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Abstract: Estimating gross primary productivity (GPP) is important for simulating the subsequent
carbon cycle elements and assessing the capacity of terrestrial ecosystems to support the sustainable
development of human society. Light use efficiency (LUE) models were widely used to estimate GPP
due to their concise model structures. However, quantifying LUEmax (maximum light use efficiency)
and representing the responses of photosynthesis to environmental factors are still subject to large un-
certainties, which lead to substantial errors in GPP simulations. In this study, we developed a hybrid
model based on machine learning and a LUE model for GPP estimates. This hybrid model was built
by targeting LUE with a machine learning approach, namely multi-layer perceptron (MLP), and then,
estimating GPP within a LUE model framework with the MLP-based LUE and other required inputs.
We trained the hybrid LUE (H-LUE) model and then, compared it against two conventional LUE
models, the vegetation photosynthesis model (VPM) and vegetation photosynthesis and respiration
model (VPRM), regarding GPP estimation, using tower-based daily-scale observations from 180 flux
sites that cover nine different plant function types (PFTs). The results revealed better performance
(R2 = 0.86 and RMSE = 1.79 gC m−2 d−1 on the test dataset) of the H-LUE model compared to the
VPM and VPRM. Evaluations of the three models under four different extreme conditions consistently
revealed better performance of the H-LUE model, indicating greater adaptability of the model to
varied environments in the context of climate change. Furthermore, we also found that the H-LUE
model can reasonably represent the responses of the LUE to meteorological variables. Our study
revealed the reliable and robust performance of the developed hybrid LUE when simulating GPP
across global biomes, providing references for developing better hybrid GPP models.

Keywords: light use efficiency; gross primary productivity; machine learning

1. Introduction

Gross primary productivity (GPP) is defined as the amount of organic carbon fixed
by terrestrial green vegetation through photosynthesis per unit area per unit time [1]. It
serves as the fundamental energy source for various physiological and ecological processes
in vegetation and represents a crucial metric for carbon flux exchange between terrestrial
ecosystems and the atmosphere. Accurate GPP estimation improves the simulation accu-
racy of subsequent carbon cycle elements (such as litter, soil respiration, etc.). In addition,
it helps to accurately assess the capacity of terrestrial ecosystems to support the sustainable
development of human society.

Over the last few decades, a series of terrestrial ecosystem models were developed
to simulate vegetation primary productivity. Among them, satellite-based light use effi-
ciency (LUE) models were widely used for estimating GPP due to their concise model
structures. The widely used LUE models include the Carnegie–Ames–Stanford approach
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(CASA) [2], the eddy covariance–light use efficiency (EC-LUE) model [3,4], the MOD17
algorithm [5], the vegetation photosynthesis model (VPM) [6], and the vegetation photo-
synthesis and respiration model (VPRM) [7]. In general, LUE models are constructed on the
basis of two fundamental assumptions [5,8]. Firstly, they assume that the ecosystem GPP
is linearly correlated with absorbed photosynthetically active radiation (APAR) through
LUE, which is defined as the amount of carbon fixed per unit of APAR. Secondly, these
models take into account that environmental stresses such as low temperature or water
deficit may reduce the maximum light use efficiency (LUEmax) below its theoretical maxi-
mum value [9], where LUEmax means the maximum light use efficiency of vegetation in
the absence of any environmental stress. Thus, LUE models estimate vegetation GPP as
GPP = PAR × FPAR × LUEmax × f , where PAR refers to the incident photosynthetically
active radiation per time period and FPAR denotes the fraction of PAR absorbed by the
vegetation canopy, the product of which is absorbed photosynthetically active radiation
(APAR); LUEmax refers to the maximum light use efficiency and f indicates the effects of
environmental stresses on the maximum light use efficiency, the product of which is the
actual LUE under real environmental conditions.

In LUE models, one of the most important parameters is LUEmax, which determines
the accuracies of quantifying the magnitude of GPP. However, the determination of LUEmax
values remains largely uncertain. Firstly, LUEmax is generally inversed using in situ GPP
or net primary productivity (NPP) [10]. Therefore, differences in the used observations
and differences in computing environmental stress on photosynthesis can lead to large
differences in the LUEmax values among the various LUE models [10,11]. The different
LUEmax values between various LUE models can result in significant differences in GPP
estimates [12]. Secondly, taking into account the variability and uniqueness of various
ecosystems in primary production, most current LUE models rely on look-up tables to
determine vegetation specific model parameters including LUEmax [5]. However, this
parameterization strategy needs high-quality maps of vegetation cover. There are large
uncertainties in current large area vegetation cover datasets, which can propagate into
regional and global GPP estimates [11]. In addition, LUEmax can also vary within a single
biome type [13–15] and is a primary source of the uncertainty associated with GPP estima-
tion [14]. Moreover, the differences in the descriptions and calculations of environmental
stress between different LUE models can also cause differences in GPP simulations. Yuan
et al. [16] found that the correlations of GPP simulations among seven LUE models were
lower than that of simulated potential GPP without considering any environmental stress
(i.e., PAR × FPAR × LUEmax), which indicated that the difference in the environmental
stresses between different LUE models was one of the major sources of uncertainty in GPP
simulation. Cai et al. [17] found that most of the LUE models they investigated found a
strong positive correlation between the water availability and GPP estimates across large
areas, different LUE models suggested that different areas exhibited this positive correla-
tion, which indicates that different LUE models give varied GPP estimates due to varied
projections of the ecosystem water balance.

The problem in estimating the LUE could be addressed by incorporating machine
learning (ML) approaches, such as random forests (RF) and artificial neural network (ANN),
which were applied to simulate various ecosystem processes [18–20]. Machine learning
is powerful for dealing with large-scale datasets with multiple variables, especially when
complex relationships exist among the predictors [21–24]. To decrease the uncertainties in-
troduced by LUEmax and environmental stresses in GPP simulations, we consider building
a hybrid model based on ML and LUE models for GPP estimates. This hybrid model targets
LUE with machine learning and then estimates the GPP within the LUE model framework
with simulated LUE and other required inputs. LUE is affected by multiple environmental
factors and has complex relationships with a series of variables [2,25–27], and thus, ML
could potentially be useful for characterizing the variations in LUE across a wide range of
environmental gradients and ecosystem types. Compared to the existing LUE models, such
a hybrid model is expected to reduce the uncertainties introduced by LUEmax and envi-
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ronmental stresses in GPP simulations and improve GPP simulation accuracies by directly
simulating LUE with ML. In fact, a number of studies applied machine learning methods
to estimate purely empirical GPP models [25,28–30]. For example, Yang et al. [29] trained a
support vector machine (SVM) to predict vegetation GPP using explanatory remote sensing
variables, such as land surface temperature, enhanced vegetation index (EVI), land cover,
and ground-measured climate variables. Based on support vector regression (SVR) and RF,
Zhang et al. [30] first simulated a LAI time series directly using meteorological variables
as inputs, and further modeled the GPP time series using modeled LAI time series and
meteorological variables. However, compared to a hybrid model, purely empirical methods
showed weaker adaptability to extreme environmental conditions [20].

The primary objectives of this study are to: (a) develop a hybrid LUE model based on
ML and LUE models for GPP estimates; (b) compare the simulated results of the hybrid
LUE model and two popular LUE models in order to identify the advantages of the hybrid
LUE model over other commonly used LUE models; (c) evaluate the hybrid LUE model
and two other LUE models under several extreme environmental conditions.

2. Materials and Methods
2.1. Data and Preprocessing
2.1.1. Flux-Site Data

The daily-scale data from 180 flux sites from the FLUXNET2015 tier 2 dataset [31]
were used for the analyses in the current study. These flux sites cover nine different plant
function types (PFTs) including crops (CRO), deciduous broadleaf forests (DBF), evergreen
broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), mixed forests
(MF), savannahs (SAV), shrubs (SHR), and wetlands (WET). SHR include closed shrubs and
open shrubs. A deciduous needleleaf forest site was included in ENF and woody savannah
sites were included in SAV. The number of these flux sites among the 9 PFTs is as follows:
CRO: 18, DBF: 21, EBF: 14, ENF: 42, GRA: 34, MF: 8, SAV: 14, SHR: 14, and WET: 15.

The data we used from the aforementioned dataset included seven meteorological
factors, carbon dioxide mole fraction (Ca), and observed GPP data. Temporally continuous
meteorological factors on a daily scale include air temperature (Ta), precipitation, incoming
shortwave radiation (Rg), incoming longwave radiation (RL), vapor pressure deficit (VPD),
atmospheric pressure (Pa), and wind speed (WS). Considering the water storage capacity of
the soil, we treated the accumulated precipitation value of 8 days including that day as the
precipitation data of the day for model calculation, as described in a previous study [32].
The method to calculate the accumulated precipitation value of 8 days (P) on the nth day is
as follows:

P =

{
PREC1 + PREC2 + · · ·+ PRECn, 1 ≤ n < 8
PRECn−7 + PRECn−6 + · · ·+ PRECn, n ≥ 8

(1)

where PRECn represents the precipitation on the nth day of a site. There are several
GPP versions available in the dataset, among which we utilized the version labeled as
‘GPP_NT_VUT_REF’. In this version, ‘NT’ denotes that the GPP was retrieved by par-
titioning the observed net ecosystem carbon exchange (NEE) applying the nighttime
method [33], ‘VUT’ indicates that the data were filtered utilizing the friction velocity
threshold (https://fluxnet.org/data/fluxnet2015-dataset/data-processing/, accessed on
21 May 2021), and ‘REF’ represents the most common reference value among those from
40 different FLUXNET2015 workgroups [34].

2.1.2. MODIS Remote Sensing Data

In this study, six vegetation indices were employed, including normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), normalized difference water
index (NDWI), global vegetation moisture index (GVMI), normalized difference drought
index (NDDI), and near-infrared reflectance for vegetation (NIRV). These vegetation
indices were calculated using the reflectance bands from the moderate resolution imaging

https://fluxnet.org/data/fluxnet2015-dataset/data-processing/
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spectroradiometer (MODIS). The MODIS data used in this study correspond to the same
years as the flux site data.

These reflectance bands were retrieved from the MODIS MCD43A4 Version 6 Nadir
Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR)
dataset (https://lpdaac.usgs.gov/products/mcd43a4v006/, accessed on 21 May 2021),
which is generated daily using 16 days of Terra and Aqua MODIS data at a 500-m resolution.
The retrieved data were processed using the following two steps to obtain daily records:

(a) Pixel values with snow or cloud cover were removed, i.e., only pixel values with a
‘Reliability’ band value of 0 or 1 were retained;

(b) For unavailable daily data, gaps were filled by linearly interpolating the closed
available data over time.

2.1.3. Data Filtering

All the daily data were preprocessed to remove invalid records before the analyses.
The procedure can be summarized as follows: First, the data before 2000 were excluded
due to the unavailability of remote sensing data. Second, only the daily data with GPP
aggregated from at least 50% of valid hourly samples within one day were used. Third, only
the data periods with NDVI larger than 0.2 were selected to avoid the impact of non-growth
season data [35].

2.2. Methods
2.2.1. Basic Idea of Model Development

The model development process is shown in Figure 1. We developed a hybrid LUE
model based on ML and LUE models for GPP estimates. The basic idea is that we first
assimilate site-based GPP using an ensemble Kalman filter (EnKF) [36,37] to obtain the
LUE. Second, we directly simulated LUE using multi-layer perceptron (MLP) driven by
15 variables. Third, we estimated the GPP within the LUE model framework using the
modeled LUE and other required variables (i.e., PAR and FPAR). In the following sections,
we provide a comprehensive account of the research method employed in this study.
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2.2.2. Ensemble Kalman Filter

The Kalman filter (KF) is an algorithm that minimizes variance and updates the state
estimate when measurements are obtainable [38]. The cost function of KF can be expressed
as follows [39]:

J =
(

Xa
k − X f

k

)T
P−1

(
Xa

k − X f
k

)
+

(
Yk − H

(
X f

k

))T
R−1

(
Yk − H

(
X f

k

))
(2)
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where Xa
k and X f

k denote the analyzed and forecast estimates, respectively, at time instant k,
Yk denotes the vector of measurements, H denotes the measurement operator that maps
the model state Xk − Yk, P denotes the error covariance of the predicted model state, and R
denotes the measurement error covariance matrix. The KF update equation can be obtained
by minimizing with respect to Xa

k [37]:

Xa
k = X f

k + K
(

Yk − H
(

X f
k

))
(3)

K = P f
k HT

(
HP f

k HT + Rk

)−1
(4)

where P f
k HT denotes the cross covariance between a specific state and the prediction,

H
(

X f
k

)
, for an ensemble Kalman filter (EnKF).

P f
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X f
k −

−
X

f

k

u − 1
qT

k (5)

qd
k = H(X f

k −
−
X

f

k ) = (y f
k −

−
y

f

k ) (6)

where y is individual ensemble member of the prediction and HP f
k HT denotes the error

covariance matrix of the prediction.

P f
k =

(X f
k −

−
X

f

k )(X f
k −

−
X

f

k )

T

u − 1
(7)

HP f
k HT =

qkqT
k

u − 1
(8)

where u denotes the ensemble number.
We apply the EnKF to obtain the daily LUE through assimilating observations of

GPP measured at flux sites. The estimated relative errors for observations are set to 15%
according to the method described in a previous study [39]. The ensemble size is set to
200 [40]. The initial value of LUE is set to 0.075 gC J−1 (d/s)−1 (≈0.87 gC MJ−1). The lower
limit of LUE is set to 0.01 gC J−1 (d/s)−1 (≈0.12 gC MJ−1), and the upper limit is set to
0.60 gC J−1 (d/s)−1 (≈6.94 gC MJ−1) [41].

2.2.3. Multi-Layer Perceptron

A multi-layer perceptron (MLP) was used to estimate LUE, based on 15 variables
including PFT, Ta, accumulated precipitation value of 8 days (P), Rg, RL, VPD, Pa, WS,
Ca, NDVI, EVI, NDWI, GVMI, NDDI, and NIRV. All input variables except PFT were
normalized to zero mean and one unit. For PFT, there are 10 possible types, i.e., C3 crops
(CRO-C3), C4 crops (CRO-C4), DBF, EBF, ENF, GRA, MF, SAV, SHR, and WET, and we
used dummy variables, which use the values 0 and 1 to represent a variable, as inputs to
express them. We treated the LUE produced by EnKF as the target for model training. The
MLP used here consists of a five-layer network (excluding the input layer): (1) an input
layer directly connected to the input data, (2) four hidden layers with 30 neurons each,
and (3) an output layer consisting of one neuron. The input layer serves to receive input
data and transmit them to the next layer, the hidden layers are responsible for constructing
the relationships between the input and output, and the output layer produces target
estimates. We utilized the rectified linear unit (ReLU) as the activation function in our
implementation of the MLP and employed early stopping as a means of preventing the
overfitting of the model.
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We first selected 12 flux sites that covered all 10 types of PFTs as a test dataset. Then,
we shuffled the dataset of the remaining 168 flux sites randomly across time and sites and
split it into two subsets: a training dataset and a validation dataset, accounting for 70%
and 30% of the total number of flux sites, respectively. We repeated the training for several
MLPs with an increasing number of hidden layers from 1 to 5 and an increasing number
of neurons, e.g., 10, 20, 30, 40, and 50, to avoid overfitting. As a result, the MLP with four
hidden layers and 30 neurons in each hidden layer is the best performing model in terms
of root mean square error (RMSE).

2.2.4. Hybrid Light Use Efficiency Model (H-LUE)

To build a hybrid light use efficiency (H-LUE) model for GPP estimates, we imple-
mented machine learning within the LUE model framework (Figure 2). We first simulated
LUE using MLP driven by 15 variables. Then, we estimated GPP within the LUE model
framework using simulated LUE, PAR, and FPAR. PAR for the H-LUE model is computed
as follows.

PAR = 0.5 × Rg (9)
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The value of 0.5 used in Equation (9) is an empirical approximation of the ratio
between PAR and Rg [42]. FPAR is calculated according to the empirical linear regression
function [43]:

FPAR = 1.215 × NDVI − 0.16 (10)

2.2.5. Evaluating the Performance of the Models

We used daily observed GPP from flux sites to evaluate the performances of the GPP
models. We employed commonly used evaluation metrics, including coefficient of determi-
nation (R2), RMSE, and mean bias [44], to assess the performance of the GPP models.

2.2.6. Comparing the H-LUE Model with VPM and VPRM

To verify the advantages of the H-LUE model, we also ran two widely used LUE
models, the VPM [6] and the VPRM [7], on the test, training, and validation datasets, for
comparison. Detailed information regarding the two models can be found in Appendix B.
VPM is a popular LUE model that was widely adopted in various studies. Many studies
proved that this model has relatively high simulation accuracy among GPP models [45–47].
Additionally, the VPRM starts from the VPM. Therefore, these two models were used for
comparison. The only parameter of VPM is LUEmax, and VPRM requires two parameters,
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i.e., LUEmax and PAR0. For VPM, the LUEmax values calibrated by Yuan et al. [11] were
used for all PFTs except crops, and the LUEmax values optimized by Bai et al. [42] for C3
and C4 crops, respectively, were used for crops. For VPRM, the parameter values calibrated
by Yuan et al. [11] were used for all PFTs.

2.2.7. Assess the GPP Models under Extreme Environmental Conditions

Furthermore, we compared the capacity of the H-LUE model and the two LUE models
(VPM and VPRM) to estimate GPP under extreme environmental conditions. The compar-
isons were carried out on the test dataset. For extremely wet conditions, we investigated
data of the 90th–100th percentile P; for droughts, we investigated data of the 0th–10th
percentile P; and for heat waves, we investigated data of the 90th–100th percentile Ta.
When Ta was lower than −5 ◦C, the photosynthesis of plants almost completely stopped
(see Section 4.4). Therefore, for cold waves, we investigated data with Ta of −5–5 ◦C. The
distribution of data for extreme environmental conditions is shown in Figure 3.
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Figure 3. The distribution of data for extreme environmental conditions. (a) The distribution of
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3. Results
3.1. Evaluations of Three Models in Modeling LUE

Figure 4 presents the regression analysis between modeled LUE and LUE obtained by
EnKF for the test dataset. For VPM and VPRM, modeled LUE is the product of LUEmax
and f . The results suggest that the MLP is capable of accurately capturing the variations in
LUE obtained by EnKF with an R2 value of 0.60 for the test dataset. MLP also produced
a low RMSE of 0.36 gC MJ−1 for the test dataset. On the test dataset, MLP performed
significantly better than VPM (R2 = 0.38 and RMSE = 0.43 gC MJ−1) and VPRM (R2 = 0.17
and RMSE = 0.69 gC MJ−1). MLP also showed better performance than VPM and VPRM on
the training and validation datasets (Appendix C, Figure A1). The results suggest that MLP
can reduce the uncertainties in quantifying LUE as compared to VPM and VPRM. In other
words, MLP can indeed reduce the uncertainties introduced by LUEmax and environmental
stress factors of conventional LUE models.
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3.2. Evaluations of Three Models in Modeling GPP

The performances of the H-LUE model and the two LUE models in estimating
the GPP of the test dataset are summarized in Figure 5. The results demonstrate that
on the test dataset, the H-LUE model yields significantly higher R2 and lower RMSE
(R2 = 0.86 and RMSE = 1.79 gC m−2 d−1) values as compared to VPM (R2 = 0.73 and
RMSE = 2.79 gC m−2 d−1) and VPRM (R2 = 0.68 and RMSE = 3.26 gC m−2 d−1). The H-
LUE also performed better than VPM and VPRM on the training and validation datasets
(Appendix C, Figure A2). The results emphasize that combining the LUE model with ma-
chine learning can lead to improved performance compared to conventional LUE models.
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3.3. Performances of H-LUE in Different PFTs

We tested the performances of the H-LUE model in different PFTs on the test dataset,
and the results are shown in Figure 6. The H-LUE showed significant differences in
performance among different PFTs. The best model performance was observed in C3
crops, C4 crops, and deciduous broadleaf forests, with an R2 value of 0.92. However, for
evergreen broadleaf forests, savannahs, and shrubs, the H-LUE showed low performance
and captured only small variations in GPP with R2 values of 0.43, 0.37, and 0.51, respectively.
Additionally, the H-LUE showed intermediate performance in the remaining four PFTs
(i.e., evergreen needleleaf forests, grasslands, mixed forests, and wetlands). In general, the
H-LUE showed satisfactory performance across PFTs. However, poor performance in a few
vegetation types should also be noted.
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3.4. Evaluations of Three Models under Extreme Conditions

We assessed the performances of the three GPP models under four types of extreme en-
vironmental conditions, as we clarified in Section 2.2.6. The performance comparison of the
three GPP models is shown in Figure 7. For extremely wet (High-P), extremely dry (Low-P),
and extreme high-temperature (High-Ta) conditions, the H-LUE model showed significantly
better performance, with R2 (RMSE) = 0.89 (2.28 gC m−2 d−1), 0.74 (1.42 gC m−2 d−1), and
0.90 (2.49 gC m−2 d−1), respectively, as compared to VPM and VPRM. For the extremely
low-temperature (Low-Ta) condition, the H-LUE model yielded notably larger R2 and
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comparable RMSE values compared to VPM and VPRM. It should be noted that under the
Low-Ta condition, the ecosystem photosynthesis rate becomes very small, which explains
the comparable RMSE between the three GPP models under such conditions. However, the
H-LUE model tends to capture more variations in GPP under the Low-Ta condition. These
results suggested notable advantages of the H-LUE model over conventional LUE models
under extreme conditions.
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4. Discussion
4.1. Analyses of Bias

For the test dataset, the H-LUE model was able to simulate GPP accurately with a
low bias of 0.30 gC m−2 d−1 (Figure 5a). Both VPM and VPRM underestimated GPP
on the test dataset. VPM exhibited a large underestimation of GPP for the test dataset
(Bias = −1.03 gC m−2 d−1) (Figure 5b), as did VPRM (Bias = −1.18 gC m−2 d−1) (Figure 5c).
However, in the regression analysis between the modeled LUE and the LUE obtained by
EnKF, the LUE modeled by VPM had a positive bias on the test dataset (Bias = 0.11 gC MJ−1)
(Figure 4b), and the LUE modeled by VPRM also had a positive bias on the test dataset
(Bias = 0.27 gC MJ−1) (Figure 4c). Both VPM and VPRM tended to overestimate the LUE
when it was small and to underestimate the LUE when it was large (Figure 4b,c). The MLP
can simulate LUE accurately with a low bias of 0.15 gC MJ−1 for the test dataset (Figure 4a).

The photosynthesis capacity of plants In the middle of the growing season is much
larger than that in the early growing season, while the conventional LUE models do not
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account for the change in photosynthesis capacity and run with a constant LUEmax value
at all times. This is probably the reason why VPM and VPRM overestimate the LUE
when is small and underestimate it when it is large. Meanwhile, the LUEmax based on
machine learning in the H-LUE is likely to be variable. In addition, VPM and VPRM use
the land surface water index (LSWI) to account for the impacts of water stress on plant
photosynthesis. However, a previous study [48] revealed that although the LSWI was
sensitive to soil moisture variability, there was only a weak correlation between LSWI and
GPP. This also reduces the accuracy of the GPP estimates of VPM and VPRM. The H-LUE
model simulates LUE using multiple input variables (i.e., PFT, Ta, P, Rg, RL, etc.), without
using a constant LUEmax or only two or three environmental stresses defined by a single
LUE model, effectively avoiding the issues mentioned above.

VPM and VPRM exhibited a significant underestimation of the GPP, but not of LUE,
which may be due to the relatively low FPAR used in these two models. Yuan et al. [10]
found that among several LUE models, VPM had a relatively low FPAR. The FPAR used
in VPRM is calculated using the same method as in the VPM, resulting in a relatively low
FPAR as well.

4.2. Comparison of H-LUE with Other LUE Models

In order to further verify the performance of H-LUE, we ran another widely used LUE
model (i.e., EC-LUE model) for additional comparison. Detailed information regarding
the EC-LUE model can be found in Appendix B. We ran the four models (i.e., H-LUE,
EC-LUE, VPM, and VPRM) on 11 sites of the test dataset (one site of the test dataset was
excluded due to the unavailability of the net radiation data that is required by EC-LUE). The
performance comparisons are shown in Figure 8. The H-LUE showed the best performance
(R2 = 0.87 and RMSE = 1.72 gC m−2 d−1) among the four models, which further confirmed
the advantage of the H-LUE.

In addition, EC-LUE achieved higher R2 and lower RMSE values when compared to
the other two LUE models (i.e., VPM and VPRM), which was consistent with a previous
model evaluation [16]. Yuan et al. [16] assessed the performance of seven LUE models
(CASA, cFix, cFlux, EC-LUE, MODIS-GPP, VPM, and VPRM) using flux measurements from
157 eddy covariance sites and found that EC-LUE showed better performance than VPM
and VPRM. These differences were expected. Model structural differences were considered
the most important reason of different GPP estimates among models [16]. EC-LUE uses the
same equation as VPM and VPRM to estimate temperature stresses, but the water stress
equations are different. In the EC-LUE model, water stress is estimated using the ratio
of latent heat flux to net radiation because decreasing amounts of energy partitioned to
evaporate water suggests a stronger moisture limitation [49,50]. VPM and VPRM use a
satellite-derived water index (LSWI) to estimate the seasonal dynamics of water stress [6].
A previous study indicated that water stress algorithms generate greater variation among
models than temperature factors [16]. Another study revealed that although most models,
including EC-LUE, VPM and VPRM, found strong positive correlations between the water
availability and GPP estimates across large areas and various ecosystems, different LUE
models showed different areas displaying this positive correlation [17]. Therefore, the
difference in GPP estimates may be attributed to the model discrepancy in quantifying
water stress. Moreover, FPAR of EC-LUE is calculated using NDVI, while that of VPM
and VPRM is derived from EVI. Although NDVI and EVI are complementary vegetation
indices [51], there was a significant difference in the long-term change between the two
vegetation indices over the global scale [17].

It remains difficult to characterize the effects of environmental stresses such as temper-
ature and water availability on vegetation photosynthesis over large areas from physical
modeling, and this limits the accuracy of conventional LUE models. The best performance
of H-LUE among the four models indicated that applying ML to simulate the LUE can
improve the accuracy of estimating the GPP.
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4.3. Different Performances of H-LUE in Different PFTs

We found statistically significant differences in the performance of the H-LUE among
PFTs (Figure 6). The H-LUE showed good performance for crops and deciduous broadleaf
forests, and poor performance for evergreen broadleaf forests, savannahs, and shrubs.
This conclusion is supported by previous studies [16,52]. Yuan et al. [16] assessed the
performance of seven LUE models in six ecosystem types and found that all seven models
showed good performance for deciduous broadleaf forests and poor performance for
shrublands and evergreen broadleaf forests. Based on 17 models against observations from
36 North American flux towers, Raczka et al. [52] revealed that the models performed
best for deciduous broadleaf sites, but not well for evergreen sites. In general, deciduous
broadleaf forests show distinct seasonal dynamics of leaf phenology, and satellite data
can accurately capture the phenology change [16], which is beneficial to GPP modeling.
Meanwhile, evergreen broadleaf forests show subtle changes in the seasonal leaf phenology,
and various environmental variables jointly determine the vegetation photosynthesis,
which increases the difficulty of modeling [6].

4.4. The Responses of LUE to Ta, Rg, and VPD in the H-LUE Model

Whether in conventional LUE models or in the H-LUE model developed in this study,
meteorological factors are essential input data that play a crucial role in ensuring the
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accuracy of GPP simulation. The MLP can accurately model LUE and, therefore, can be
applied to systematically understand the responses of LUE to meteorological factors.

Figure 9 shows the density plot of the LUE modeled by MLP with the three mete-
orological factors Ta, Rg, and VPD for the test dataset. As expected, the LUE increased
sharply as Ta increased, especially when Ta was higher than −5 ◦C. When Ta was lower
than −5 ◦C, the LUE was very low and changed slowly, which indicated the inhibitory
effect of low temperatures on plant photosynthesis. In general, chill could induce stomatal
closure, precipitating a decline in photosynthesis [53]. LUE decreased with VPD, which
indicates that high VPD can inhibit photosynthesis. An increase in VPD results in an
enhanced transpiration rate, and stomata then respond by partially closing to reduce the
water loss of plants [54], which leads to a decline in photosynthesis. As the light level
increases, the canopy LUE decreases because of the light saturation effect [55]. However,
the LUE showed insignificant responses to Rg variations (Figure 8b), likely because other
environmental factors can be covarying at the same time—for instance, Rg can increase
during reduced cloud cover while temperature can also increase. Moreover, previous
studies found that an increased fraction of diffuse radiation during cloudy days enhanced
plant photosynthesis [55,56]. Therefore, the variations of the fraction of diffuse radiation
caused by changes in clouds and aerosols can also interfere with our observation of the
response of LUE to Rg variations.
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We further investigated the responses of LUE to the three meteorological factors in
different PFTs on the test dataset, as shown in Figures 10 and 11. In multiple PFTs, the LUE
shows a phenomenon of increasing first and then decreasing as Ta increases. For example,
in DBF, EBF, ENF, GRA, MF, SAV, and SHR, the optimum temperature for vegetation
photosynthesis is shown; that is, when Ta reaches this value, the LUE will reach a peak, and
then the LUE gradually decreases as Ta increases. The global terrestrial average value of
ecosystem-scale optimum temperature for photosynthesis is estimated to be 23 ± 6 ◦C, with
large spatial heterogeneity [57]. Additionally, the ecosystem-scale optimum temperature
for photosynthesis varies across vegetation types [58]. In our study, for example, in ENF,
when Ta reached about 17 ◦C, LUE reached a peak value (Figure 10(a5)), while in SAV, LUE
reached a peak at 24 ◦C (Figure 11(a3)). As for the response of the LUE to Rg variations, in
multiple PFTs such as DBF, EBF, ENF, and MF, the LUE showed a decreasing trend with an
increase in Rg, which is caused by a light saturation effect. In most PFTs, the LUE tended to
decrease as VPD increased.

In addition, it was evident that the LUE of C4 crops is higher than that of C3 crops
(Figure 10). This conclusion is supported by previous studies [48,59], which found that
under the same climate conditions, C4 crops had greater photosynthetic capacity than
C3 crops.
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color bars represent the density of points within a circle area of radius 0.5 ◦C for Ta, 1.0 W m−2 for
Rg, and 0.5 hPa for VPD.
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5. Conclusions

LUE models were commonly applied to estimate the ecosystem GPP due to their
concise model structures. However, quantifying LUEmax and representing the responses
of photosynthesis to environmental factors still exhibit large uncertainties, which lead to
substantial errors in GPP simulations. In this study, we developed a hybrid GPP model
based on machine learning and LUE models, called the hybrid light use efficiency model
(H-LUE). This hybrid model was built by targeting LUE with the MLP algorithm and then,
estimating GPP within the LUE model framework using the ML-based LUE and other
required inputs (i.e., PAR and FPAR). We compared the performance of the H-LUE model
against two widely used LUE models (VPM and VPRM) using observed daily GPP from
180 flux sites that cover nine different PFTs. The main conclusions are as follows:

1. The evaluations of the three models (H-LUE, VPM, and VPRM) when estimating the
LUE and GPP indicate better performance of the H-LUE model in comparison to VPM
and VPRM, which emphasizes that combining the LUE model with machine learning
can lead to improved performance in comparison to conventional LUE models.

2. The H-LUE model had reasonable and significantly better performance under ex-
tremely wet, dry, high-temperature, and low-temperature conditions compared to
VPM and VPRM, indicating the notable advantages of the H-LUE model for global
applications. Additionally, the H-LUE model can reasonably represent the responses
of photosynthesis to meteorological factors.

3. VPM and VPRM overestimate the LUE when it is small and underestimate the LUE
when it is large, probably because the conventional LUE models do not account for
the change in photosynthetic capacity and run with a constant LUEmax value at all
times. The H-LUE model simulates LUE using multiple input variables without using
a constant LUEmax or only two or three environmental stresses defined by a single
LUE model, effectively avoiding this issue.

Overall, the developed H-LUE model can perform notably better than conventional
LUE models. The new model provides a concise and effective approach to modeling
the ecosystem GPP across multiple biomes and on a global scale, and it also serves as a
reference for developing more advanced hybrid GPP models in the future.
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Appendix A

Table A1. List of abbreviations and variables.

Abbreviations or Variables Description

Ca Carbon dioxide mole fraction
EnKF Ensemble Kalman filter
EVI Enhanced vegetation index

FPAR Fraction of absorbed photosynthetically active
radiation

GPP Gross primary productivity
GVMI Global vegetation moisture index

H Hidden layer
I Input layer

LUE Light use efficiency
MLP Multi-layer perceptron

NDDI Normalized difference drought index
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
NIRV Near-infrared reflectance for vegetation

P Accumulated precipitation value of 8 days
Pa Atmospheric pressure

PAR Photosynthetically active radiation
PFT Plant function type
Rg Incoming shortwave radiation
RL Incoming longwave radiation
Ta Air temperature

VPD Vapor pressure deficit
WS Wind speed

Appendix B

Appendix B.1 Description of VPM Model

In the vegetation production model (VPM), LUEmax is impacted by temperature, land
surface moisture, and leaf phenology. Here is a concise overview of the VPM model:

GPP = PAR × FPAR × LUEmax × Ts × WSLSWI × Ps (A1)

The current version of the VPM model assumes that FPAR is directly proportional
to EVI, with a fixed coefficient value of 1.0 [6]. Ts, WSLSWI , and Ps are scalar values that
represent the impact of temperature, water, and leaf phenology on the LUE of vegetation,
respectively. At each time step, Ts is calculated using the equation developed for the
terrestrial ecosystem model [60] as follows:

Ts =
(T − Tmin)× (T − Tmax)(

(T − Tmin)× (T − Tmax)−
(
T − Topt

)2
) (A2)

where T represents the air temperature and Tmin, Tmax, and Topt represent the minimum,
maximum, and optimum air temperatures (◦C) for photosynthetic activity, respectively.
When the air temperature falls below Tmin or exceeds Tmax, Ts is assigned a value of 0. In
this study, Tmin, Tmax and Topt were set to −2.5, 44.6, and 23.4 ◦C, respectively, for all PFTs
except C4 crops, while for C4 crops, Tmin, Tmax and Topt were set to 7.5, 43.7, and 31.3 ◦C,
respectively [34].

The VPM also uses the LSWI (land surface water index) [6] to account for the impacts
of water stress and phenology on plant photosynthesis:

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(A3)
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where NIR denotes the 841–876 nm band and SWIR denotes 1628–1652 nm band. The
water index was defined as follows:

WSLSWI =
1 + LSWI

1 + LSWImax
(A4)

where LSWImax is the highest LSWI value during the plant growing season for each pixel,
Ps is included to represent the impact of leaf phenology (leaf age) on photosynthesis at
the canopy level, and Ps is computed as a linear function of LSWI from bud burst to full
leaf expansion:

Ps =
1 + LSWI

2
(A5)

Once the leaves reach full expansion, Ps is assigned a value of 1.

Appendix B.2 Description of VPRM Model

The formulation of the VPRM is based on the VPM model developed by Xiao et al. [6],
which estimates the GPP using satellite-based vegetation indices and environmental data,
adding a nonlinear function to take into account the response of GPP to light. VPRM can
be expressed as follows:

GPP = PAR × FPAR × 1
(1 + PAR/PAR0)

× LUEmax × Ts × Ps × WSLSWI (A6)

where PAR0 denotes the half-saturation value. The other input variables were computed
using the same method as the VPM model.

Appendix B.3 Description of EC-LUE Model

Yuan et al. [3,4] developed the eddy covariance-light use efficiency (EC-LUE) model
to simulate the daily vegetation GPP. The EC-LUE model can be represented as follows:

GPP = PAR × FPAR × LUEmax × Min(Ts, WSEF) (A7)

FPAR = 1.24 × NDVI − 0.168 (A8)

WSEF =
LE
Rn

(A9)

where LUEmax is the maximum light use efficiency without environmental stress and Ts
is calculated using Equation (A2). If the air temperature falls below Tmin or increases
beyond Tmax, Ts is set to 0. In this study, Tmin and Tmax were set to 0 and 40 ◦C, respectively,
while Topt was determined using nonlinear optimization to be 21 ◦C [3]. Min denotes the
minimum values of Ts and WSEF, and this model assumed that the impacts of temperature
and moisture on the LUE follow Liebig’s Law (i.e., LUE is only affected by the most limiting
factor at any given time). LE is latent heat flux, and Rn is net radiation.
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