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Abstract: UNESCO estimates that our planet’s oceans and lakes are home to more than three million
shipwrecks. Of these three million, the locations of only 10% are currently known. Apart from the
historical and archaeological interest in finding wrecks, there are other reasons why we need to know
their precise locations. While a shipwreck can provide an excellent habitat for marine life, acting
as an artificial reef, shipwrecks are also potential sources of pollution, leaking fuel and corroding
heavy metals. When a vessel runs aground on an iron-free environment, changes in the chemistry
of the surrounding environment can occur, creating a discoloration called black reef. In this work,
we examine the use of supervised deep learning methods for the detection of shipwrecks on coral
reefs through the presence of this discoloration using satellite images. One of the main challenges
is the limited number of known locations of black reefs, and therefore, the limited training dataset.
Our results show that even with relatively limited data, the simple eight-layer, fully convolutional
network has been trained efficiently using minimal computational resources and has identified and
classified all investigated black reefs and consequently the presence of shipwrecks. Furthermore,
it has proven to be a useful tool for monitoring the extent of discoloration and consequently the
ecological impact on the reef by using time series imagery.
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1. Introduction

The identification and location of shipwrecks, both historic and contemporary, is a
priority for a range of stakeholders; from national agencies responsible for quantifying,
protecting, and conserving our shared heritage, through to environmental managers [1–3].
Wrecks are complex structures comprised of and containing a range of materials. From
an ecological perspective, even small wrecks can pose a threat to wildlife and habitat [4],
with the risks increasing with the size of the wreck, construction methods, cargo and fuel
type. The physical act of wrecking can cause immediate damage, but gradual degradation
through subsequent breaking up and leaching of chemicals can have more severe conse-
quences. As a wreck breaks up, waves and currents can move different parts of a vessel
meters to kilometres apart, enlarging the area over which wreck material may be spread
and thus the area of potential environmental impact [5,6].

Wrecks, however, pose a challenge for identification from remotely sensed data due to
their heterogenous signature and environment of deposition [7,8]. They are often found
in shallow or inter-tidal waters, posing a problem for shipborne remote sensing methods
due to operational depth constraints. As a wreck breaks up or becomes embedded and
buried within a substrate, its visual coherency is disrupted, complicating the process of
identification from air and spaceborne sensors. This is significant in light of increasingly
common government-led requirements to map and monitor heritage and environment, as
well as the growing quantity of remotely sensed data becoming available, through which
identification may be attempted.
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One route being used to address the need (statutory mapping and monitoring) and op-
portunity (increased data often at high spatial and temporal resolutions) in coastal monitoring
has been the application of machine learning (ML) to track change and identify targets [9,10].
ML enables processing of data at speed and scale. Over the last decade, a considerable amount
of research has been published regarding the use of remote sensing methods and artificial
intelligence techniques for direct detection of shipwrecks (e.g., [7,11–15]). The challenge that
wrecks pose in terms of visible signature, however, remains, with many of these studies
requiring clear surface expression and high-resolution data. To circumvent this need, in this
paper, we focus on identifying the impact that wrecks have on their environment rather than
looking for the structures themselves. This permits identification even in cases where the
wreck is not directly visible.

This approach can be adopted when working in remote coral reefs, where the pres-
ence of iron is often limited, ranging from 0.2–1 nM [16]. Wreck debris which have high
concentrations of iron disturb the local environment by altering the chemistry of the reef.
These changes accelerate the growth of invasive organisms such as turf algae, macroalgae,
cyanobacterial mats, corallimorphs and other benthic bacterial communities. The result is
a discoloration of their surroundings, creating “black reefs” [17,18]. The term black reef
reflects the changing of colour of a previously healthy area of reef into different shades
between brown and black, due to iron contamination. The development of black reefs
has been associated almost exclusively with the presence of wrecks as their development
requires relatively large amounts of iron [18].

The exact mechanisms for the development and ecological impact of black reefs have
been the subject of increasing interest and research over the last twenty years. This research
has intensified due to increased availability of satellite imagery, making the study of remote
places feasible. This has led to a growing literature related to the identification, exploration,
and ecological consequences of black reefs, mainly in the Pacific Ocean but also in other
remote areas [16–27]. Done [28], used the term “phase shift” to describe the change in reef
biota from coral to macroalgae, a process that indicates the existence of environmental
degradation. In black reefs, during this “phase shift”, the coral cover declines to low
levels and is replaced by turf algae, macroalgae, cyanobacterial mats and corallimorphs,
which among other things reduce the clarity of the overlying water column and alter fish
population and diversity [18,19].

In this study, we explore the feasibility of an automated method for locating the
presence of shipwrecks in coral reefs. Our approach does not rely on directly detecting
the shipwreck, which may be submerged in water and/or sand or broken into small
pieces. Instead, we focus on detecting the wider contaminated zone of the black reef in the
vicinity of a wreck. To achieve this, we utilise semantic image segmentation by means of
artificial intelligence and fully convolutional neural networks, trained using a combination
of openly available imagery from Google Earth and commercial images from the Vision-1
satellite with sub-meter spatial resolution. The outcome is not only a method for wreck
identification, but also automated remote environmental monitoring.

2. Background and Related Literature

The aim of this study is automated identification of black reefs (and by implication,
wrecks) in satellite images through semantic image segmentation. The objective is to classify
each pixel of an input image into predefined semantic labels that correspond to different
feature categories. For each application, the grouping of objects that are associated with a
certain label can be different. For example, all pixels that correspond to trees, bushes and
grass may be labelled as vegetation. Similarly, sea, lakes, and rivers may be labelled as water,
while other categories could be buildings, streets, vehicles etc. Image segmentation is an
established and significant component in a wide range of applications, including but not
limited to medical imaging [29], autonomous vehicles [30], augmented reality [31], and remote
sensing [32,33]. In the latter category, there are many examples from previous work looking to
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solve a variety of challenges including environmental monitoring [34], the study of forests [35],
agriculture [36], archaeology [32] and land use analysis [37] through segmentation.

Different approaches to segmentation have been trialled based on edge detection [38],
thresholding [39], watersheds [40], cluster analysis with k-means [41], graph cuts [42],
conditional random fields [43], sparse representations [44] and active contours [45]. Over
recent years, however, methods based on deep learning models have been proven to achieve
significantly better performance [46–49].

Deep Learning Models for Feature Detection

Deep learning is an artificial intelligence method that utilizes artificial neural networks
inspired by the structure and function of the human brain. Over the last decade deep learn-
ing techniques have transformed research within computer vision, leading to widespread
adoption [14,50–52]. Convolutional neural networks (CNNs) are part of the broader family
of deep learning methods that are extensively used for image recognition tasks [53,54].
Although an in-depth analysis of the CNN functionality is beyond the scope of this paper,
we briefly present some fundamentals relevant to this work.

A CNN is a numerical model that learns directly from data. These processes can
either be supervised (where the researcher provides labelled data to train the model) or
unsupervised (where the system identifies patterns for itself). For this project, we adopted a
supervised learning procedure, providing the system with a set of images labelled with the
desired categories. CNN is comprised of several connected convolutional layers. The input
layer receives images while the final layer delivers the results in the form of a semantically
segmented image where each pixel is classified into one of the predefined categories.
The layers in between, which are called hidden layers, carry out the processing. More
specifically, a series of feature extracting filters (kernels) are applied to the initial image to
extract a set of features (feature maps). These features are then passed on to the next level.
The first level extracts basic features (horizontal, diagonal edges etc.) while as one moves
deeper into the network, more complex features can be identified. Note that the filters,
which are the convolutional layer weights, are learnable parameters of the model, i.e.,
they are initialized randomly in the beginning and are updated through the optimization
procedure that is also called the “learning” or “training” stage.

After the application of each convolutional layer, pooling layers are used that decrease
the spatial size of the convolved feature maps by reducing patches of the convolved
image into single pixels. In this work we used “max pooling” layers, which resize the
convolved image by taking the maximum value of each patch. Pooling layers have no
learnable parameters and are followed by layers that implement a sigmoid or ReLU pre-
set activation function, responsible for deciding if the information carried on from the
previous layer should be transmitted to the next. As the number of layers increases, the
network becomes “deeper” and theoretically more complex patterns can be separated and
identified. However, for practical reasons the optimal number of layers generally depends
on the amount of labelled data available to train the network. Larger numbers of labelled
data provide the potential for resolving more learnable parameters, therefore allowing the
inclusion of more hidden layers, which in turn can resolve more complex patterns. In the
cases where limited amounts of labelled data are available, the number of trainable layers
is kept low.

At present, there is no open access source of labelled data for shipwrecks (or indeed
many other forms of archaeological site). As such, there was a need in this study to keep
the number of layers and connections low enough to ensure that the optimization problem
of network training is not under-determined. Therefore, we used a supervised, fully
convolutional, neural network based on the architecture of Semantic Segmentation [55]
called SimpleNet [32], that is designed to be implemented for low numbers of labelled data.
The network does not contain fully connected layers, and hence requires significantly less
memory and computational power [56].
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3. Study Areas

A shortlist of eight sites suitable for this study was drawn from the published literature
(Supplementary Materials). These are listed in Table 1, with the names of the reefs, the num-
ber of shipwrecks present and their coordinates (WGS84). From these, seven shipwrecks
were used for labelling and training the algorithm and twelve for evaluation. The locations
of each site are shown in Figure 1. Seven of the reefs are in the Southwest Pacific, and one
in the Indian Ocean.

Table 1. Table with the number of Shipwrecks/Black Reefs in each reef and their coordinates in
WGS84 system.

Reef Number of Shipwrecks Coordinates (WGS84) Use

Kanton 1 −2.814997, −171.7151 Training

Nikumaroro 1 −4.6608, −174.545 Training

Kingmans 1 6.4049, −162.351339 Training

Kenn 11

−21.257019, 155.780382
−21.254144, 155.780249
−21.256865, 155.785203
−21.253460, 155.79284

Training

−21.266294, 155.751474
−21.261727, 155.765001
−21.260455, 155.763734
−21.260200, 155.766308
−21.258671, 155.770358
−21.256630, 155.768815
−21.258416, 155.771783

Evaluation

Rose 1 −14.549244, −168.166467 Training and Evaluation

St. Brandon’s 1 −16.8309, 59.4756 Evaluation

Kwajalein 1 9.331000, 166.8457 Evaluation

Caroline 2 −10.0028, −150.221170 Evaluation
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From this, shortlist sites were then selected for training and evaluation purposes, as
not all black reefs are visible in satellite imagery, nor is free imagery available for all reefs.
In some cases, the available images were of very low spatial resolution, or had high cloud
coverage. Kenn and Rose reefs were selected for both training and evaluation purposes.
Kenn reef has 11 known shipwrecks, and thus served as an excellent case study for testing
the performance of the approach.

At the Kwajalein reef, we explored a known WWII shipwreck that lies onshore and for
which there are currently no reports of the presence of a black reef. A time series of images
was also available for this location on Google Earth (from the years 2005, 2013, 2015, 2016,
2019, 2022). This permitted an assessment of the methodology as a tool for environmental
monitoring as well as identification.

The following section briefly describes each reef and its corresponding shipwreck/s,
with Figure 2 giving imagery for each location.
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In 1929, a large, unladen British freighter crashed north-west of the reef [58]. Satellite 

imagery shows that the body of the vessel has been broken into several pieces that can 
been seen spread in the surrounding area. As with all the reefs of the Phoenix group, it is 
a naturally iron-poor region and the artificial introduction of large, iron-rich parts of the 
wreck has caused discoloration to develop in the surrounding environment.  

Figure 2. Vision-1 imagery from (a) Kenn reef, (b) Nikumamoro reef and (c) Kanton reef. Google
Earth imagery from (d) Rose reef, (e) Kingman reef, (f) Caroline reef, (g) Kwajalein reef and
(h) St Brandon reef (Google Earth Pro, viewed 21 May 2021). The red dots show the locations
of the shipwrecks in each reef. For the Kenn and Rose reefs, the areas inside the red rectangle
represent the part of the image used for labelling and later for evaluation. The rest of the images were
used only for evaluation purposes.
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3.1. Site Descriptions
3.1.1. Kenn Reef

Kenn reef is part of the Coral Sea Islands in the Australian Commonwealth Territory.
It is part of a submerged continental block (Kenn Plateau) covering an area of 40 km2

(Figure 2a). The reef has 11 known sites of shipwrecks, 8 of which are 19th century
vessels [20]. Discoloration due to the wrecks has developed in all 11 wreck sites of the
reef (Figure 2a). Currently, none of these vessels are visible and the only confirmation
of their existence is the presence of the discoloration developed in their surrounding
environment [57].

One of the known wrecked vessels is the Jenny Lind. She was a single-decked vessel,
made from steel, oak and pine with an overall length of 40 m, an 8 m beam and a carrying
capacity of 484 tons. Unfortunately, no other information is available regarding the names
or type of the vessels that were grounded in the area [20].

3.1.2. Nikumaroro Reef

Nikumaroro reef is part of the Phoenix islands Protected area, in the Republic of
Kiribati (Figure 2b).

In 1929, a large, unladen British freighter crashed north-west of the reef [58]. Satellite
imagery shows that the body of the vessel has been broken into several pieces that can
been seen spread in the surrounding area. As with all the reefs of the Phoenix group, it is
a naturally iron-poor region and the artificial introduction of large, iron-rich parts of the
wreck has caused discoloration to develop in the surrounding environment.

3.1.3. Kanton Reef

Kanton reef is the largest and northernmost of the eight islands of the Phoenix Islands
Protected area, in the Republic of Kiribati, [58] (Figure 2c). It is an iron-poor area where
the main source of iron is from marine debris [24]. The appearance of iron-rich materi-
als (mainly from shipwrecks) is linked to the growth of turf algae and benthic bacterial
communities, leading to the formation of degraded ‘black reefs’ [17,18,26].

There are two known shipwrecks which lie stranded on the reef: a whaling ship that
was lost in 1854 for which we have no information of its exact location, and the U.S.S.
President Taylor that run aground in 1942 [59,60] at the entrance of the west channel;
although it is fully submerged, it is still visible from satellite imagery.

3.1.4. Rose Reef

Rose reef is in the south Pacific Ocean and is the principal island of American Samoa
(Figure 2d).

On 14 October 1993, a 37 m Taiwanese longline fishing vessel, Jin Shiang Fa, wrecked
on the southwest arm of Rose reef. In November the vessel released over 100,000 gallons of
diesel fuel and 500 gallons of lube oil. Additionally, more than 300 tons of metallic debris
were scattered in the surrounding area, resulting in ecological damage to the reef [61]. In
1999, the Fish and Wildlife Service (FWS) of Honolulu, Hawaii prepared a Restoration
Plan leading to the removal of all shipwreck debris by 2010. Although the wreck has
been removed, the discoloration that developed due to its presence is still visible through
satellite imagery.

3.1.5. Kingman Reef

The Kingman reef is in the North Pacific Ocean and is part of the Line Island chain
(Figure 2e). It supports a variety of marine life and is considered to have the second highest
coral diversity in the Central Pacific Ocean [62,63].

A teak-hulled fishing vessel was washed into the reef in 2007 and was fully removed
in 2014. Initially, the hull of the vessel was located on the fore-reef side of the northeast
islet, while in 2010, elements of debris were noticed to have moved in different directions
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across the reef [18,64]. The iron materials of the vessel led to the development of visible
discoloration in their surrounding areas.

3.1.6. Caroline Reef

Caroline reef or Millennium reef is part of the Line Islands in the central Pacific Ocean
Republic of Kiribati (Figure 1).

In 1993, a 25 m-long steel tug grounded while trying to tow a sailing vessel out of a
narrow reef passage [18]. Although some pictures are provided in the literature [18,65] the
exact location of the shipwreck is not clear. However, we can restrict the location of the
shipwreck to the southeast entrance of the lagoon (Figure 2f).

3.1.7. Kwajalein Reef

Kwajalein reef (Kwajalong) lies in the west-central Pacific Ocean and is part of the
Republic of the Marshall Islands (Figure 1). The total land area covers about 16 km2 and
forms the world’s largest lagoon [66], (Figure 2g).

The atoll was used as a base for the Japanese Imperial Navy during the Second World
War, and therefore, many battles took place in close proximity. Today, around twelve
shipwrecks and several downed airplanes lie in the surrounding area [67].

At the western part of the atoll, called Ebadon, there is a visible shipwreck that lies on
shore at the northmost part of the island.

3.1.8. St Brandon Reef

St Brandon reef is part of the Cargados Carajos Shoals and is in the Indian Ocean
(Figure 2h). There are no permanent residents on the reef, with only occasional visitors making
landfall. The major driver of pollution, therefore, comes from marine debris [27,68,69].

Although various vessels have been stranded on this reef [70], including one which
created a concentrated algal bloom in 2012 [27], satellite image coverage is poor. Only one
cloud-free Google Earth image (dating to 2005, Figure 2h) is available, prior to the strand-
ings described in [27,70]. Nonetheless, even this single image shows a single-stranded
wreck, albeit with the date of loss unknown.

4. Materials and Methods

Next, we describe the steps taken to collect, pre-process and compile images for use
in training a deep learning model. A general flowchart of this procedure can be seen in
Figure 3.

For training purposes, we used two different types of data; four Vision-1 multispectral
images (3 channels—red, green, blue) of 3.5 m resolution that were provided free of charge
through Jisc (https://www.jisc.ac.uk, accessed on 6 September 2020) and seven Google
Earth images (3 channels—red, green, blue) with resolution varying depending on the
type of sensor and the year the imagery was acquired (Table 2). The Vision-1 imagery was
available for the Kenn, Kanton and Nikumamoro reefs while Google Earth was available
for the Rose, Kingman, Kanton, Caroline, St. Brandon, and Kwajalein reefs. The Google
Earth imagery was downloaded by using the function provided in the application at an
eye altitude of around 5 km and at the maximum available resolution.

To train the algorithm, 256 × 256 × 3-band image tiles were generated from these
five reefs (Kenn, Nikumamoro, Kanton, Rose and Kingman) resulting in ~1600 images
(Figure 4). To test the performance of the algorithm, we used a small part of the Kenn and
the Rose reefs as a training set (Figure 2, part of the images inside the red rectangles) and
the rest were used for testing. Figure 4, on the left, shows the Kenn reef (Vision-1, RGB
image) and on the right, the Rose atoll (Google Earth, RGB image) with the locations of
their shipwrecks as referred to in Table 1. Only subsets of Kenn and Rose reefs were used
for training (Figure 2, areas inside the rectangles). These subsets respectively contained
4 (out of 11) and 0 (out of 1) known wrecks. The remaining areas of Kenn and Rose reefs
were set aside for evaluation purposes.

https://www.jisc.ac.uk
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Table 2. List of all coral reefs and the imagery used in this study.

Reef Type of Imagery Year Acquired Resolution

Kanton
Vision-1 2020 3.5 m

Google Earth-Airbus 2016 1.5 m
Nikumaroro Vision-1 2020 3.5 m

Kingmans Google Earth-Maxar
Technologies

2007 0.6 m GSD
2013 0.5 m GSD

Kenn Vision-1 2020 3.5 m
Rose Google Earth-Maxar Technologies 2011 0.5 m GSD

St. Brandon’s Google Earth-Maxar Technologies 2005 0.65 m GSD

Kwajalein Google Earth-Maxar Technologies

2005
0.6 m GSD2013

2015
2016

0.5 m GSD2019
2022

Caroline Google Earth-Maxar Technologies 2004 0.5 m GSD
2011 0.6 m GSD
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Figure 4. Using the ImageLabeler from MATLAB, 1600 images (256 × 256pixels) were labelled. The
images consist of 4 Vision-1 images and 7 Google Earth images from 5 reefs (Kanton, Kenn, Kingman,
Nikumamoro and Rose).

The data were labelled using the ImageLabeler program in Matlab 9.6 in three different
classes: ‘Black Reef’, ‘Non-Black Reef’ and ‘Water’. ‘Black Reef’ was the label for all known
locations of shipwrecks that have created discoloration of reef regardless of shape and
colour. ‘Non-Black Reef’ was used for all the other non-discoloured areas of the reef either
on the surface or the submerged part of the reef. Finally, we labelled all areas which
visually contained water but no reef as ‘Water’. The labelled images include 3 channels
(RGB) from different types of sensors with different resolution characteristics. The images
were extracted from Google Earth and from Vision-1 as tiff files and stored in the form
of an 8-bit monochromatic copy of the image, with 3 distinct intensity values reserved to
represent each one of the 3 different classes, in addition to the null-intensity that represents
the unlabelled regions of the image. Labelled pixels in each dataset corresponded to the
classes of ‘Black_Reef’ by 0.071%; ‘Non_Black_Reef’ by 18.17%; and ‘water’ by 81.3%,
(Figure 5). Due to the imbalance between the different classes, we weighed each class
by the inverse of its frequency during the last layer of the classification networks (Pixel
Classification Layer) to avoid bias in the learning process.

For training, the RMSProp (root-mean-square propagation) optimizer [71] and the
Adaptive Moment Estimation (Adam) were tested. After multiple tests over both optimiz-
ers, we concluded that the RMSProp performed better, and the final quasi-optimal set of
parameters we used to train the network are shown in Table 3.
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Table 3. Optimal set of parameters for the 8-layer networks.

Parameter Name Value

Squared Gradient decay factor 0.9900
Epsilon 1 × 10−8

Initial learning rate 3.0000 × 10−4

Gradient Threshold Method l2 norm
Drop period 5
L2-regularization parameter 1.0000 × 10−4

Gradient threshold Inf (positive scalar)
Max epochs 50
Mini batch size 8
Shuffle once

For running the algorithm to train the data, we used the IRIDIS supercomputer at the
University of Southampton. The training ran in parallel using 12 CPUs and one Node with
264 GB of main memory and took approximately 2 h to complete. For the calculations we
used MATLAB 9.6 (2019b) software.

5. Results

After the learning procedure the trained network can be used to analyse and automatically
segment new images of similar properties with the ones used in the training set and with a size
of at least 256 × 256, which is the minimum used in the network (Figure 6). The segmentation
via the trained model does not require significant computational resources. For example, a
typical personal computer takes a few seconds for images of size 1600 × 980 pixels.

The performance of the trained network was evaluated for known black reef locations
established by previous studies [18,24,58]. Due to the limited number of such known
locations in the literature, and as at least 11 such black reefs occur in Kenn reef, we reserved
certain regions that were not used in the training of the network exclusively for evaluation
purposes. Additionally, we utilized the only known black reef occurrence in Rose reef for
verification rather than training (Table 2; Figure 2). The trained algorithm was applied to
four reefs, the Kenn reef, the Rose reef, the Kwajalein atoll, and the St Brandon reef. For the
last two reefs, the presence of a shipwreck is known, but no black reef has been reported.
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Figure 6. Flowchart showing the procedure of using the trained deep learning network to segment images.

5.1. Kenn Reef

In the case of Kenn reef, segmentation was applied to the whole image, consisting of
both regions that were included and not included in training; however, evaluation focused
on the seven black reef locations (Figure 7, locations 5 to 11) that were not used in training.

The resulting segmented image shows that, overall, water was clearly distinguished
from land, including regions where clear, shallow waters allow visibility to the seabed. The
algorithm managed to correctly identify the four known locations of the shipwrecks that
were used for training, as expected. It also succeeded in identifying all seven remaining
wreck locations that were not included in the training set.

It should be noted that although all wreck locations are clearly identified, the extent of
each black reef is not mapped to its full extent as visible in the source RGB image. Instead,
the algorithm performs best at identifying areas in close proximity to the wrecks, suggesting
it identifies the most prominent area of discoloration. It should be noted that the resulting
image has identified as black reef an area several hundred meters to the north of wreck 4.
There are no additional data available to confirm the presence of an additional wreck/black
reef source at this location, thus it is possible that it is a false detection.

Additionally, the different behaviour at locations 1, 5 and 6 is likely related to their
proximity to or partial coverage by water. Furthermore, the algorithm marks as black
reef several pixels located in a narrow zone along the swash, with the eastern side more
continuous and the western more sporadic. This might be because Kenn reef is currently
the only known reef with a high concentration of shipwrecks that have developed this
discoloration. It is thus possible that the environmental impact/development of black
reef has become more widespread. Confirmation of this, however, would require further
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ground truthing, but is redolent of observations made during recent archaeological survey
work, where the extent of black reef is linked to the spread of iron-rich objects out from
wrecks [72].
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5.2. Rose Reef

Rose reef has one known shipwreck. The Google Earth image includes a wide area that
extends north-east from the location of the wreck that appears to be discoloured, suggesting
the occurrence of a black reef. The part of the image used for training did not include this
black reef area. Instead, a small part of the healthy reef was used for the training which
does not include any known shipwreck or visible discoloration (Figure 8b).

The segmented image correctly identified several areas of discoloration, in the vicinity
of the wreck. The pixels recognized as black reef extend north-east of the location of the
wreck, reaching from the front reef crest area up to the back of the reef into the lagoon
(Figure 8c,d).

The algorithm also classified as black reef several pixels at the upper left and right
corners of the reef. This is clearly a false identification due to cloud shadows (Figure 9).
Nevertheless, such false identifications can be readily avoided by masking the clouds and
their shadows [73,74] prior to the segmentation.
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5.3. Caroline Reef

Caroline reef has two shipwrecks; however, the exact location of only one of them is
known and this is the one we used in this work.

We applied the trained algorithm to an extended part of the atoll where the shipwrecks
are thought to be located. We used two Google Earth images from two different dates;
one from 2004, which is the first clear image from the atoll, and the second one from
2011, which is the last image from this area. Sub-aerial vegetation was masked out by
thresholding an NDVI calculated from a Landsat image (LC09_L1TP_055067_2021). The
final segmented image from the year 2004 (Figure 10b) shows that around the shipwreck
there is the appearance of a black reef reaching to southern side of the lagoon’s entrance.
The segmented image from 2011 (Figure 10d) shows that the black reef has spread to the
other side of the entrance and extended further south along the reef front.
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Figure 10. (a) Google Earth imagery from year 2004 (Google Earth Pro, 2004, 2011) and (b) the
segmented image. The light green colour indicates subaerial vegetation mask based on Landsat
imagery, while the red rectangle indicated the area where the shipwreck is located [18]. The segmented
image shows the appearance of a black reef near the entrance of the lagoon. (c) Google Earth image
taken in 2011 while in (d) is the final segmented image. From the segmented image is clear that the
black reef has extended to the other site of the lagoon’s entrance as well as across the coastal area.

5.4. Kwajalein Reef

At the Kwajalein reef we explored the only shipwreck that lies on shore at the north-
most part of the island.

There are several high-resolution images available through Google Earth for this atoll
(Figure 11, left column). The earliest image that depicts the shipwreck is from 2005 and
shows the largely intact hull of the stranded vessel. Later images that are available from
2013, 2016, 2019 show the integrity of the vessel gradually deteriorating, and that parts
of the ship’s hull/deck/bridge have shattered. The most recent image is from 2022 and
shows that the body of the vessel has largely broken into smaller pieces, some of which
have visibly spread up to a few hundred meters further inshore. Additionally, for the first
time there is visible a wide region of discoloration that resembles the occurrence of a black
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reef, extending inshore, south-southwest with respect to the wreck. At present there is no
literature referring to the presence of black reef at this location.
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We applied the trained segmentation algorithm to all the images available from Google
Earth (Figure 11, right column). For the images from 2013–2019, the algorithm does not
show any occurrence of black reef near the shipwreck. In the 2022 image, however, the dark
region is largely classified as a black reef. As with the other cases, a narrow region parallel
to the shore that initiates from the shipwreck is also identified as a black reef. In this case, it
appears that the westward expansion of this feature reaches substantially longer distances
than its eastward counterpart, possibly related with the dominant currents in the region
(Figure 12). Sporadic pixels classified as black reefs are also visible in vegetated areas. Such
regions can be readily masked using the NDVI of multispectral images and be excluded
from the interpretation.
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5.5. St Brandon Reef

For the St Brandon reef, we explored the single wreck which has a known location.
We applied segmentation using the trained network on this image to check if there is

any discoloration due to a possible development of algal bloom in the surrounding area.
Figure 13a shows the Google Earth image and the shipwreck (inside the red rectangle) while
Figure 13b is the segmented image. The segmentation has not identified any black-reef pixels
around the wreck. Inspection of the image does not suggest any occurrence of discoloration
and to the knowledge of the authors, no black reef has been reported for this location.
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6. Discussion

The results obtained in this study are promising. First, they demonstrate that the
automated detection of black reefs, and from this the presence of metal rich wrecks, in coral
reef areas is possible, with two new potential black reefs identified (one on Kenn reef and
one at Kwajalein reef). Second, it indicates how time series data can be used to monitor
and measure impact. This is important as one of the challenges of survey in coastal and
marine areas is the rate at which change occurs and the degree to which signatures may
be obscured at one point in time but revealed at another [75]. The increasing availability
of time series data offers a route to address this problem, but the data volumes involved
mean that an element of automation will be required to make the task manageable.

In the case of Kenn reef the potential for identifying growing and cumulative impact
is made clear, as is the need for time series data. The linear extent of black reef identified
through image segmentation, matched to the large number of wrecks present on the reef
suggests a cumulative and/or widening impact leading to a wider phase shift in environ-
ment. This stands in contrast to the more localized black reef ‘halos’ witnessed at other
locations on Kenn reef and at the other reef sites examined in this project [23,27]. This obser-
vation is supported by comparing accounts from the two published archaeological surveys
at the reef [22,72]. An initial survey in 1997 recorded an area of black reef approximately 50
metres by 25 metres [22], whereas a survey in 2017 indicated a larger black reef area of 157
by 60 metres [72]. They go on to note that accurately measuring the widening area of impact
at this site would require further targeted fieldwork. From their published report and
associated blog, the driver for the widening area seems likely to be the presence/dispersal
of large, iron-rich objects away from the wreck.

Taken together the publication of these two surveys, which happened c. 30 years
apart, demonstrate the role that remote identification and monitoring can have. The data
presented here only permit a hypothesis, but when combined with insights from ground-
based surveys, they allow confidence to grow. These combined results can be used by
researchers, government agencies and charities when considering locations for further
study or evaluation. The outputs from such work would in turn feed into improving
the accuracy of automated detection and monitoring. Thus, even if the linear extent at
Kenn Reef was found to be a false positive, additional ground truthing would serve to
calibrate and refine future automated outputs. The same is true for the newly identified
potential black reef sites; they offer an automated approach for targeting field-based
research. Critically, the shortcomings of remote sensing with regards to certainty and the
episodic nature of ground-based surveys highlight the need for both activities to occur, but
most profitably hand-in-hand. This study would have been severely limited without the
results of [22,72].

The results from Kwajalein reef demonstrate that severe deterioration of a shipwreck
acts as a catalyst for the development of a black reef. For several years the existence of a
shipwreck may not cause a significant growth; however, when a tipping point of break up
is reached, black reef growth accelerates. This is supported by the field observations of [72],
where the distribution of metal-rich artefacts and materials were seen to extend the reach
of black reef.

While the results gained in this work are positive, it is also clear that there are a number
of issues that need to be highlighted and addressed. First is the false identification of black
reefs caused by shadows cast by clouds. This necessitates the masking of cloud cover areas
prior to the application of segmentation, a time-consuming or data-limiting step. Second,
as in many remote sensing tasks, identification of black reefs benefits from images with
higher spectral resolution. The limited spatial resolution of Sentinel-2 and Landsat 7/8/9
satellites restricted identification to areas where the black reef extent ran into tens of meters.
Thus, while the wreck itself does not need to be visible, limitations are still imposed by
the spatial extent of the phenomenon to be observed. Thus, for early detection of black
reef formation, or recognition of subtle changes through time, higher spatial and temporal
resolutions are required. The implication of this is that while we have demonstrated that
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data that are freely available today can be of use in the detection of black reefs, in many
cases higher resolution (and thus commercial) sources are preferable.

Finally, in situ investigations, in combination with historical and archaeological re-
search regarding the type of wrecks, their exact age, construction materials and their cargo
are necessary to fully assess the archaeological signature of different vessels. Furthermore,
this will shed light on how they are expected to interact with the environmental conditions
and better understand the mechanism, propagation speed and the time scales of the con-
tamination. The current indication is that the contamination can persist even after years of
the wreck’s removal [17,25] or be irreversible [18]. This suggests that even older wrecks
could develop this discoloration in their surrounding environment if they contained some
type of iron in their construction materials.

7. Conclusions

The detection of shipwrecks is an important task as, in addition to their archaeological
significance, they can pose a substantial risk to the surrounding marine environment.
Leakage of toxic or hazardous materials they may contain can be catastrophic for marine
ecosystems, human life, local economies, and societies. In coral reefs, even in cases where
no such materials are present, contamination with high amounts of iron from the building
materials of the wrecked vessels can pose a significant threat for the reef itself through the
formation of black reefs.

This work showed that detection of black reefs is possible using high-spatial reso-
lution imagery, and deep learning models. More specifically, a simple eight-layer, fully
convolutional network, trained with a limited number of labelled data from the known
locations of black reefs was able identify potential locations of black reefs.

Moreover, through the detection of black reefs, the position of shipwrecks that are not
currently visible can be inferred indirectly, as well.

By examining time series data, it is possible to monitor the expansion of the black reef
and therefore the progress of the contamination of the reef with iron. As a wreck breaks
down, the area impacted will grow, meaning that early detection and monitoring has a role
to play in preventing ecological impacts.

Our results indicate that wind, ocean currents and wave action can transfer debris
from the wreck to adjacent regions of the reef. Furthermore, it showed that the initiation of
the black reef may be delayed for years in cases where the grounded ship’s hull structural
integrity is intact. Change will accelerate when the wreck starts deteriorating and breaks
into pieces. Therefore, the detection of an expanding black reef can serve as a proxy for
recognizing wrecks where a change of state is occurring.

As a community, our target should be to continue expanding the library of labelled
data and to openly publish results from field-based research. As more locations of black
reefs become available from different locations worldwide, the ability to confidently detect
and monitor will grow.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15082030/s1, Table S1: List of all known shipwrecks that
have developed a discoloration in their surrounding environment developing a “black reef”. Figure
S1: The left image shows the Kenn reef (Vision-1) and right image is the zoomed part included in
the red rectangle of the left image. The red dots indicate the location of the shipwrecks; Figure S2:
The left image shows the Kingman reef (Google Earth imagery, 2013) and the right image is the
zoomed part included in the red rectangle of the left image. The red dot indicates the location of the
shipwreck [76,77].
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