to compactly enclose the oriented objects in remote
sensing images [2]. This is realized by precisely predicting the coordinates of vertices on
each side of the predicted horizontal bounding boxes. Given a predicted horizontal box,
we discretize the regression range (i.e., box height or width) of each vertex into several bins
and apply a simple classifier to predict which bin a vertex should belong to, so that only
the vertex offsets with regard to corresponding ground truths need to be regressed.

As shown in Figure 1, the PCR module consists of three branches, i.e., bin, offset, and
ratio branches. The bin branch outputs a real-value vector for each side. We denote the
indices with the largest values on the top, left, bottom, and right sides as (vt, vl, vb, vr). The
offset branch outputs the predicted offsets between the center coordinates of the indexed
bins and the coordinates of the exact vertices. We denote the four offsets as (ot, ol, ob, or).
The ratio branch outputs the area ratios of the predicted quadrilateral bounding boxes with
regard to the predicted horizontal bounding boxes, indicated as ratio simply.

3.3.1. Training

The bin, offset, and ratio branches are all involved in the training phase. Below
we elaborate on how to generate supervisory signals. Given an oriented ground truth
box determined by the coordinates of four vertices

(
x∗1 , y∗1

)
, (x∗2 , y∗2), (x∗3 , y∗3),

(
x∗4 , y∗4

)
, its

minimum enclosing rectangle can be generated according to the maximum values and the
minimum values of its horizontal and vertical coordinates.

x∗min = min(x∗1 , x∗2 , x∗3 , x∗4)
y∗min = min(y∗1 , y∗2 , y∗3 , y∗4)
x∗max = max(x∗1 , x∗2 , x∗3 , x∗4)
y∗max = max(y∗1 , y∗2 , y∗3 , y∗4)

(5)

(x∗min, y∗min) and (x∗max, y∗max) are the top-left and bottom-right vertices of the minimum
enclosing rectangle, respectively.

We divide each side of the minimum enclosing rectangle into n bins. For each of the
four sides, the center coordinate of the i-th bin can be obtained by:

x∗t (i) = x∗min + (0.5 + i)× wbin
y∗l (i) = y∗min + (0.5 + i)× hbin
x∗b(i) = x∗max − (0.5 + i)× wbin
y∗r (i) = y∗max − (0.5 + i)× hbin

(6)

where wbin and hbin are the width and height of each bin, and wbin = (x∗max − x∗min)/n
and hbin = (y∗max − y∗min)/n. x∗t (i), y∗l (i), x∗b(i), and y∗r (i) are the center coordinate vectors
of bins on the top, left, bottom, and right sides of the minimum enclosing rectangle, re-
spectively. Assume that

(
x∗1 , y∗1

)
, (x∗2 , y∗2), (x∗3 , y∗3), and

(
x∗4 , y∗4

)
are located on the top, left,

bottom, and right edges of the minimum enclosing rectangle, respectively. The normal-
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ized offsets between the center coordinates of bins and corresponding ground truths are
obtained by: 

u∗t = (x∗1 − x∗t )/wbin
u∗l = (y∗2 − y∗l )/hbin
u∗b = (x∗3 − x∗b)/wbin
u∗r = (y∗4 − y∗r )/hbin

(7)

where u∗t , u∗l , u∗b, and u∗r denote the normalized offset vectors on the four sides of the
minimum enclosing rectangle. Denote the ground truth bin indices as

(
v∗t , v∗l , v∗b, v∗r

)
. The

normalized offsets within corresponding bins can be easily obtained by indexing the offset
vectors as follows: 

o∗t = u∗t (v
∗
t )

o∗l = u∗l (v
∗
l )

o∗b = u∗b(v
∗
b)

o∗r = u∗r (v∗r )

(8)

The one-hot vectors converted from
(
v∗t , v∗l , v∗b, v∗r

)
serve as the bin labels for classifica-

tion in the bin branch. The normalized offsets
(
o∗t , o∗l , o∗b, o∗r

)
are used as the training targets

for regression in the offset branch, respectively. Figure 4 gives an intuitive illustration of
the bin labels and the offset targets. The training target of the ratio branch ratio∗ is easily
derived by:

ratio∗ =
Agt

Ahbr
(9)

where Agt and Ahbr denote the area of the ground truth box (i.e., the green box in Figure 4)
and that of the minimum enclosing rectangle (i.e., the blue box in Figure 4), respectively.

Figure 4. Bin labels and offset targets used in our PCR module. The boxes in green are ground truths
and the boxes in blue are their minimum enclosing rectangles.

The loss function of the PCR module LPCR is given as follows:

LPCR =
1

Npos
∑

i
Li

bin(v, v∗)

+
1

Npos
∑

i
Li

offset(o, o∗)

+
1

Npos
∑

i
Li

ratio(ratio, ratio∗)

(10)
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where Npos is the number of positive samples. Note that v and v∗ are vectors generated from
bin indices. Li

bin, Li
offset, and Li

ratio denote the bin, offset and ratio losses of the i-th training
sample. Li

bin is the standard cross entropy loss, supervising the classification process of bins.
Li

offset and Li
ratio are in the form of smooth L1 loss, supervising the regression processes in

the offset and ratio branches.

3.3.2. Inference

The operations in inference are almost the same as those in training. Let us denote the
coordinates of the left-top and bottom-right vertices for a predicted horizontal bounding
box as (xmin, ymin) and (xmax, ymax). The center coordinates of the bins on four sides,
indicated as (xt, yl, xb, yr), can be calculated by Equation (6). With the predicted bin index
(vt, vl, vb, vr) and the predicted offset (ot, ol, ob, or), the coordinate parameters of a converted
quadrilateral bounding box are obtained as follows:

x1 = xt(vt) + ot × wbin
y1 = ymin
x2 = xmin
y2 = yl(vl) + ol × hbin
x3 = xb(vb) + ob × wbin
y3 = ymax
x4 = xmax
y4 = yr(vr) + or × hbin

(11)

(x1, y1), (x2, y2), (x3, y3), and (x4, y4) are the coordinates of interest that determine a quadri-
lateral bounding box used to enclose an oriented object. In particular, if a predicted ratio
surpasses a preset threshold (e.g., 0.8), we directly use the predicted horizontal bounding
box as the final output bounding box. This substitution only appears in the inference phase.

4. Experiments and Results

We use the term EDA to describe our method in this section for simplicity, given
that we have three-aspect considerations: feature Enhancement, feature Decoupling for
classification and localization, and an Appropriate bounding box regression scheme.

4.1. Datasets and Experimental Settings

We used ResNet50 [13] with FPN (abbreviated as R50-FPN) as the default backbone
for feature extraction. The hyperparameters of our EDA were kept the same as those
of Faster R-CNN. All of our experiments were performed on a single NVIDIA GeForce
GTX 1080Ti, with a batch size of 2. The model training was optimized by stochastic
gradient descent (SGD). The initial learning rate, momentum, and weight decay rate
were set to 0.005, 0.9, and 0.0001, respectively. The source code was made available at
https://github.com/ShichengMiao16/EDA (accessed on 4 March 2023).

We conducted rigorous evaluations on the DOTA [3], DIOR-R [4], and HRSC2016 [5]
datasets. DOTA contains 188,282 instances of 15 classes. DIOR-R has 192518 instances
divided into 20 classes. In particular, HRSC2016 applies to single-class ship detection. For
the DOTA and DIOR-R datasets, all the models were trained for 12 epochs and the learning
rate was divided by 10 after epochs 8 and 11. For HRSC2016, the number of training epochs
was 36 and the learning rate was divided by 10 after epochs 24 and 33. We cropped the
images in DOTA into small patches with a size of 1024 × 1024. When it came to multi-scale
training and testing, the images were resized at three scales (0.5, 1.0, 1.5) and then cropped
into 1024 × 1024 patches. The image size of DIOR-R (800 × 800) remained unchanged. As
for the HRSC2016 dataset, all the images were resized to a range of (800, 1333) without
changing image aspect ratios. For each of the three datasets, the original training set and
validation set were combined for training, while the testing set was left for testing. In
particular, the reported results on DOTA were obtained from the official evaluation server.

https://github.com/ShichengMiao16/EDA
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The evaluation metrics were the Average Precision (AP) per class and the mean Average
Precision (mAP) of all classes.

4.2. Ablation Studies

We first conducted some ablation studies on DOTA to validate the key components
and settings of our EDA. We selected Faster R-CNN-O [6] as the baseline, which relies on
an angle prediction branch in addition to Faster R-CNN to realize oriented object detection.

Table 1 evaluates the number of bins (denoted as n) in PCR. Here, we only added the
PCR module to the baseline. It can be observed that dividing each side into 5 bins delivered
the highest mAP, but 4 bins obtained the best balance regarding detection accuracy and
model complexity. Too few bins would not suppress the regression range effectively, while
too many bins would make the final performance overly dependent on the classification
results. In the rest of the experiments, we fixed the number of bins to 4.

Table 1. Effect of the number of bins in PCR.

n 1 2 3 4 5 6 7

mAP 71.9 71.4 71.6 72.4 72.5 71.7 72.1

Table 2 shows the results for ablating the effectiveness of the three key modules, i.e.,
WFR, ATFD, and PCR. Compared with the baseline, singly applying WFR, ATFD, and PCR
gave rise to 0.9%, 1.1%, and 1.0% improvements in mAP, respectively. This demonstrated
that the three modules, as well as their underlying considerations, were almost equally
important in regard to performance improvement. In addition, the model benefited from
each pairwise combination. Pairwise combinations (i.e., WFR&ATFD, WFR&PCR, and
ATFD&PCR) improved the baseline by 2.2%, 1.9%, and 1.7% in mAP, separately. All three
types of pairwise combinations were superior to the separate uses. it can be seen that WFR
and ATFD promoted each other as two effective tools of feature engineering for the final
decision-making (both classification and localization). PCR facilitated localization by means
of explicitly compressing the regression range and showed high compatibility with the
above feature engineering. The combination of the three modules reported the best result
(74.1% mAP), delivering noticeable performance gains over both the separate uses and the
pairwise combinations. In particular, it led to 2.7% mAP gains over the baseline. In light
of these results, we concluded that the three components combined with our three-aspect
considerations were really effective.

Table 2. Effect of the WFR, ATFD, and PCR modules.

Method WFR ATFD PCR mAP

Faster R-CNN-O [6] 71.4
w. WFR X 72.3
w. ATFD X 72.5
w. PCR X 72.4
w. WFR&ATFD X X 73.6
w. WFR&PCR X X 73.3
w. ATFD&PCR X X 73.1
EDA X X X 74.1

Quantitatively, applying WFR led to an increase of about one point. In order to
intuitively compare the feature enhancement effects, we visualized the features produced
by FPN and our WFR at the first pyramidal level in Figure 5. It is obvious that the
emphasized parts of our model were more concrete and accurate. The shallow features
produced by FPN contained a lot of background noise for scenes with densely packed
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small objects (e.g., small vehicles SV, ships SH, and storage tanks ST), as well as those
with complex backgrounds (e.g., city streets and river lines). Our WFR module succeeded
in feature enhancement, with task-relevant foregrounds emphasized and task-irrelevant
backgrounds suppressed.

Figure 5. The features produced by FPN and our WFR at the first pyramidal level.

4.3. Comparisons with Other Methods

We conducted quantitative comparisons between our EDA and several representative
detectors on the DOTA, DIOR-R, and HRSC2016 datasets. The selected comparison meth-
ods included one-stage detectors (RetinaNet-O [38], ATSS-O [39], FCOS-O [40], DAL [41],
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R3Det [42], and RSDet [42]), as well as two-stage detectors (Fast R-CNN-O [6], RRPN [20],
R2CNN [43], RoI Transformer [11], Gliding Vertex [23], and SCRDet[21]). In addition, the
qualitative results obtained by our EDA on the three datasets were given.

Tables 3–5 list the quantitative comparisons in terms of mAP on DOTA, DIOR-R, and
HRSC2016, respectively. We also list the AP for each class on the two multi-class datasets,
DOTA and DIOR-R. The best results are marked in bold. Our EDA performed well on all
three datasets. In particular, our EDA was clearly superior to other methods on DOTA
and HRSC2016. Equipped with the backbones of ResNet50-FPN and ResNet101-FPN
(i.e., ResNet101 with FPN), our EDA achieved mAPs of 74.1% and 74.3% on DOTA. Our
EDA with ResNet50-FPN as the backbone largely surpassed some well-known methods
equipped with ResNet101-FPN, e.g., RoI Transformer [11] and Gliding Vertex [23]. The
use of multi-scale training and testing raised the mAP by about 3%, bringing the highest
mAP to 77.4 % (with ResNet101-FPN as the backbone). Using ResNet50-FPN, our EDA
reported 89.13% mAP on the single-class dataset HRSC2016. On the challenging DIOR-R
dataset, our EDA also beat all the other methods. Gliding Vertex [23] obtained a competitive
result (60.0% mAP) similar to ours (60.2% mAP). However, it lost much to our EDA on
the other two datasets. Moreover, our results for separate classes (in terms of AP) on
DOTA and DIOR-R were at the top level overall, without biasing towards specific easy
classes. An exception would be the airport class (APO), for which an AP of just 22.6 % was
reported. Though, our EDA surpassed the baseline Fast R-CNN-O [6] by 6.4 points. These
results demonstrated that the classical Faster R-CNN, strengthened by feature enhancement,
feature decoupling, and an appropriate bounding box regression scheme, is strong and
robust in oriented object detection. Our instantiated modules generalized well. Figures 6–8
provide some visualizations on DOTA, DIOR-R, and HRSC2016, respectively. From the
visualized detection results, we can observe that our EDA was able to accurately classify
and locate oriented objects from various scenes, including those with densely packed
small objects.

Table 3. Quantitative comparisons on DOTA. ‡ denotes multi-scale training and testing.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

One-stage

RetinaNet-O [38] R50-FPN 86.5 77.5 42.8 64.9 71.1 58.5 73.5 90.7 81.0 66.7 52.4 62.2 60.8 64.8 40.8 66.3
ATSS-O [39] R50-FPN 89.2 73.6 48.4 64.9 74.3 77.4 79.4 90.9 81.5 84.9 62.7 63.8 64.7 66.5 42.6 71.0
FCOS-O [40] R50-FPN 89.1 79.5 48.5 59.7 79.3 78.0 85.9 90.9 81.4 83.9 57.9 63.4 64.3 68.5 49.8 72.0

DAL [41] R50-FPN 88.7 76.6 45.1 66.8 67.0 76.8 79.7 90.8 79.5 78.5 57.7 62.3 69.1 73.1 60.1 71.5
R3Det [42] R101-FPN 88.8 83.1 50.9 67.3 76.2 80.4 86.7 90.8 84.7 83.2 62.0 61.4 66.9 70.6 53.9 73.8
RSDet [42] R101-FPN 89.8 82.9 48.6 65.2 69.5 70.1 70.2 90.5 85.6 83.4 62.5 63.9 65.6 67.2 68.0 72.2

Two-stage

Faster R-CNN-O [6] R50-FPN 88.8 80.9 44.5 68.8 78.0 65.2 82.6 90.3 82.4 83.7 58.1 61.7 56.4 69.0 60.8 71.4
RRPN [20] R101 88.5 71.2 31.7 59.3 51.9 56.2 57.3 90.8 72.8 67.4 56.7 52.8 53.1 51.9 53.6 61.0

R2CNN [43] R101 80.9 65.8 35.3 67.4 59.9 50.9 55.8 90.7 66.9 72.4 55.1 52.2 55.1 53.4 48.2 60.7
RoI Transformer [11] R101-FPN 88.6 78.5 43.3 75.9 68.8 73.7 83.6 90.7 77.3 81.5 58.4 53.5 62.8 58.9 47.7 69.5
Gliding Vertex [23] R50-FPN 88.5 82.2 51.7 68.2 77.7 72.7 86.1 90.7 85.0 85.4 57.7 66.7 64.9 66.7 48.3 72.8

SCRDet [21] R101-FPN 90.0 80.7 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6

Ours

EDA R50-FPN 89.2 83.5 51.6 69.3 77.6 74.9 86.3 90.9 85.6 85.9 59.5 64.8 68.1 66.4 57.3 74.1
EDA R101-FPN 89.2 83.6 52.6 75.0 78.3 74.9 86.2 90.9 84.6 84.6 62.2 65.8 72.7 65.7 48.5 74.3

EDA ‡ R50-FPN 89.7 85.4 56.6 78.0 79.7 76.8 85.0 90.9 86.5 88.0 66.2 68.3 72.6 68.2 64.6 77.1
EDA ‡ R101-FPN 89.9 85.3 56.4 78.3 78.2 75.2 85.5 90.8 86.0 86.6 66.8 69.8 76.9 69.6 66.4 77.4
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Figure 6. The visualized detection results on DOTA.

Figure 7. The visualized detection results on DIOR-R.
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Table 4. Quantitative comparisons on DIOR-R.

Method Backbone APL APO BF BC BR CH DAM ETS ESA GF GTF HA OP SH STA STO TC TS VE WM mAP

RetinaNet-O [38] R50-FPN 58.8 13.3 68.1 81.3 11.3 72.3 13.0 46.1 57.7 68.6 75.0 29.7 30.7 74.6 63.5 56.9 81.2 40.3 36.7 59.0 51.9
ATSS-O [39] R50-FPN 60.2 34.8 73.6 79.3 32.2 70.9 28.7 59.1 75.3 69.5 78.2 34.1 51.6 77.8 70.3 59.6 79.4 50.6 39.5 62.0 59.3
FCOS-O [40] R50-FPN 50.2 30.9 66.3 80.0 23.1 70.6 23.6 48.3 66.9 67.3 66.0 33.6 44.4 71.0 64.7 59.1 78.8 37.5 32.5 55.1 53.5

Faster R-CNN-O [6] R50-FPN 62.5 16.2 71.7 81.3 24.2 72.5 15.2 63.6 62.6 71.6 82.1 38.0 37.2 80.4 67.0 62.5 81.5 52.5 41.4 65.1 57.4
Gliding Vertex [23] R50-FPN 62.9 26.3 71.7 81.2 33.7 72.6 19.0 65.2 71.7 70.6 81.0 41.4 49.8 81.0 66.3 62.4 81.5 54.3 42.8 64.0 60.0

EDA (ours) R50-FPN 62.5 22.6 71.8 81.4 34.1 72.3 18.8 66.7 75.3 70.9 82.7 39.2 48.9 80.9 70.6 62.4 81.4 52.9 42.8 64.7 60.2
EDA (ours) R101-FPN 62.7 22.7 72.0 81.5 38.2 72.3 17.8 68.1 76.7 73.1 82.4 41.1 53.1 80.9 72.9 62.4 81.5 54.3 42.6 65.1 61.1

Figure 8. The visualized detection results on HRSC2016.

Table 5. Quantitative comparisons on HRSC2016.

Method R2CNN [43] RRPN [20] Gliding
Vertex [23]

RoI
Transformer [11] RSDet [42] EDA (Ours)

mAP 73.07 79.08 88.20 86.20 86.50 89.13

5. Conclusions

We studied oriented object detection with considerations taken into feature enhance-
ment, feature decoupling for classification and localization, and the bounding box regres-
sion scheme. We showed that the corresponding instantiated modules performed well in
improving detection performance. The effectiveness of our method was validated on three
well-recognized datasets for oriented object detection.

Our three-aspect considerations are general but decisive in making a strong oriented
object detection method, wherein data-relevant pyramidal features, task-specific decoupled
features, and a simplified regression scheme are advocated. We notice that most recent
studies in oriented object detection place emphasis on exactly one or more of these to
arm their detectors. We have shown that the three aspects are of equal importance for
performance improvement. In this article, we limited our scope to strengthening a classical
two-stage detector, i.e., Faster R-CNN. Our instantiated modules on top of it are simple
in implementation but effective in performance. However, there is much room left for
architectural and strategic improvements. A favorable direction beyond this easy-to-follow
work is to achieve more upgraded instantiations on more efficient detectors.
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