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Abstract: Take-all is a root disease that can severely reduce wheat yield, and wheat leaves with take-all
disease show a large amount of chlorophyll loss. The PROSAIL model has been widely used for the
inversion of vegetation physiological parameters with a clear physical meaning of the model and
high simulation accuracy. Based on the chlorophyll deficiency characteristics, the reflectance data
under different canopy chlorophyll contents were simulated using the PROSAIL model. In addition,
inverse models of spectral reflectance profiles and canopy chlorophyll contents were constructed
using a one-dimensional convolutional neural network (1D-CNN), and a transfer learning approach
was used to detect the take-all disease levels. The spectral reflectance data of winter wheat acquired
by an airborne imaging spectrometer during the filling period were used as input parameters of
the model to obtain the chlorophyll content of the canopy. Finally, the results of the distribution of
winter wheat take-all disease were mapped based on the relationship between take-all disease and the
chlorophyll content of the canopy. The results showed that classification based on the deep learning
model performed well for winter wheat take-all monitoring. This study can provide some reference
basis for high-precision winter wheat take-all disease monitoring and can also provide some technical
method references and ideas for remote sensing crop pest and disease remote sensing mapping.
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1. Introduction

Take-all, which is caused by Gaeumannomyces graminis var tritici, is a soil-borne root
disease of wheat that has spread worldwide [1,2]. Take-all can affect wheat throughout its
reproductive stage and is highly destructive. The occurrence of take-all disease can have a
large impact on wheat yield, ranging from 10% yield loss to more than 50% loss or even
crop failure. Effective control of wheat take-all is essential to ensure the level of wheat
production and to improve farmers’ economic income [3].

Hyperspectral images, which can obtain continuous and fine spectral curves at any
point in space, have become an important tool for the study of wheat disease [4–7]. In recent
years, several studies have been conducted using UAV hyperspectral images for wheat take-
all disease [8,9]. In these studies, the spectral features of wheat take-all were extracted from
hyperspectral images, and statistical methods or machine learning methods were used to
build regression models between vegetation indices and take-all. Finally, the classification
results of take-all were obtained. In the above-mentioned methods, the characteristic bands
of take-all must be found, and the best spectral indices in the detection process must be
selected. Feature selection is the process of selecting the most relevant spectral bands from
raw high-dimensional spectral data for subsequent analysis or modeling. By selecting
the optimal spectral bands, feature selection can significantly reduce the computational
cost of processing high spectral data, while reducing the impact of noise interference by
eliminating spectral bands that have no contribution to the target variable, simplifying
the modeling process, and improving model accuracy. However, feature selection cannot
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fully reflect all the information in the original spectral data, resulting in information loss.
Additionally, it may not accurately capture all the features in the original spectral data,
thereby introducing bias. Domain knowledge and experience are also required when
selecting spectral bands. In addition to the obvious changes in spectral characteristics, the
chlorophyll content of wheat canopies affected by take-all disease was also significantly
reduced compared to that of normal leaves.

Therefore, using a vegetation radiative transfer model to invert canopy chlorophyll
content can be used to determine the severity of take-all disease based on the deviation
of chlorophyll content from normal values. Vegetation radiative transfer models are
mathematical models based on radiation transfer theory that describes the interaction
between vegetation and radiation. Common vegetation radiative transfer models include
PROSAIL, PROSPECT, SAIL, and 4SAIL. PROSAIL is a flexible, accurate, and easy-to-use
vegetation radiative transfer model that can simulate spectral reflectance and radiative
transfer for various vegetation types. PROSAIL considers the impact of vegetation structure
on radiative transfer and accurately models spectral reflectance and radiative transfer.
In addition, PROSAIL can also consider the effects of changes in vegetation parameters on
radiative transfer, such as chlorophyll content and coverage. PROSAIL has proven to be
one of the most successful canopy radiative transfer models for crops, and high accuracy
can be obtained in canopy chlorophyll inversion using PROSAIL [10–19].

In recent years, with the rapid development of deep learning, convolutional neural
networks (CNNs) have been used to reduce model complexity with sparse connections and
weight sharing and have unique advantages in extracting data features. CNNs have been
widely used in remote sensing image target recognition, feature classification, etc. [20–29].
When using deep learning models for ground parameter inversion, to obtain a high-quality
inversion model, a large amount of sample data is required to train the model. In addition,
the acquisition of ground measurement parameters is generally time-consuming, and it
is difficult to obtain a large amount of high-quality sample data. Therefore, we consider
using the PROSAIL physical model to generate training samples. Transfer learning is a
machine learning method that leverages the similarity between data, tasks, or models to
apply a pre-trained model from a source domain to a new target domain. We first pre-train
the model with a large simulated dataset so that the network model learns the basic feature
information of the canopy spectrum; then, we use a relatively small number of measured
datasets to transfer the pre-trained model using feature extraction methods to obtain more
realistic prediction results.

Based on the above issues, we explored the use of canopy spectral features for chloro-
phyll content inversion and established an algorithm to discriminate wheat take-all disease
classes based on the chlorophyll content. For winter wheat at the filling stage, canopy
reflectance profiles with different chlorophyll contents were constructed using the PRO-
SAIL model. A pre-trained model was obtained using the simulated reflectance curve as
the input data and the canopy chlorophyll content as the output result. Then, the model
parameters were fine-tuned based on the ground survey data, while the relationship be-
tween chlorophyll content and wheat take-all disease was determined based on the ground
survey data. Finally, the spatial distribution results of the disease indices of winter wheat
take-all were obtained using the hyperspectral UAV data.

2. Materials and Methods
2.1. Study Area

The study area was located in Pei Cheng, Luohe City, Henan Province (33°43′N,
113°50′E), and the wheat sowing date in the study area was 12 October 2016. The manage-
ment during the growth stage was the same as that of a high-yielding field, and the location
distribution of the study area is shown in Figure 1. Hyperspectral data were collected from
11:00–13:00 on 21 May 2017, when the winter wheat was in the filling stage. To support
the flight experiment, a ground data survey was conducted simultaneously, and 20 sample
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areas (Figure 1C) were selected in the test area for chlorophyll measurement and allograft
disease survey, each with an area of 1 m2.

Figure 1. The geographic location of the study area. (A) False color composite map of remote sensing
data in Henan Province. (B) False color composite map of remote sensing data in Luohe City. The blue
box on the left is the location of the study area. (C) Color composite map of the study area (R:30, G:20,
B:10). The white boxes are the sampling areas. There were 20 areas sampled.

When obtaining ground data for wheat, canopy reflectance was measured using an
Analytical Spectral Devices (ASD) spectrometer, ASD FieldSpec HandHeld is a lightweight,
reliable, and high-resolution portable spectrometer for in-field hyperspectral analysis.
It measures the spectral reflectance of samples in the range 350–2500 nm and is widely
used in agriculture, geology, environmental monitoring, and other fields. Representative
wheat plants were destructively obtained from each sample area and brought back to the
laboratory. Chlorophyll was extracted using 95% ethanol and the chlorophyll content
was determined by using the colorimetric method, at which time the chlorophyll content
was calculated in mgg, i.e., the mass of chlorophyll contained in a unit mass of leaves.
For consistency in terms of the chlorophyll units obtained from remote sensing images, the
chlorophyll concentration units were converted to µg/cm2, the mass of chlorophyll per
unit leaf area, using the specific leaf weight of the leaves.

2.2. Experimental Dataset

In the flight test, the UHD185 airborne high-speed imaging spectrometer was used.
This spectrometer can be used to obtain full-frame, nonscanning, real-time imaging, has a
spectral range of 450–950 nm, a spectral resolution of 4 nm, and a total of 125 spectral chan-
nels. The UAV route height is 50 m, the heading overlap is 80%, and the side overlap is 60%.
The UHD185 airborne high-speed imaging spectrometer acquires the data mainly consist-
ing of hyperspectral cube images as well as panchromatic JPG images. The pre-processing
of the UHD185 hyperspectral images mainly includes three parts: image stitching, image
registration, and extraction of the average spectrum of the corn canopy in the experimental
area. The pre-processing flow of the high-spectral image in this study is as follows: (1) Use
Cube-Pilot software to fuse grayscale images and high-spectral images; (2) Use Agisoft
PhotoScan software to stitch the obtained images; (3) Based on ground feature points,
perform geometric correction on the images; (4) Crop and generate high-spectral images
in the study area. Considering that hyperspectral data are susceptible to noise during
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acquisition and transmission, and may have problems related to baseline translation and
drift, causing distortion of spectral features, Savitzky–Golay [30] (SG) filtering was chosen
for noise removal and the smoothing of reflectance curves.

For the acquired hyperspectral images, the land types were labeled manually for
training samples, and a support vector machine [31] (SVM) was used for land cover
classification to distinguish winter wheat from weeds and background soil. A binary
mask was eventually generated to exclude weed and background soil pixels from the UAV
images (Figure 2) for further processing.

Figure 2. Map of land classification results. (A) Study area. (B) Regional RGB (R:30, G:20, B:10) image.
(C) Close-up views of the corresponding winter wheat and background soil maps.

The chlorophyll content of winter wheat with take-all disease was reduced to varying
degrees relative to normal growth, and the more severe the take-all disease was, the lower
the chlorophyll content. Combining the ground survey data with expert experience, the
threshold relationship between the levels of take-all disease and chlorophyll content can be
determined using Table 1.

Table 1. The relationship between the levels of wheat take-all disease and the content of chlorophyll.

Chlorophyll Content (µg/cm2) Class

≥36 Healthy
28–35 Mild
21–27 Moderate
≤20 Severe

2.3. PROSAIL Model

The PROSAIL [32,33] model is composed of two sub-models, PROSPECT-D [34,35]
and 4SAIL [36,37], capable of calculating the hemispherical reflectance and transmit-
tance of leaves within a wavelength range of 400 nm to 2500 nm (1 nm increments).
PROSPECT-D is a leaf radiative transfer model developed from the flat plate model, which
assumes that leaves are stacked by N homogeneous layers separated by N − 1 layers of air.
The PROSPECT-D model has seven input parameters, namely, leaf structural parameters,
chlorophyll content, carotenoid content, brown pigment content, equivalent water thick-
ness, dry matter content, and anthocyannins. The SAIL model is a bidirectional reflectance
model for the vegetation canopy that assumes a continuous, horizontally uniform vegeta-
tion canopy and uses leaf reflectance and transmittance as input parameters to simulate
the spectral and directional reflectance of plant canopies at any solar incidence angle and
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observation direction. The input parameters of the SAIL model mainly include the leaf area
index, mean leaf inclination, hot spot, soil reflectance, and geometric parameters.

The SAIL model is a two-way reflectance model for the vegetation canopy, which
assumes a continuous, horizontally homogeneous vegetation canopy with leaf reflectance.
The input parameters of the 4SAIL model include leaf area index, mean leaf inclination,
hot spots, soil reflectance, and geometric parameters. To construct the simulation data
required for the inversion of the canopy chlorophyll content and combine the sensitivity
of each parameter in the PROSAIL model to the canopy reflectance of the simulation
results [38], the simulation parameters were set as shown in Table 2. For the two variable
parameters, chlorophyll (Cab) and leaf area index (LAI), in the generated simulation data,
Cab varied from 10 to 80, and the step size was set to 1. The LAI, as another important
parameter, varied from 1 to 8, and the step size was 0.1. The remaining parameters were
set to fixed values or default values, among which the number of leaf layers N, which
is related to the leaf structure, could not be measured directly. In this paper, only the
winter wheat leaves during the filling period were considered, so the value of N was set
to 1.5 [39]. The carotenoid content Car was set to a fixed value of 6 µg/cm2 [40]. Cw is
mainly affected by the spectrum after 1000 nm in the NIR band and was set to a fixed
value of 0.01 cm. The dry matter concentration Cm has a certain effect on the visible NIR
spectrum of the canopy, but the effect is weak, a fixed value of 0.005 µg/cm2 was set
for Cm. Parameters LIDFa and LIDFb control the average leaf slope and the distribution
bimodality, respectively. We set the LIDFa and LIDFb of winter wheat to spherical [41]
(LIDFa = −0.35 LIDFb = −0.15) according to the literature. The soil reflectance (Psoil) was
assumed to be Lambertian in this study. For wheat leaves at the filling stage, the canopy
was set as horizontal, and the hot spot parameter was 0.01. The angle parameter was set
as the local solar incidence angle at 12:00 noon, the observed zenith angle was 0°, and the
relative azimuth angle was 90°.

Table 2. The input parameters of PROSAIL.

Parameter Description of Parameter Units Parameter Setting

N Leaf structure parameter N/A 1.5

Cab
Chlorophyll a+b

concentration µg/cm2 10–80 (SL:1)

Car Carotenoid concentration µg/cm2 6
Cbrown Brown pigment µg/cm2 0.1

Cw Equivalent water thickness cm 0.01
Cm Dry matter content g/cm2 0.005
LAI Leaf Area Index m2/m2 1–8 (SL:0.1)

LIDFa Leaf angle distribution N/A −0.35
LIDFb Leaf angle distribution N/A −0.15
Psoil Dry/Wet soil factor N/A 0.5
hspot Hotspot parameter N/A 0.01
θs Solar zenith angle deg 25
θv Observer zenith angle deg 0
ψ Relative azimuth angle deg 90

The canopy spectral reflectance interval output by the PROSAIL model was 1 nm,
while the spectral resolution of the UAV hyperspectral data was 4 nm. The spectra in the
simulated data were sampled using the mean value to make the spectral interval consistent
with the 4 nm of the hyperspectral data, which is convenient for the subsequent comparison
between the data.

2.4. CNN and Transfer Learning

CNN is a deep feedforward neural network with local connectivity and weight shar-
ing. The CNN generally consists of cross-stacked convolutional, convergence, and fully
connected layers. The fully-connected layer is generally the top layer of the convolutional
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network. CNN has three structural properties: local connectivity, weight sharing, and
convergence. These features make the CNN invariant in translation, scaling, and rotation
operations to a certain extent. CNN is mainly used in various image and video analy-
sis tasks (e.g., image classification, object recognition, and image segmentation), and the
accuracy of a CNN is generally far beyond that of other neural network models.

The structure of the 1D-CNN model for winter wheat take-all disease discrimination
was designed with sixteen layers: an input layer, four CNN layers, pooling and dropout
layers, two dense layers, and an output layer. When constructing the model, each piece of
data was transformed into the appropriate form. The input layer was fed with reflectance
profiles of hyperspectral data, followed by adaptive feature extraction and data dimension-
ality compression by the 1D-CNN and pooling layers, respectively, and the output layer is
a fully connected layer with a softmax activation function.

The deep learning system is a hierarchical architecture, where different layers learn
different features. These layers are finally connected to a fully connected layer to obtain
the final output. This hierarchical architecture allows us to use a pre-trained network with
the final layer removed to act as a feature extractor for other tasks. In the transfer learning
process [42], there is a large difference in the sample size between the two training periods,
but there is a strong similarity between the data. Therefore, considering the overfitting
problem, it is not a good idea to fine-tune the model. Therefore, we used a feature extraction
approach for transfer learning [43]. We used the PROSAIL model simulation to obtain a
large amount of training data, used the 1D-CNN network to obtain a pre-trained model,
removed the last fully connected layer, and used the rest of the model as a fixed feature
extractor for the new dataset. Finally, we used the ground truth data for transfer learning of
the model to generate a new fully connected layer to improve the prediction accuracy of the
model for real data. The algorithm flow is shown in Figure 3. We generated 47,040 sets of
simulated data using the PROSAIL model and created a pre-trained model. To expand the
usability of the pre-trained model, we employed transfer learning with feature extraction
and applied it to 44 sets of measured data. This method enables the resulting model to be
more widely applicable to different datasets and real-world scenarios.
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Figure 3. A workflow diagram of data processing, feature extraction, and modeling.

2.5. Performance Metrics

The simulated results of canopy chlorophyll content were compared with the deep
neural network estimates using the coefficient of determination (R2), and root mean square
error (RMSE). The RMSE was calculated to quantify the error between the estimated and
observed chlorophyll content results. The lower the RMSE is, the smaller the residual
variance and the better the model effect. The R2 value represents the degree of model fit
and takes a value in the range of 0–1. The larger the value is, the better the model fit.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (1)

R2 = 1− ∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (2)

where n represents the number of samples, ŷi is the predicted value of the i-th sample by
the regression model, yi is the actual value of the i-th sample, and y is the mean value of
all samples.

3. Results and Discussion
3.1. Modeling and Validation of Wheat Take-All

Using the simulated data from PROSAIL, the canopy reflectance curve and the take-all
disease grade were used as input and output data, respectively, and the transfer learning
model was trained using a ratio of 4:1 with respect to the amount of training and validation
data. Figure 4 shows the validation comparison between the prediction results of the
CNN model and the simulation results of the PROSAIL model. There are some differences
between the prediction results of the model and the simulation results, and multiple
simulation results correspond to one prediction result, but the RMSE between them is
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2.631 and the R2 is 0.732, while the probability of correctness of the classification classes
for the take-all disease is 100% for both results, indicating that the classification model has
high reliability.

Figure 4. CNN model training results. (A) Comparison of simulated and predicted chlorophyll
content in the prediction set using the CNN model. (B) Confusion matrix diagram between the
prediction results using the transfer learning model and the results using the PROSAIL model.

Although the model constructed using only simulated data has a certain physical basis,
there may be problems in practical applications, and the hyperspectral curves acquired
by the UAV may differ from the results simulated by PROSAIL. Therefore, in transfer
learning, we can freeze all feature extraction layers and only adjust the weights of the fully
connected layer. This method of freezing the feature extraction layer is suitable for tasks
where the input data for the new task and the original task are highly similar, which allows
us to fully utilize the already trained feature extraction layer on the new task, thereby
speeding up the training process and improving the performance of the model. The 44 data
measured on the ground were used as the new training samples to retrain the CNN model.
To verify the chlorophyll inversion accuracy of the transfer learning model, the chlorophyll
inversion results were compared with the ground truth data, and the results are shown in
Figure 5D. There is a good linear relationship between the inverse chlorophyll content and
the measured values.
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Figure 5. Comparison of multiple machine learning methods and transfer learning methods for
chlorophyll content prediction. (A) PLSR. (B) RF. (C) SVR. (D) Transfer learning model.

3.2. Comparison of Canopy Chlorophyll Content Prediction from Different Methods

We also used some classical machine learning algorithms (partial least squares regres-
sion (PLSR), random forest [44] (RF), and support vector regression [45] (SVR)) to construct
the inverse model of chlorophyll content. We chose the above methods because they are
widely used and are mature regression and classification methods, which have been proven
to be effective for high-dimensional and noisy data. Although LUT search is also widely
used and has good interpretability, it requires a large amount of computational resources
and storage space and has high requirements for preprocessing and feature extraction
of input data. PLSR is a multivariate statistical data analysis method that combines the
advantages of typical correlation analysis and linear regression analysis. RF is an ensemble
learning method based on multiple decision trees that combines regression submodels to
model a large number of interrelated input variables, and SVR is a supervised learning
algorithm that finds a regression plane on which all data within the ensemble are closest
to the plane. The same training is performed for the simulated data of PROSAIL, after
which the trained model is validated on the ground truth data. Considering the existence of
175 bands in the hyperspectral data, we first used the principal component analysis [46,47]
(PCA) method to downscale the data to 10 bands to eliminate the redundancy existing
among the data bands, and the results of the three methods are shown in Figure 5, while
the resultant performance metrics are presented in Table 3, where a comparison with our
work is made.
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Table 3. R2 and RMSE of the prediction in the simulation data.

PLSR RF SVR Our Model

R2 0.293 0.306 0.365 0.732
RMSE 6.352 5.22 5.27 2.631

The comparison of different methods showed that the accuracy of the machine learning
method was significantly lower than that of the transfer learning method in chlorophyll
content prediction, and the transfer learning model had the best accuracy, with R2 and
RMSE values of 0.732 and 2.631 mg/L, respectively. Although the vegetation radiative
transfer model can achieve high accuracy in the inversion of canopy chlorophyll content,
various factors can affect the fitting results. First, different vegetation types have different
optical characteristics, so it is necessary to choose an appropriate model to improve the
inversion accuracy. Secondly, it is necessary to consider and remove the influence of
atmospheric and soil background to reduce interference and error. In addition, the influence
of data quality also needs to be considered and processed. Finally, the selection of canopy
structure and simulation parameters in the model may also affect the results. In order to
improve the inversion accuracy, appropriate models and parameters should be selected
according to specific conditions, and data processing and correction should be carried out
to reduce errors and improve accuracy.

3.3. Spatial Distribution Results of Wheat Take-All

Based on the relationship between the chlorophyll content and take-all disease, the
study area is filled with take-all disease, and the results are shown in Figure 6. It is noted
that more than 60% of the image elements in the study area showed different degrees
of allograft disease. By analyzing the regional inversion results, it can be seen that the
disease spreads around a certain image element, which is consistent with take-all disease
damage propagation.

Figure 6. Spatial distribution of the disease index of wheat take-all in the study area.

However, potential issues exist with respect to the inversion results, which can occur
due to several reasons. First, the determination of parameters is based on empirical
knowledge of the model of the relationship between the chlorophyll content and wheat
take-all disease. The fixed-threshold discrimination method has limitations, and errors
may occur to some extent. Secondly, the hyperspectral sensor has a low signal-to-noise
ratio, and changes in external conditions can easily affect the consistency of the quality of
the acquired images, leading to deviation in the spectral data of the canopy from the real
situation. Calibration errors of the sensor can also yield effects similar to those of random
noise. External conditions, such as moisture or heavy metal stress, can cause a decrease in
the chlorophyll content of the winter wheat canopy. For disease monitoring, using images
from a single period for inversion has certain limitations and it is difficult to exclude the
influence of some non-disease factors [48]. In the process of constructing simulated data,
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most parameters in the PROSAIL model use empirical values, which do not correspond to
the actual situation and may cause errors when performing canopy chlorophyll inversion.

To address these issues, subsequent studies will optimize the parameters for construct-
ing simulation data further to improve inversion accuracy. Additionally, multiple images
will be used for comparisons with different periods to avoid uncertainties caused by data
from a single period and to improve monitoring accuracy. In addition, both LAI and canopy
chlorophyll content will be used to determine the level of wheat take-all disease, in order
to avoid misjudgment caused by a fixed chlorophyll content threshold.

4. Conclusions

Considering the characteristics of hyperspectral sensor mapping, the PROSAIL model
was used to construct the simulated data of winter wheat canopy chlorophyll content, and
based on the relationship between the canopy chlorophyll content and take-all disease
levels, the classification model between the canopy reflectance curve and take-all was
obtained using a transfer learning method.

(1) The canopy chlorophyll content of wheat decreases after being infected with take-all
disease, and the relationship between the canopy chlorophyll content and take-all disease
levels is established based on their relationship. The classification model between the canopy
reflectance curve and take-all disease is constructed using a CNN model, which can be used
for remote sensing monitoring of take-all disease at a regional scale with high accuracy.

(2) The deep neural network requires a large amount of data support, and the training
data are simulated data generated using the PROSAIL model. The pre-training model is
generated using these data with clear physical meaning, and then the model is adjusted
based on the ground measurement data using the transfer learning method of feature
extraction to improve the robustness and generalization ability of the model.

For the method used in this paper, it is feasible to construct a model for monitoring take-
all disease of winter wheat based on transfer learning of the canopy chlorophyll content,
which has high prediction accuracy and can provide a new method for nondestructive and
rapid monitoring of total erosion of wheat.

Author Contributions: Conceptualization, J.W. and H.Q.; methodology, J.W.; formal analysis, L.S.;
data curation, H.Q.; writing—original draft preparation, J.W.; writing—review and editing, H.Q.,
L.S., Y.F., H.S. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NO. 42101362,
31501225); the Natural Science Foundation of Henan Province of China (NO. 222300420463); the Joint
Fund of Science and Technology Research Development Program (Application Research) of Henan
Province, China (222103810024).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. James Cook, R. Take-all of wheat. Physiol. Mol. Plant Pathol. 2003, 62, 73–86. [CrossRef]
2. Kwak Youn-Sig, W.D.M. Take-all of Wheat and Natural Disease Suppression: A Review. Plant Pathol. J. 2013, 29, 125–135.

[CrossRef]
3. Yuan, L.; Huang, Y.; Loraamm, R.W.; Nie, C.; Wang, J.; Zhang, J. Spectral analysis of winter wheat leaves for detection and

differentiation of diseases and insects. Field Crop. Res. 2014, 156, 199–207. [CrossRef]
4. Bhandari, M.; Ibrahim, A.M.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing

winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput. Electron.
Agric. 2020, 176, 105665. [CrossRef]

5. Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using
UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [CrossRef]

6. Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.H. Wheat yellow rust monitoring by learning from
multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [CrossRef]

http://doi.org/10.1016/S0885-5765(03)00042-0
http://dx.doi.org/10.5423/PPJ.SI.07.2012.0112
http://dx.doi.org/10.1016/j.fcr.2013.11.012
http://dx.doi.org/10.1016/j.compag.2020.105665
http://dx.doi.org/10.3390/rs13010123
http://dx.doi.org/10.1016/j.compag.2018.10.017


Remote Sens. 2023, 15, 1960 12 of 13

7. Sun, Q.; Chen, L.; Xu, X.; Gu, X.; Hu, X.; Yang, F.; Pan, Y. A new comprehensive index for monitoring maize lodging severity
using UAV-based multi-spectral imagery. Comput. Electron. Agric. 2022, 202, 107362. [CrossRef]

8. Guo, W.; Zhu, Y.; Wang, H.; Zhang, J.; Dong, P.; Qiao, H. Monitoring Model of Winter Wheat Take-all Based on UAV Hyperspectral
Imaging. Trans. Chin. Soc. Agric. Mach. 2019, 50, 162–169. [CrossRef]

9. Guo, W.; Yang, Y.; Zhao, H.; Song, R.; Dong, P.; Jin, Q.; Baig, M.H.A.; Liu, Z.; Yang, Z. Winter Wheat Take-All Disease Index
Estimation Model Based on Hyperspectral Data. Appl. Sci. 2021, 11, 9230. [CrossRef]

10. Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from
multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field
Crop. Res. 2017, 210, 33–46. [CrossRef]

11. Sun, J.; Wang, L.; Shi, S.; Li, Z.; Yang, J.; Gong, W.; Wang, S.; Tagesson, T. Leaf pigment retrieval using the PROSAIL model:
Influence of uncertainty in prior canopy-structure information. Crop J. 2022, 10, 1251–1263. [CrossRef]

12. Xu, L.; Shi, S.; Gong, W.; Shi, Z.; Qu, F.; Tang, X.; Chen, B.; Sun, J. Improving leaf chlorophyll content estimation through
constrained PROSAIL model from airborne hyperspectral and LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103128.
[CrossRef]

13. Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, P.; Kaplan, V.; Hanuš, J.; Gastellu-Etchegorry, J.P.; Schaepman, M.E.
Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote
Sens. Environ. 2013, 131, 85–102. [CrossRef]

14. Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral
reflectance using the inverted PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 360–374. [CrossRef]

15. Sun, B.; Wang, C.; Yang, C.; Xu, B.; Zhou, G.; Li, X.; Xie, J.; Xu, S.; Liu, B.; Xie, T.; et al. Retrieval of rapeseed leaf area index using
the PROSAIL model with canopy coverage derived from UAV images as a correction parameter. Int. J. Appl. Earth Obs. Geoinf.
2021, 102, 102373. [CrossRef]

16. Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating
vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [CrossRef]

17. Qian, B.; Ye, H.; Huang, W.; Xie, Q.; Pan, Y.; Xing, N.; Ren, Y.; Guo, A.; Jiao, Q.; Lan, Y. A sentinel-2-based triangular vegetation
index for chlorophyll content estimation. Agric. For. Meteorol. 2022, 322, 109000. [CrossRef]

18. Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models.
Remote Sens. Environ. 2004, 93, 53–67. [CrossRef]

19. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI
and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [CrossRef]

20. Pantazi, X.; Moshou, D.; Alexandridis, T.; Whetton, R.; Mouazen, A. Wheat yield prediction using machine learning and advanced
sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [CrossRef]

21. Jeong, S.; Ko, J.; Yeom, J.M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with
satellite data in South and North Korea. Sci. Total Environ. 2022, 802, 149726. [CrossRef] [PubMed]

22. Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning—Method overview and review of use for fruit detection and yield
estimation. Comput. Electron. Agric. 2019, 162, 219–234. [CrossRef]

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

24. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
25. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
26. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.

2018, 270, 654–669. [CrossRef]
27. Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover

scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [CrossRef]
28. Ji, S.; Dai, P.; Lu, M.; Zhang, Y. Simultaneous Cloud Detection and Removal From Bitemporal Remote Sensing Images Using

Cascade Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 732–748. [CrossRef]
29. Sun, L.; Yang, X.; Jia, S.; Jia, C.; Wang, Q.; Liu, X.; Wei, J.; Zhou, X. Satellite data cloud detection using deep learning supported by

hyperspectral data. Int. J. Remote Sens. 2020, 41, 1349–1371. [CrossRef]
30. Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI

time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]
31. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
32. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL

models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [CrossRef]
33. Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL Model Capabilities

for Future Hyperspectral Model Environments: A Review Study. Remote Sens. 2018, 10, 85. [CrossRef]
34. Féret, J.B.; Gitelson, A.; Noble, S.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete

lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [CrossRef]
35. Féret, J.B.; Berger, K.; de Boissieu, F.; Malenovský, Z. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins

and other carbon-based constituents. Remote Sens. Environ. 2021, 252, 112173. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2022.107362
http://dx.doi.org/10.6041/j.issn.1000-1298.2019.09.018
http://dx.doi.org/10.3390/app11199230
http://dx.doi.org/10.1016/j.fcr.2017.05.005
http://dx.doi.org/10.1016/j.cj.2022.04.003
http://dx.doi.org/10.1016/j.jag.2022.103128
http://dx.doi.org/10.1016/j.rse.2012.12.015
http://dx.doi.org/10.1016/j.jag.2006.11.003
http://dx.doi.org/10.1016/j.jag.2021.102373
http://dx.doi.org/10.1016/j.compag.2022.106775
http://dx.doi.org/10.1016/j.agrformet.2022.109000
http://dx.doi.org/10.1016/j.rse.2004.06.016
http://dx.doi.org/10.1016/j.rse.2007.12.003
http://dx.doi.org/10.1016/j.compag.2015.11.018
http://dx.doi.org/10.1016/j.scitotenv.2021.149726
http://www.ncbi.nlm.nih.gov/pubmed/34464811
http://dx.doi.org/10.1016/j.compag.2019.04.017
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.1016/j.isprsjprs.2019.08.018
http://dx.doi.org/10.1109/TGRS.2020.2994349
http://dx.doi.org/10.1080/01431161.2019.1667548
http://dx.doi.org/10.1016/j.rse.2004.03.014
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.3390/rs10010085
http://dx.doi.org/10.1016/j.rse.2017.03.004
http://dx.doi.org/10.1016/j.rse.2020.112173


Remote Sens. 2023, 15, 1960 13 of 13

36. Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-
angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [CrossRef]

37. Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation
Canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [CrossRef]

38. Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future
Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [CrossRef]

39. Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [CrossRef]
40. Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties EXperiment 93 (LOPEX93);

Office for Official Publications of the European Communities, Joint Research Centre: Ispra, Italy, 1994.
41. Wohlfahrt, G.; Bahn, M.; Tappeiner, U.; Cernusca, A. A multi-component, multi-species model of vegetation–atmosphere CO2 and

energy exchange for mountain grasslands. Agric. For. Meteorol. 2001, 106, 261–287. [CrossRef]
42. Weiss, K.R.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
43. Bernico, M.; Li, Y.; Zhang, D. Investigation on How Data Volume Affects Transfer Learning Performances in Business Applications.

arXiv 2017, arXiv:1712.04008.
44. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
46. Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433–459. [CrossRef]
47. Xiong, Z.; Sun, D.W.; Pu, H.; Zhu, Z.; Luo, M. Combination of spectra and texture data of hyperspectral imaging for differentiating

between free-range and broiler chicken meats. LWT Food Sci. Technol. 2015, 60, 649–655. [CrossRef]
48. Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; van der Tol, C.;

Damm, A.; et al. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote
Sens. Environ. 2022, 280, 113198. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rse.2006.12.013
http://dx.doi.org/10.1109/TGRS.2007.895844
http://dx.doi.org/10.1016/j.rse.2011.10.035
http://dx.doi.org/10.1016/0034-4257(90)90100-Z
http://dx.doi.org/10.1016/S0168-1923(00)00224-0
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1016/j.lwt.2014.10.021
http://dx.doi.org/10.1016/j.rse.2022.113198

	Introduction
	Materials and Methods
	Study Area
	Experimental Dataset
	PROSAIL Model
	CNN and Transfer Learning
	Performance Metrics

	Results and Discussion
	Modeling and Validation of Wheat Take-All
	Comparison of Canopy Chlorophyll Content Prediction from Different Methods
	Spatial Distribution Results of Wheat Take-All

	Conclusions
	References

