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Abstract: The electromagnetic data observed with the CSES (China Seismo-Electromagnetic Satellite,
also known as Zhangheng-1 satellite) contain numerous spatial disturbances. These disturbances
exhibit various shapes on the spectrogram, and constant frequency electromagnetic disturbances
(CFEDs), such as artificially transmitted very-low-frequency (VLF) radio waves, power line harmonics,
and interference from the satellite platform itself, appear as horizontal lines. To exploit this feature,
we proposed an algorithm based on computer vision technology that automatically recognizes these
lines on the spectrogram and extracts the frequencies from the CFEDs. First, the VLF waveform data
collected with the CSES electric field detector (EFD) are converted into a time–frequency spectrogram
using short-time Fourier Transform (STFT). Next, the CFED automatic recognition algorithm is used
to identify horizontal lines on the spectrogram. The third step is to determine the line frequency range
based on the proportional relationship between the frequency domain of the satellite’s VLF and the
height of the time–frequency spectrogram. Finally, we used the CSES power spectrogram to confirm
the presence of CFEDs in the line frequency range and extract their true frequencies. We statistically
analyzed 1034 orbit time–frequency spectrograms and power spectrograms from 8 periods (5 days
per period) and identified approximately 200 CFEDs. Among them, two CFEDs with strong signals
persisted throughout an entire orbit. This study establishes a foundation for detecting anomalies due
to artificial sources, particularly in the study of short-term strong earthquake prediction. Additionally,
it contributes to research on other aspects of spatial electromagnetic interference and the suppression
and cleaning of electromagnetic waves.

Keywords: CSES; constant frequency electromagnetic disturbances (CFEDs); spectrogram; automatic
recognition of horizontal line; frequency extraction

1. Introduction

Previous studies have demonstrated that during super-large earthquakes and shal-
low earthquakes, the energy of very-low-frequency (VLF) and ultra-low-frequency (ULF)
electromagnetic waves increases, leading to ionospheric disturbances in space. These
disturbances are considered to be useful for short-term strong earthquake prediction [1,2].
VLF/LF electromagnetic signals emitted by specific transmitters can propagate in the lower
ionosphere, which has become a method for detecting the ionosphere [3]. As a result, sci-
entists have deployed several artificial, ground-based VLF transmitters around the world
to continuously transmit VLF electromagnetic waves at different frequencies into space.
These signals can propagate upward through the ionosphere, reflect back to the ground,
and be received by satellites and ground receiving stations [4].
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Low energy loss and long transmission distance are the main characteristics of the
VLF electromagnetic wave emitted from the artificial source transmitting station. They can
propagate between the earth and the ionospheric waveguide system over long distances
and have a significant wave–particle interaction effect [1,5–7]. When a satellite passes
over the artificial source transmitter, it can receive the artificial source signal within a
specific stable frequency range [8]. However, when the electromagnetic wave propagates
to the ionosphere, many parameters will change, including velocity and phase as well
as refraction and scattering effects. Therefore, various electromagnetic responses excited
by the artificial source VLF signal in the ionosphere have different spatial and temporal
characteristics [9].

There are more than 40 artificial-source VLF and LF radio wave transmitters in the
world, which are widely used in long-distance navigation, maritime navigation, under-
water communication navigation, and ionospheric disturbance detection [10]. During
VLF/LF radio wave propagation, when the lower ionosphere above the propagation path
is disturbed by various factors, such as solar flares, magnetic storms, lightning discharges,
earthquakes, etc., it will cause an abnormal VLF/LF artificial source.

Currently, observations of VLF/LF artificial source signals are conducted using ground-
based detection and space-based methods. Since the 1950s, Stanford University has used
extremely low-frequency (ELF) and VLF receivers to study the phenomenon of sky electric-
ity, with their AWESOME receivers installed and utilized in various locations across the
country [11–13]. The UK Radio Astronomy Association (2021) also uses a VLF receiver to
measure sudden ionospheric disturbance caused by solar scintillation, with the frequency
band observed being 12–35 KHz. Japan’s OMNIPAL narrowband receiver is designed to
receive signals from VLF artificial sources around the world and is generally equipped with
a vertical electric field antenna and two horizontal magnetic ring antennas for detecting
horizontal magnetic fields and vertical electric field signals. Since 2000, Japan, Russia,
Greece, Italy, and other countries have carried out joint observations of artificial source
waves, primarily using OMNIPAL receivers, with stations mainly based on vertical electric
extension antennas [14].

With the development of satellite detection technology, electromagnetic field detection
has become the main scientific objective for satellite detection of ionospheric environments.
The artificial VLF/LF signal from the ground is typically identified with the broadband
electromagnetic detector, with equipment based on probe potential detection and inductive
magnetometers. As a result of the large number of VLF/LF artificial transmitters located
around the world on the ground, satellites can record the information at each station
as a mobile space receiving station, which provides a good platform for studying the
anomaly detection of VLF/LF artificial source signals detected by satellites, including
seismic detection applications.

Currently, the signal-to-interference-to-noise ratio (SNR) method for satellite VLF
radio wave signal detection is used to obtain earthquake-related disturbances. It has been
discovered that the SNR of the VLF radio wave signal will decrease significantly before the
earthquake, with abnormal recovery after the earthquake and similar variation in multiple
stations [15–21]. Additionally, the amplitude method for satellite VLF wave signal detection
will also show a significant decrease or increase in the amplitude of the VLF wave signal
before the earthquake [19–23]. The simultaneous disturbance observation of the satellite
and the foundation can be comparatively analyzed and mutually tested, thereby improving
the reliability of the seismic anomaly disturbance [24].

Electromagnetic satellite monitoring of earthquakes began in the 1980s and has since
detected a large amount of electromagnetic anomaly information, including solar magnetic
storms, substorms, lightning, atmosphere, tides, artificial very-low-frequency transmitters,
power systems, and satellite platforms themselves [25–31]. In order to study the temporal
and spatial variation in artificial source VLF radio wave signals before earthquakes, it
is necessary to automatically analyze and extract the frequency and space–time range
of electromagnetic waves emitted by these artificial sources with known or unknown



Remote Sens. 2023, 15, 2057 3 of 23

frequencies from these massive satellite data. In a recent article [32], a radio frequency
interference detection and localization method was proposed based on a ground range
detected image generation mechanism and dual polarization using ground range detected.
However, this method may not work for some particular situations. Different spatial
electromagnetic disturbances appear in different forms on the spectrogram. For instance,
artificial VLF transmitter stations, power systems, and satellite platform disturbances cause
changes in the spatial physical environment, presenting as a horizontal line feature above
the background intensity on the spectrogram [33]. Based on this horizontal line feature,
computer vision technology can be used to automatically recognize horizontal lines on the
spectrogram and extract the frequency of CFEDs that produce these lines.

Currently, there are three main methods for automatic recognition of CFEDs on the
spectrogram: Hough transform methods [34], density statistics-based methods [35], and
K-means clustering methods [36]. While the Hough method can recognize line segments in
different directions, it is necessary to find and merge horizontal line segments, making it
relatively inefficient. The density statistics method uses a horizontal convolution kernel
to enhance the horizontal features, which requires setting a density threshold. However,
different density thresholds may lead to varying results for different time–frequency spec-
trograms, reducing the robustness. The K-means clustering method improves upon the
density statistics method by offering strong robustness. It can automatically recognize
all clearly visible horizontal lines on the spectrogram, with a missed recognition rate
of 0. Therefore, we have chosen to utilize the K-means clustering method to automati-
cally recognize horizontal lines on the spectrogram and extract the frequency of CFEDs
that generate these horizontal lines worldwide. This lays a solid foundation for study-
ing spatial electromagnetic disturbance anomaly monitoring, especially for short-term
earthquake prediction.

2. Data Collection

In February 2018, CSES was successfully launched. Since then, CSES has been observed
in orbit for more than 5 years and has generated a vast body of data. The main scientific
goal of CSES is to obtain data, such as global electromagnetic field, plasma, and high-energy
particle observations, and to provide scientific data services for short-term earthquake
prediction and geospatial physics research [37,38]. CSES has an orbital inclination of 97.4◦

and an orbital return period of 5 days. In one return period, the global spatial resolution
of about 500 km can be observed. The satellite orbits the Earth in about 94 min, and most
payloads work in the ±65◦ latitude range. Observation data are stored in ascending and
descending orbits, respectively. The spatial resolution of adjacent ascending (or descending)
orbits on the same day is approximately 2000 km. Figure 1 is a diagram showing the
trajectory of the CSES satellite orbits for one cycle.

CSES carries eight types of scientific payloads [39–43]: an inductive magnetometer,
high-precision magnetometer [44], electric field detector (EFD), global satellite navigation
system occultation receiver [45], plasma analyzer [46,47], high-energy particle detector [48],
Langmuir probe [49], and triple-frequency beacon transmitter [50]. Space electric field
detection is completed with the EFD, which can provide basic data for the study of solar–
terrestrial space physics, space weather, and the interaction between the ionosphere and
the upper atmosphere, magnetosphere, and other related spheres and their effects. It
can also provide data application services for seismic observation research [51]. The
detection frequency domain is divided into ULF (0–16 Hz), ELF (6 Hz–2.2 kHz), and VLF
(1.8–20 kMHz). The sampling rate of VLF is 50 kHz, and a sampling period of 2.048 s,
so there are 2048 sampling points in each working period [52]. Experimental data are
waveform data and power spectrum data from the Z component of the VLF band collected
with the CSES EFD satellite for 2 years. According to the CSES data specification, the EFD
VLF data structure is shown in Table 1.
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Figure 1. Operation diagram of the CSES satellite in one return period. The red tracks represent the
satellite’s ascending orbit, and the black tracks represent the descending orbit.

Table 1. EFD VLF level 2 data structure description.

Name Content Type Size Attribute Remark

VERSE_TIME Relative time 64-bit int N × 1 Unit:ms
UTC_TIME Absolute time 64-bit int N × 1 YYYYMMDD

HHMMSSms

WORKMODE Workmode 16-bit int N × 1
1: Inspection

2: Detailed investigation
−1: Invalid

A131_W X 64-bit float N × 2048 Unit:mV/m
X component of electric field

waveform in WGS84
coordinate system

A132_W Y 64-bit float N × 2048 Unit:mV/m
Y component of electric field

waveform in WGS84
coordinate system

A133_W Z 64-bit float N × 2048 Unit:mV/m
Z component of electric field

waveform in WGS84
coordinate system

A131_P CH1 64-bit float N × 1024 Unit:mV/m/Hzˆ0.5 Probe ab direction
power spectrum

A132_P CH2 64-bit float N × 1024 Unit:mV/m/Hzˆ0.5 Probe cd direction
power spectrum

A133_P CH3 64-bit float N × 1024 Unit:mV/m/Hzˆ0.5 Probe ad direction
power spectrum

ALTITUDE Satellite orbit
height 32-bit float N × 1 Unit:km The value in WGS84 spherical

coordinate system

MAG_LAT Geomagnetic
latitude 32-bit float N × 1 Unit:degree

MAG_LON Geomagnetic
longitude 32-bit float N × 1 Unit:degree

GEO_LAT Geographical
latitude 32-bit float N × 1 Unit:degree The value in WGS84 spherical

coordinate system

GEO_LON Geographical
longitude 32-bit float N × 1 Unit:degree The value in WGS84 spherical

coordinate system

FREQ Power spectrum
frequency 32-bit float 1024 × 1

FLAG 32-bit int N × 1 Data quality label
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CSES generates 32 orbits per day and uses STFT to convert the waveform data from
one orbit into a time–frequency spectrogram. A period (5 days) can generate approximately
130 time–frequency spectrograms. Figure 2 shows a time–frequency spectrogram converted
from the Z component of the EFD waveform data from 8 January 2019. The y-axis is the
frequency range, the x-axis is the time, longitude, and latitude, and the right color bar is
the electromagnetic wave intensity.
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3. CFED Recognition Algorithm
3.1. Algorithm Identification Process

The CFED frequency extraction process is shown in Figure 3. First, the EFD VLF
waveform data are converted into a time–frequency spectrogram using STFT. Because
CFEDs are horizontal lines on the spectrogram, we use the K-means clustering algorithm
to cluster each pixel row on the time–frequency spectrogram and merge pixel rows labeled
as line clusters into a line after clustering. Then, we calculate the frequency range of each
line according to the height ratio between the satellite’s VLF frequency domain and the
time–frequency spectrogram. Due to the low clarity of the line obtained with the weak
CFED signal, or the background enhancement in the time–frequency spectrogram caused
by other spatial electromagnetic disturbances, CFED interruptions, etc., these factors will
lead to missed recognition of the horizontal line. Therefore, we count a large number
of time–frequency spectrograms, determine whether the recognized lines on different
time–frequency spectrograms belong to the same CFED, and calculate its frequency range.
According to the frequency range, we use the power spectrum data to generate the power
spectrogram to verify the CFED and extract its true frequency.
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3.1.1. Gray Processing

When using computer vision technology to recognize CFEDs, the basis is that the
brightness of the horizontal linear color is higher than the background color on the time–
frequency spectrogram, and the horizontal shape is more important than the color. In
addition, in order to improve the processing speed of the image, gray processing is used to
convert a color time–frequency spectrogram into a grayscale image.

There are many grey processing methods. We obtained the gray spectrogram using
the blue channel, i.e., Gray = RGB.B, where RGB is a time–frequency spectrogram and B is
the blue channel of a color image [36]. Figure 4a shows a time–frequency spectrogram, and
Figure 4b shows a gray image obtained using the blue channel.
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3.1.2. Convolution Operation

Because the horizontal features of the lines on the time–frequency spectrogram are
recognized, in order to improve the recognition rate, the horizontal convolution kernel is
used to enhance its horizontal features. The horizontal convolution kernel is provided by
Equation (1).

kernel = [1, 0,−1] (1)

The method is expressed as Equation (2). Figure 5a shows a 5 × 5 pixel spectrogram
that is zoomed without distortion. A horizontal line on the map is significantly enhanced
after convolution, as shown in Figure 5b. Figure 6 shows the result convolution of Figure 4b.

cov_dst(x, y) = ∑
0 ≤ x′ < kernel.cols,
0 ≤ y′ < kernel.rows

kernel(x′, y′)× gray(x + x′ − anchor.x, y + y′ − archor.y) (2)
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3.1.3. Binary Processing

In order to reduce the image and increase the algorithm’s ability to identify edges and
features more accurately, the target image is binarized after convolution. Binary processing
is expressed by Equation (3), where cov_dst is the gray image after convolution; i and j are
the coordinates of a pixel on cov_dst; max is the maximum number of pixels, which is set
to 255; and thresh is the threshold, which is set to 10 on paper. Figure 7 shows the result of
the binarization of Figure 6.

bi_map(i, j) =

{
max i f cov_dst(i, j) > tresh
0 otherwise

(3)



Remote Sens. 2023, 15, 2057 8 of 23Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 7. Results after the binarization of Figure 6. 

3.1.4. K-Means Clustering 

The clustering algorithm, also known as ‘unsupervised classification’, aims to di-

vide data into meaningful or useful groups (or clusters). In order to recognize the hori-

zontal line on the image, we use the K-means clustering algorithm to cluster the white 

pixels. K is the number of clusters, and because we only need to separate lines and non-

lines, we set k = 2. 

The steps are as follows: 

Step 1: Randomly select k cluster centroid points {µ1, µ2, …, µn} (k = 2). 

Step 2: Repeat the following process until convergence: 

(1) For each sample i, calculate the class it should belong to. 
( ) ( ) 2: argmin || ||i i

j
j

c x = −  (4) 

(2) Calculate each class j and repeat the centroid of the class. 

( ) ( )

1
i ( )

1

1{ }
:

1{ }

m i i

i

m i

i

c k x

c j
 =

=

=
=

=




 (5) 

where 
( )c i

denotes the nearest class between the sample i and k classes, and its value is 

between 1 and k. The centroid j  represents a guess for the sample center point belong-

ing to the same clusters. 

After clustering, the binarized image is grouped into two clusters. In order to clear-

ly identify the clustering results, linear clusters are marked with red dots. Figure 8 

shows the result of clustering Figure 7. 

 

Figure 8. Clustering results of Figure 7. Line clusters are marked with red dots on Figure 4a. 

3.2. Extracting CFED Frequency from a Time–Frequency Spectrogram 

After K-means clustering, all pixel rows on the binary image are clustered into line 

and non-line clusters. As shown in Figure 9, Figure 9a is a spectrogram and Figure 9b is 

its clustering result, and the clearly visible lines in Figure 9a are clustered into line clus-

ters. The horizontal and vertical coordinates in Figure 9b correspond to the width and 
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3.1.4. K-Means Clustering

The clustering algorithm, also known as ‘unsupervised classification’, aims to divide
data into meaningful or useful groups (or clusters). In order to recognize the horizontal line
on the image, we use the K-means clustering algorithm to cluster the white pixels. K is the
number of clusters, and because we only need to separate lines and non-lines, we set k = 2.

The steps are as follows:
Step 1: Randomly select k cluster centroid points {µ1, µ2, . . . , µn} (k = 2).
Step 2: Repeat the following process until convergence:
(1) For each sample i, calculate the class it should belong to.

c(i) := argmin
j
||x(i) − µj||2 (4)

(2) Calculate each class j and repeat the centroid of the class.

µi :=
∑m

i=1 1{c(i) = k}x(i)

∑m
i=1 1{c(i) = j}

(5)

where c(i) denotes the nearest class between the sample i and k classes, and its value is
between 1 and k. The centroid µj represents a guess for the sample center point belonging
to the same clusters.

After clustering, the binarized image is grouped into two clusters. In order to clearly
identify the clustering results, linear clusters are marked with red dots. Figure 8 shows the
result of clustering Figure 7.
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3.2. Extracting CFED Frequency from a Time–Frequency Spectrogram

After K-means clustering, all pixel rows on the binary image are clustered into line
and non-line clusters. As shown in Figure 9, Figure 9a is a spectrogram and Figure 9b is its
clustering result, and the clearly visible lines in Figure 9a are clustered into line clusters.
The horizontal and vertical coordinates in Figure 9b correspond to the width and height of
the time–frequency spectrogram 9a, which are map_width and map_height, respectively.
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The line thickness on the spectrogram differs according to the signal strength and
frequency domain of CFED. Some lines are a row of pixels, and the frequency is a value,
as shown in Figure 10 1©, whereas some lines are multiple rows of pixels, as shown in
Figure 10 2©, where the frequency is a range. The recognition algorithm not only recognizes
the lines but also calculates the line_height on the spectrogram. The frequency corresponding
to each line is calculated according to the CSES VLF range. The calculation method is
as follows.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 23 
 

 

height of the time–frequency spectrogram 9a, which are map_width and map_height, re-

spectively. 

 
 

(a) (b) 

Figure 9. Clustering results. (a) Original time–frequency spectrogram. (b) K-means clustering re-

sults. 

The line thickness on the spectrogram differs according to the signal strength and 

frequency domain of CFED. Some lines are a row of pixels, and the frequency is a value, 

as shown in Figure 10①, whereas some lines are multiple rows of pixels, as shown in 

Figure 10②, where the frequency is a range. The recognition algorithm not only recog-

nizes the lines but also calculates the line_height on the spectrogram. The frequency cor-

responding to each line is calculated according to the CSES VLF range. The calculation 

method is as follows. 

 

Figure 10. Line recognition result marking. 

3.2.1. Extract the Frequency of a Pixel Row  

Figure 11 shows the relationship between row height and frequency, where max_ 

high is the height of the time–frequency spectrogram; max_freq is the maximum frequen-

cy, where max_freq = 24975.6; and the minimum frequency and minimum height are 0. 

The recognized line frequency is calculated using Equation (6), where line_freq is the pix-

el row frequency and line_high is the pixel row height on the spectrogram. 

×
max_

_

max_freq line_high
line_freq = fre

map height
−

 
(6) 

Figure 10. Line recognition result marking.

3.2.1. Extract the Frequency of a Pixel Row

Figure 11 shows the relationship between row height and frequency, where max_
high is the height of the time–frequency spectrogram; max_freq is the maximum frequency,
where max_freq = 24975.6; and the minimum frequency and minimum height are 0. The
recognized line frequency is calculated using Equation (6), where line_freq is the pixel row
frequency and line_high is the pixel row height on the spectrogram.

line_ f req = max_ f re− max_ f req× line_high
map_height

(6)
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3.2.2. Extract the Frequency Range of a Line Containing Continuous Multi-Pixel Rows

If a thick line consists of continuous multi-pixel rows, then the row heights are
(line_high1, line_high2 . . . Line_highn), and the corresponding frequencies of each row
of pixels are (line_freq1, line_freq2 . . . line_freqn). The line frequency range is (line_freq_min,
line_freq_max), where line_freq_min = line_freq1 and line_freq_max = line_freqn.

So, for the linei (i = 1,2 . . . ), if it is a single row of pixels, linei_fre=linei_freq; if it is
multi-pixel rows, linei_fre= (linei_freq_min, linei_freq_max).

3.2.3. Extract all Horizontal Line Frequency Ranges for a Period (5 days)

Due to other spatial electromagnetic disturbances, the spectrogram background is
enhanced, morning and dusk are alternately affected, or the intensity of the transmitted
signal of the electromagnetic signal transmitting station changes, all of which will lead to
changes in the shape of the line on the spectrogram, as shown in Figure 12 1©, 2©, which has
a certain impact on the results of line recognition [53]. For example, line clarity is reduced,
resulting in missed recognition; the broadening in the signal frequency domain makes
the frequency domain range of the identified CFED larger. Therefore, in order to avoid
missing CFED recognition, and considering the frequency extraction of CFED globally,
it is necessary to recognize and count lines on a large number of spectrograms. When
recognized lines are on different spectrograms, it is necessary to determine whether they are
the same CFED. For example, Figure 12 1©– 4©. The decision method is shown in Figure 13.
When line 1 and line 2 satisfy the following seven cases, they can be determined to be the
same CFED. Freq is the CFED frequency range.
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3.2.4. Extract the Frequency Value by Power Spectrogram

The previous extraction is only the frequency range of the CFED, not its true frequency
value. Combined with this frequency range, we use the satellite’s power spectrogram to
extract its true frequency value. The steps are as follows:

Step 1: According to the frequency range, combined with the FREQ file of CSES, as
shown in Table 1, find the coordinate range corresponding to the frequency range.

Step 2: According to the coordinate range obtained in step 1, the power spectrum Z
component file A133_P is traversed to generate power spectrograms corresponding to the
frequency range.

Step 3: Observe the horizontal electromagnetic wave on the power spectrogram,
confirm the existence of CFED, and extract the true frequency value.

For example, after a series of calculations, a frequency range Freq = (10,117, 10,002)
is obtained, and the power spectrogram of the Freq range is generated using the power
spectrum data, as shown in Figure 14. It can be seen that this CFED is true in the Freq, and
its frequency is 10 kHz.
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4. Experimental Results and Analysis
4.1. Experimental Environment

We use Matlab2020 to generate time–frequency spectrograms and power spectrograms.
We use python3.7 to call CV2 and the SKLearn clustering algorithm library to perform
CFED recognition.

4.2. Experimental Data

Experimental data were randomly selected from the CSES EFD VLF waveform data
and power spectrum data for a total of 8 orbital periods from 2019 and 2020. The data struc-
ture is shown in Table 1. The one orbit (ascending or descending) waveform data obtained
one time–frequency spectrogram, with a total of 1043 time–frequency spectrograms, as
shown in Table 2.

Table 2. Experimental data.

Orbital Period Start and End Time
(YYMMDD-YYMMDD)

Time–Frequency Spectrogram
Number

Period 1 20190106-20190110 130
Period 2 20190720-20190724 130
Period 3 20190725-20190729 122
Period 4 20190730-20190804 149
Period 5 20200601-20200605 130
Period 6 20200626-20200630 130
Period 7 20200701-20200705 130
Period 8 20200722-20200726 122

SUM 1043

4.3. Recognize the Horizontal Lines

To recognize the horizontal lines, we traversed each time–frequency spectrogram
for a period (5 days), clustered the pixel rows using K-means after preprocessing, and
statistically analyzed the recognition results for each period. Table 3 shows the number of
horizontal lines for each period.

Table 3. Number of horizontal lines in each period.

Orbital Period Start and End Time
(YYMMDD-YYMMDD) Numbers of Lines

Period 1 20190106-20190110 1529
Period 2 20190720-20190724 1436
Period 3 20190725-20190729 1463
Period 4 20190730-20190804 1636
Period 5 20200601-20200605 1761
Period 6 20200626-20200630 1821
Period 7 20200701-20200705 1698
Period 8 20200722-20200726 1385

The experimental results show that several spectrograms in each period cannot recog-
nize a horizontal line. A record of the number of orbits that do not recognize a horizontal
line is shown in Table 4.

Table 4. Number of spectrograms without a recognized horizontal line.

Orbital Period Start and End Time
(YYMMDD-YYMMDD)

Number of Spectrograms without a
Recognized Horizontal Line

Period 1 20190106-20190110 7
Period 2 20190720-20190724 13
Period 3 20190725-20190729 11
Period 4 20190730-20190804 11
Period 5 20200601-20200605 12
Period 6 20200626-20200630 0
Period 7 20200701-20200705 7
Period 8 20200722-20200726 13
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4.4. Extract the Frequency Range and Verify CFED Using a Power Spectrogram

The horizontal lines in Table 3 have not been merged before, and there are many
inclusions or overlapping relationships between the line frequency ranges. According to
the method in Section 3.2.3, we merged all the lines in eight periods. In this study, according
to the CSES VLF frequency range (1.8 kHz to 24.98 kHz), more than 200 lines were obtained
after merging. Then, for the 200-line frequency range, we used the power spectrogram
to verify the CFEDs and extract the true frequency. Table 5 shows the statistical results
of the top 10 CFED frequency ranges, appearance times, the power spectrogram of the
corresponding frequency range, and the extracted final true frequency.

Table 5. Frequency range and number of top 10 in the 8 periods with the corresponding frequency
range power spectrogram.

Ranking Appearance Times Frequency Range True Frequency(kHz) Corresponding Frequency Range
Power Spectrogram

1 947 12,005–12,207 12.1
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Table 5. Cont.

Ranking Appearance Times Frequency Range True Frequency(kHz) Corresponding Frequency Range
Power Spectrogram
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4.5. Results Analysis
4.5.1. Reasons for the Low Occurrence of CFED Statistical Results

The probability of CFED being recognized depends primarily on the signal strength
and spatial domain range. The weaker the signal, the lower the line clarity on the time–
frequency spectrogram, and the easier it is to miss recognition. Once disturbed by other
electromagnetic waves, the missed recognition rate is increased. Although some of the
signal strength is large, the spatial domain is small, and the signal can only be captured by
the EFD of some orbits, and the number of times recognized is also small.

4.5.2. A Few Frequency Ranges Are Wide after Merging

Because the lines are too close, if they are disturbed by other electromagnetic waves,
the frequency range becomes wider and the closer lines on the spectrogram are merged
into one line. We corrected these issues when using the power spectrogram to verify the
existence of CFED. For example, as shown in Figures 16 and 17, different frequencies are
merged into a frequency range. Figure 16 shows frequencies merged into a frequency
range, and this error is found and corrected into two CFEDs when verified using the power
spectrogram. At the same time, we found an interesting phenomenon that they either
appear or disappear at the same time in the power spectrogram.
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In the process of experimental statistics, we found that there are two CFEDs with 

strong signals on CSES, and their frequencies are 10 kHz and 20.5 kHz, respectively, as 

shown in Figure 9a. The existence of its full period is verified with the power spectro-

Figure 17. Six CFEDs merged in one frequency range (17741-17856), which never appear in the same
spectrogram at the same time.

Figure 17 also shows a group of CFEDs within a frequency range (17,741–17,856),
ranking seventh in statistics with 475 occurrences. It contains six CFEDs with high signal
strength. We also found an interesting phenomenon that in the existing eight-period power
spectrograms, they never appear in the same spectrogram at the same time, as shown in
Figure 18.
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Figure 18. Six CFEDs that never appear on the same power spectrogram at the same time and seem
to be alternately emitting signals.

4.5.3. CFEDs That Exist throughout the Period

In the process of experimental statistics, we found that there are two CFEDs with
strong signals on CSES, and their frequencies are 10 kHz and 20.5 kHz, respectively, as
shown in Figure 9a. The existence of its full period is verified with the power spectrogram,
as shown in Figures 19 and 20. There are also other full-period electromagnetic wave
disturbances, but their weak signals often lead to missed recognition.
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However, whether on the time–frequency spectrogram or on the power spectrogram,
the signal strength and frequency of the electromagnetic wave at 10 kHz are very stable,
while the signal at 20.5 kHz is unstable, which changes greatly with time and signal strength,
as shown in Figures 19–21.
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Figure 21. Comparison of 10 kHz CFED and 20.5 kHz CFED power spectrogram from the same orbit
data. (a) Orbit:051350; (b) Orbit:051430; and (c) Orbit:051490.

This 10 KHz CFED hardly changes with the time domain. This strong signal charac-
teristic of the frequency domain stability and global existence is of great significance for
studying other electromagnetic disturbances.

5. Discussion

Using experiments on CSES EDF VLF over eight orbital periods, we found about 200
CFEDs and extracted their frequencies. We also found that 10 kHz CFED and 20.5 kHz
CFED exist during the full orbital period. Based on the existing findings, we can find and
explore more meaningful applications.

5.1. Frequency Value and CFED Localization Problem

For a verified CFED, whether it should be represented with a frequency point or
frequency domain remains to be further studied. For example, should the frequency be
20.5 kHz or (20.45 kHz–20.51 kHz), as shown in Figure 22?
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Figure 22. Power spectrogram of a CFED.

Another problem to be solved is locating the CFED launch point and transmission
coverage range. The article provides a tool for monitoring radio frequency interference [32].
Future research can use this method to solve CFED launch location.

5.2. Verification of CFED and the Extraction Frequency Method

Currently, when checking CFED, manual verification is used. This method is accurate,
but the workload is relatively large for large amounts of data. The next step is to consider
automatic verification using computer vision technology, but the signal strength of some
CFEDs is weak. On the power spectrogram, the signal strength is looming, as shown in
Figure 23, which is also a very big challenge for computer vision.
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5.3. Time–Frequency Spectrogram Orbit Data without Line Recognition

Since the power spectrogram has verified the existence of 10kHz and 20.5 kHz CFEDs
over the entire period (5 days), why are some lines not recognized on some time–frequency
spectrograms? As shown in Table 4, after observing time–frequency spectrograms, we
found that these spectrograms were disturbed by other space electromagnetic waves,
resulting in an enhanced background, so no lines were recognized. Usually, CFEDs are
clearly visible on the time–frequency spectrogram without strong interference from other
electromagnetic waves and can be easily recognized, as shown in Figure 24, where red
represents the result marker of the recognized line. When subjected to other electromagnetic
disturbances, the background field in the time–frequency spectrogram is enhanced or the
electromagnetic wave is coupled, so the straight line is looming on the time–frequency
spectrogram, resulting in missed detection, as shown in Figure 25.
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Figure 25. No CFED is recognized due to interference from other space electromagnetic waves.

We plotted the trajectory based on undetected CFED orbits in Table 4, as shown in
Figure 26. It can be seen from the figure that most of these tracks are concentrated in the
ellipse-marked area in Figure 26. The reasons for this result need to be further explored
using an expanded data set.
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Figure 26. Trajectory diagram of undetected CFEDs. The red trajectory line is the satellite‘s ascending
orbit, and the black trajectory line is the satellite’s descending orbit. The darker the color, the more
the trajectory overlaps. The yellow elliptical region has the highest number of undetectable signal
occurrences.

5.4. Other Space Electromagnetic Wave Disturbance Anomaly Detection

The 10kHz CFED hardly changes with the time domain. This strong signal char-
acteristic of frequency stability and global existence is of great significance for studying
other electromagnetic disturbances. When this 10 kHz CFED cannot be recognized, it
indicates that this orbit is disturbed by other electromagnetic waves in space, as shown
in Figure 27. When the 10kHz CFED can be recognized, but the density of the line breaks
or becomes sparse, it can also be determined that the position is disturbed by other space
electromagnetic waves, as shown in Figure 28. This detection of other electromagnetic
disturbances in space is much more efficient than that of the paper [53].
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Figure 28. When the 10 kHz CFED is interfered by other electromagnetic waves, there is a change in
linear density, as shown in the white oval in the picture.

6. Conclusions

Regarding the CFED horizontal lines on the spectrogram, we utilized computer vision
technology to identify and extract the frequency range of these horizontal lines on the
time–frequency spectrogram. We then used power spectrogram data to verify CFED in this
frequency range and extract the actual frequency values. We collected a total of 1043 orbit
data from 8 periods of CSES EFD VLF. Using experimental statistics and analysis, we
were able to extract more than 200 CFEDs, and found 2 CFEDs with a complete cycle and
strong signal at 10 kHz and 20.5 kHz. These results are of great research significance for
the detection of other spatial electromagnetic disturbances and provide a foundation for
suppressing waveforms to achieve waveform data cleaning.

Moving forward, our focus will be on two main aspects: extracting the spatial parame-
ters of the CFEDs and suppressing the CFEDs to clean the waveform data.
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