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Abstract: Although multiple efforts have been made to model global navigation satellite system
(GNSS)-reflectometry (GNSS-R) delay-Doppler maps (DDMs) over land, there is still a need for
models that better represent the signals over land and can enable reliable retrievals of the geophysical
variables. Our paper presents improvements to an existing GNSS-R DDM model by accounting for
short-wave diffraction due to small-scale ground surface roughness and signal attenuation due to
vegetation. This is a step forward in increasing the model fidelity. Our model, called the improved
geometric optics with topography (IGOT), predicts GNSS-R DDM over land for the purpose of
retrieving geophysical parameters, including soil moisture. Validation of the model is carried out
using DDMs from the Cyclone GNSS (CYGNSS) mission over two validation sites with in situ soil
moisture sensors: Walnut Gulch, AZ, USA, and the Jornada Experimental Range, NM, USA. Both the
peak reflectivity and the DDM shape are studied. The results of the study show that the IGOT model
is able to accurately predict CYGNSS DDMs at these two validation sites.

Keywords: GNSS; GNSS-R; CYGNSS; DDM; electromagnetic modeling; soil moisture

1. Introduction

Monitoring carbon and water cycles is key to understanding changes in the Earth’s
ecosystem and climate. Multiple geophysical parameters affect these cycles, including soil
moisture, soil freeze/thaw state, snow water equivalent (SWE), snow depth, aboveground
biomass, vegetation water content, and permafrost active layer properties. These geophysi-
cal parameters also affect the reflections of global navigation satellite system (GNSS) signals
and other signals of opportunity (SoOp). Unlike active microwave remote sensing modali-
ties, GNSS-reflectometry (GNSS-R) provides a low-cost solution to observe the geophysical
variables. Multiple spaceborne GNSS-R systems have been launched, including the UK
Disaster Monitoring Constellation (UK-DMC) [1] satellite, the TechDemoSat-1 (TDS-1) [2]
satellite, the Cyclone GNSS (CYGNSS) [3] constellation, the Flexible Microwave Payload
(FMPL)-2 instrument on a CubeSat [4], the Spire GNSS-R CubeSats [5], and the BuFeng-1
A/B twin satellites [6]. The use of GNSS-R for remote sensing has proven to be less ex-
pensive than active monostatic radar. Thus, with a fraction of the cost of a single active
microwave remote sensing satellite, multiple GNSS-R receiver satellites can be launched [7].
Using multiple transmit-receive satellite pairs can also improve the revisit time. Moreover,
the same GNSS-R constellation can be used to retrieve multiple geophysical parameters.
For instance, CYGNSS was originally designed for ocean wind speed retrieval, but it is
now also used for soil moisture retrievals and flood detection, to name a few uses of the
data [8–10]. However, GNSS-R signal modeling and geophysical parameter retrieval can
be more challenging compared to monostatic radar systems.
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Estimating geophysical parameters from GNSS-R with high accuracy requires accurate
modeling of the reflected signal. Multiple models have been developed for both ocean and
land surfaces [11–19].

For example, the Soil And VEgetation Reflection Simulator (SAVERS) [12] models scat-
tering from both the Earth land surface and its overlying vegetation. This model is based on
the bistatic radar equation integrated over a digital elevation model (DEM). The scattering
process is divided into two components: near-specular and incoherent. The near-specular
component is derived from a physical optics model that includes wavefront sphericity
and a parameter for the effective beamwidth of the DEM surface facets. The incoherent
component is based on the advanced integral equation method (AIEM) and is minimal
except for very rough surfaces.

Another example is the analytical Kirchhoff solutions (AKS) model, which calculates
the scattered signal from the ground surface only [17]. This model is the successor to the
fine scale partially coherent patch model (FPCP) [14]. The surface in AKS is modeled as
physical patches defined by a DEM with superimposed random roughness. Furthermore,
the analytical solutions for coherent and incoherent scattering are expressed in terms of the
spectrum of the random roughness. Thus, AKS does not require division of the random
roughness into discrete scales.

Finally, the geometric optics with topography (GOT) model [11], which is the basis for
the model in this paper, also models the ground surface only. This model is based on the
geometrical optics limit of the Kirchhoff integral.

All three models (SAVERS, AKS, and GOT) are based on the Kirchhoff integral equa-
tion and use a DEM to parameterize their formulations. Furthermore, they are suitable for
spaceborne GNSS-R signals as well as airborne and ground GNSS-R signals. A comparison
of these models, presented in [20], was performed on a single CYGNSS track over a Soil
moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) site located in the San
Luis Valley (SLV), CO, USA [21]. Moreover, the input parameters were unified for all of the
models in this intercomparison. For example, all models used the one-arc-second Shuttle
Radar Topography Mission (SRTM) DEM. It is worth noting that the model presented in this
paper, improved geometric optics with topography (IGOT), was used in the comparison
rather than the GOT model of [11].

Another GNSS-R model is the Signals of opportunity Coherent Bistatic scattering
model for Vegetated terrains (SCoBi-Veg), which simulates reflectivity from flat vegetated
surfaces [18]. The complex received field estimated by the SCoBi-Veg comprises three main
contributions: (1) a direct term, which represents the direct signal from the transmitter to
the receiver; (2) a specular term, which accounts for the signal reflected from the surface in
the specular direction; and (3) a diffuse term, which accounts for the incoherent scattered
signal that arrives at the receiver. The diffuse term is calculated through a Monte Carlo sim-
ulation. As the effect of topography cannot be neglected in spaceborne GNSS-R modeling,
SCoBi-Veg is more suited for airborne systems.

In this paper, we expand the GOT model to include the effects of small-scale rough-
ness of the ground and low-to-moderate vegetation cover. This model, the IGOT model,
divides the surface roughness into three regions: (1) large-scale roughness (topography),
(2) intermediate-scale roughness, and (3) small-scale roughness, which is on the order of a
few electromagnetic wavelengths. The large-scale roughness captures large topographical
features, such as hill slopes and plateaus. The intermediate-scale roughness covers the
region between the large-scale and the small-scale roughness. Both the intermediate-scale
and the small-scale roughness are assumed to be random, while the large-scale roughness
is determined and derived from a DEM. The IGOT model is validated against CYGNSS
delay-Doppler maps (DDMs) using in situ soil moisture and surface roughness measure-
ments. The validation areas are Walnut Gulch, AZ, USA, and Jornada Experimental Range,
NM, USA. These areas contain SoilSCAPE CYGNSS land calibration and validation sites.

The rest of the paper is organized as follows: Section 2 describes the integration of the
three-scale roughness concept into the original GOT model. The handling of vegetation in
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the model is explained in Section 3. An overview of the two validation sites, CYGNSS data,
and ancillary data for the model is given in Section 3. The simulation and validation results
are presented in Section 4, including four CYGNSS tracks and three individual DDMs.
Discussions of the results and future directions are in Section 5. Lastly, conclusions and a
summary of findings are given in Section 6.

2. Theoretical Model

The IGOT model is an expansion of the GOT model, developed by Campbell et al. [11],
that extends the normalized bistatic radar cross section (BRCS) model to account for
attenuation due to short-wave diffraction. The GOT model [11] was developed from first
principles for GNSS-R measurements of a bare surface with heterogeneous roughness in the
strong diffuse regime. Thus, scattering is modeled as noncoherent. The GOT model uses the
geometrical optics limit of the Kirchhoff approximation in deriving the normalized BRCS.

This paper follows the same notations as the original model, Campbell et al. [11],
for consistency. The normalized BRCS σ0 of the original model is given as [11] (Equation (46))

σ0(~ρ ) =
π|R|2q4

q4
z

prg

(
−~q⊥

qz
−∇⊥ζdem

)
(1)

where R is the polarization-dependent Fresnel reflection coefficient, and prg is the prob-
ability density function (pdf) of ∇⊥ζres at ~ρ. The 2-D scalar field ζ denotes the surface
height relative to the x− y plane, and the subscripts dem and res denote the DEM and the
residual, respectively. The vector ẑ is the outward normal of a planar or a locally planar
surface, which can be an earth ellipsoid or a geoid model. The symbol ∇⊥ denotes the x̂
and ŷ components of the gradient, which are the components that are perpendicular to
the ẑ vector. Thus, ∇⊥ζdem is a vector containing the x̂ and ŷ components of the DEM
gradient. The quantity q is the norm of~q, and qz is the ẑ component of ~q. This~q vector is
the scattering vector, which is defined as [11] (Equation (19))

~q = k
(

R̂rs − R̂st
)
= −∇sk(Rrs + Rst) (2)

where k is the wavenumber and ∇s denotes the gradient operator with respect to the scat-
tering point. The quantities R̂rs and Rrs are the unit vector and the magnitude, respectively,
of the vector at the scattering point pointing toward the receiver. Furthermore, R̂st and
Rst are the unit vector and the magnitude, respectively, of the vector from the transmitter
pointing toward the scattering point.

2.1. Ground Surface Modeling

The geometrical optics limit of the Kirchhoff approximation is a high frequency limit.
Thus, it assumes the roughness scale is significantly larger than the electromagnetic wave-
length. In other words, the surface is locally smooth. However, this is not always the case
on land surfaces. For example, the wavelength of the Global Positioning System (GPS) L1
signal is 19 cm; however, many land surfaces, including our validation sites, are not smooth
at this scale. To address this, we propose using two scales for the random roughness. This
proposal was discussed by Thompson et al. [22] for GPS scattering for ocean surfaces. Split-
ting the random roughness into two scales makes the model contain three scales of surface
height. These surface height scales are of (1) large deterministic scale ζdem, (2) intermediate
random scale ζL, which accounts for the long-wave DEM error, and (3) small random scale
ζS, which accounts for the short-wave DEM error. The deterministic scale ζdem is the same
as in [11].

The normalized BRCS is expressed as [11] (Equation (43))

σ0(~ρ ) =
|R(~ρ )|2q4(~ρ )

4πq2
z(~ρ )

∫
exp

[
ik
(

R′rs + R′st − R′′rs − R′′st
)
|ζ=0

]
×
〈
exp

[
−iq′zζ ′ + iq′′z ζ ′′

]〉
d~ξ.

(3)
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The notation of prime and double prime indicates the evaluation at~r′ and~r′′, respec-
tively, which are two arbitrary vectors on the surface Σ0. Details of the surface Σ0 are
discussed in [11]. The quantities qz and ~q⊥ are components of ~q defined in Equation (2).
The components are expressed mathematically as

~q = ~q⊥ + ẑqz. (4)

The quantity q is the amplitude of the vector~q. The vectors ~ρ and ~ξ are defined as

~ξ =~r ′ −~r ′′ (5)

~ρ = (~r ′ +~r ′′)/2 (6)

The height ζ is divided into three variables and is expressed as

ζ = ζdem + ζL + ζS. (7)

where ζdem is the height given by the DEM. The variables ζL and ζS are the long-wave and
short-wave components, respectively, of the height below the DEM resolution. The quantity
ζdem is deterministic, whereas ζL and ζS are stochastic.

Assuming ζL and ζS are mutually independent spatial random processes, and using
Equation (7), we can write Equation (3) as

σ0(~ρ ) =
|R(~ρ )|2q4(~ρ )

4πq2
z(~ρ )

∫
exp

[
ik
(

R′rs + R′st − R′′rs − R′′st
)
|ζ=0

]
×ΦDEM(~ρ,~ξ)ΦL(~ρ,~ξ)ΦS(~ρ,~ξ)d~ξ

(8)

where ΦX(~ρ,~ξ) is the double point characteristic function of of ζX. The subscript X is
defined as X ∈ {DEM, L, S}. Using Equations (5) and (6) and applying the approximation
q′z = q′′z = qz, ΦX(~ρ,~ξ) is given as

ΦX(~ρ,~ξ) =
〈

exp
[
−iqz

[
ζX

(
~ρ +~ξ/2

)
− ζX

(
~ρ−~ξ/2

)]}〉
. (9)

For any infinitely differentiable function f , such as a physical surface, the Taylor series
approximation is given by

f (~r ′)− f (~r ′′) = f
(
~ρ +~ξ/2

)
− f
(
~ρ−~ξ/2

)
= ∇⊥ f (~ρ ) ·~ξ + O(ξ3). (10)

Assuming both ΦDEM and ΦL have limited regions of support and ζDEM and ζL
are locally smooth, the Taylor series approximation in Equation (10) can be applied to
both ΦDEM and ΦL. However, the approximation cannot be applied to ΦS as ζS can be
non-smooth within the support region of ΦS. Applying the approximation gives

ΦDEM(~ρ,~ξ) = exp
[
−iqz∇⊥ζDEM(~ρ) ·~ξ

]
(11)

ΦL(~ρ,~ξ) =
〈

exp
[
−iqz∇⊥ζL(~ρ) ·~ξ

]〉
. (12)

To evaluate the characteristic function of the random process ζS, we assume it is
Gaussian. Using the previous assumptions, the expectation of the short-wave component in
Equation (8) is the characteristic function of two jointly Gaussian random variables, which
can be written as

ΦS(~ρ,~ξ) = exp
{
−q2

zσ2
S

[
1− C

(
~ξ
)]}

= exp
[
−q2

zσ2
S

]
exp

[
q2

zσ2
S C
(
~ξ
)]

(13)
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where σS is the standard deviation of the short-wave process and C(~ξ) is the normalized
covariance function. Assuming (qzσS)

2 << 1, Equation (13) can be approximated using
the Taylor series as

ΦS(~ρ,~ξ) ≈ exp
[
−q2

zσ2
S

][
1 + q2

zσ2
S C
(
~ξ
)]

. (14)

Substituting Equations (11), (12), and (14) into Equation (8) and using the definition of
~q in Equation (2) gives

σ0(~ρ ) =
|R|2q4

4πq2
z

exp
[
−q2

zσ2
S

] ∫
exp

[
−i~q⊥ ·~ξ

]
exp

[
−iqz∇⊥ζDEM ·~ξ

]
×
〈

exp
[
−iqz∇⊥ζL ·~ξ

]〉[
1 + q2

zσ2
S C
(
~ξ
)]

d~ξ .
(15)

Then, using Fubini’s theorem to take the expectation outside the integral and Fourier
transform properties to evaluate the integral, Equation (15) can be simplified to

σ0(~ρ ) =
π|R|2q4

q4
z

exp
[
−q2

zσ2
S

]〈
δ

(
∇⊥ζL +

~q⊥
qz

+∇⊥ζDEM

)
+

q2
zσ2

S ψS
(
∇⊥ζL +

~q⊥
qz

+∇⊥ζDEM

)〉 (16)

where δ is the Dirac delta function and ψS is the Fourier transform of the normalized
covariance function scaled by 1/qz and it is expressed as

ψS(~ω) =
∫

C(~ξ/qz) exp
(
−i~ω~ξ

)
d~ξ . (17)

Evaluating the expectation in Equation (16) gives

σ0(~ρ ) =
π|R|2q4

q4
z

exp
[
−q2

zσ2
S

][
pL

(
−~q⊥

qz
−∇⊥ζDEM

)
+

q2
zσ2

S pL

(
−~q⊥

qz
−∇⊥ζDEM

)
∗ ψS

(
−~q⊥

qz
−∇⊥ζDEM

)] (18)

where ∗ denotes the convolution operation and pL is the pdf of the long-wave gradient
∇⊥ζL. Assuming that the correlation length of the short-wave process is sufficiently small
and the long-wave gradient has zero mean, the first term of Equation (18) will be more
peaked than the second term. Thus, for near-specular scattering, the argument of the two
terms is near zero and the first term dominates. For near-specular scattering, then, σ0 can
be approximated by

σ0(~ρ ) =
π|R|2q4

q4
z

exp
[
−q2

zσ2
S

]
pL

(
−~q⊥

qz
−∇⊥ζDEM

)
. (19)

The random part of the surface roughness is divided between the long-scale and the
short-scale components in such a way that the long-scale component is smooth, and the
short-scale component has a narrow correlation function.

Although pL was derived for any arbitrary pdf, in the validation of the model, we
assumed∇⊥ζL to be a Gaussian random variable with zero mean and σL standard deviation.
It is worth noting that σL is a measure of slope, whereas σS is a characterization of height.

2.2. BRCS DDM Modeling

The BRCS DDM is calculated using the method discussed in [11]. Using [11] (Equation (49)),
the BRCS DDM is expressed as

〈σ(i, j)〉 = 1
N

N

∑
n=1

∫
Σ0

σ0

〈
|χ(δτi, δf j)|2

〉
d~ρ (20)
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where N is the number of coherent integration intervals in a single incoherent averaging of
the DDM, χ is the Woodward ambiguity function (WAF), and Σ0 is the integration area,
which needs to be over a planar or locally planar surface. The quantities i and j denote
delay and Doppler indices, respectively. The variable δτi is the delay of bin i relative to the
nominal specular point (SP) delay, and the variable δf j is the Doppler of bin j relative to the
nominal SP Doppler.

A good approximation of the GPS L1 C/A WAF is in [11] (Equation (50)). The WAFs
of other GNSS waveforms, such as GPS L5, Galileo E1A, and Galileo E6A/B/C, can be
calculated using the method presented in [23].

3. Validation Cases

In this work, the model is validated in two validation areas: Walnut Gulch (WG)
and Jornada Experimental Range (JER). These sites are part of the CYGNSS calibration
and validation sites within the contiguous U.S. Each site has multiple in situ soil moisture
sensors at various depths and a small weather station for precipitation monitoring. The sites
are part of the SoilSCAPE network [21]. In addition, local surface roughness measurements
were collected from all sites at various locations. Details of the validation sites and the
roughness measurements are discussed in the following subsections.

3.1. Validation Sites
3.1.1. Walnut Gulch (WG)

This area is located near the town of Tombstone in southeastern Arizona, USA. There
are two sites in this area: Kendall and Lucky Hills. These sites are within the Walnut Gulch
Experimental Watershed [24]. Figure 1 shows the location of the sites. The Kendall site
has nine nodes, and the Lucky Hills site has seven nodes. The in situ sensors at each node
are installed at depths of 5 cm, 15 cm, 30 cm, and 50 cm. In 2015, the sensors were installed,
and the site was operational until Oct 2019. After a hiatus during the COVID-19 pandemic,
the site was revived in August 2022.

Figure 1. Satellite map of WG SoilSCAPE sites.

These sites are relatively dry all year round except in the monsoon season, which is
usually in July, August, and the first half of September [25]. Thus, high vegetation water
content (VWC) is expected during the monsoon season. Figure 2a,b show photos of the
area during the dry season and the monsoon season, respectively, highlighting the presence
of green vegetation during the latter.
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(a) (b)

Figure 2. Photos of WG taken in the dry season and monsoon season: (a) Photo was taken in May
2022 [credit: Piril Nergis]; (b) Photo was taken in Aug 2022 [credit: Asem Melebari].

To account for the presence of vegetation, an attenuation factor was applied to σ0.
This is based on the vegetation model of [26] (Equation (11.4)). The normalized BRCS with
vegetation is expressed as

σ0,VEG(~ρ ) = exp [−κpd sec (θi)] exp [−κqd sec (θs)] σ0(~ρ ) (21)

where κp,q is the p,q-polarized extinction coefficient (p, q ∈ {v, h, l, r}), d is the vegetation
depth, θi is the local incidence angle, and θs is the local scattering angle. We refer to
the model with this feature as IGOT-VEG. It is worth noting that when d or κ is zero,
the IGOT-VEG reduces to the IGOT model.

3.1.2. Jornada Experimental Range (JER)

This area is located to the southwest of the White Sands National Park, NM, USA.
There are three SoilSCAPE sites in this area, denoted as JR-1, JR-2, and JR-3. Figure 3a shows
the location of the sites on a satellite map. The sites are within the Jornada Experimental
Range [27].

(a) (b)

Figure 3. JER SoilSCAPE sites: (a) Satellite photo; (b) Photo of the site taken in May 2019.

In each site, four nodes are equipped with four soil moisture sensors installed at 5 cm,
10 cm, 20 cm, and 30 cm depths. Sensors were installed in May 2022. Node JR-3-3 of the
JR-3 site is located within 100 m of the US Climate Reference Network (USCRN) Las Cruces
station [28]. These sites are mostly dry with minimal vegetation.
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3.2. Surface Roughness Measurements

The small-scale surface roughness σS was estimated using manual in situ measure-
ments. These measurements were performed using a laser range finder mounted on a spirit
level supported by two tripods, as shown in Figure 4.

Figure 4. Photo of the surface roughness measurement device.

The measurement was made by first leveling the spirit level about both horizontal
axes (pitch and roll). Second, the height to the ground surface was measured every 2 cm.
The level is about 120 cm long; therefore, the measurement was repeated three times to
obtain a larger baseline. This procedure was performed in both the north–south and the
east–west direction. During the measurements, special care was taken to avoid measuring
vegetation height instead of ground surface height. The surface roughness was calculated
by first calculating the height values relative to the surface slope line. Then, the root mean
square (RMS) surface roughness was calculated. The slope line was assumed to be captured
by the DEM.

A roughness measurement was taken at each site using a baseline close to 3 m. Thus,
three roughness measurements were taken in the JER area, and two measurements were
taken in the WG area. The roughness measurements at JER were taken in May 2022, and
the measurements at WG were taken in August 2022.

The surface height measurements and the surface correlation of the measurement at
site JR-1 are shown in Figure 5. The dashed lines in Figure 5a are the surface slope lines.
The RMS roughness σh and the surface correlation length of the WG and JER sites are given
in Table 1. The roughness measurements at the WG sites were taken in the flat area within
the sites. Moreover, the location of the measurements was in an area with lower vegetation
to facilitate the measurement. Some data points in the measurement at the Kendall site were
skipped due to vegetation. Thus, the roughness measurements of WG sites are believed to
be lower than the mean RMS surface roughness.

For the wavelength of the GPS L1 signal, these in situ measurements can be used to
estimate the characteristics of the surface height in the spatial domain from a fraction of
a wavelength to a few wavelengths. This makes the in situ measurements more suited
for estimating the small-scale roughness of the IGOT model. Since the in situ roughness
measurements were sparse and did not capture the heterogeneity of the sites, the in situ
measurements guided the selection of the small-scale roughness parameter σS.
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Table 1. Calculated surface roughness and surface correlation lengths for JER and WG sites based on
laser range-finder measurements.

Location Orientation σh [cm] Correlation Length [cm] Correlation Length/σh

JR-1
N-S 0.34 6 17.8

E-W 0.30 4 13.1

JR-2
N-S 0.56 16 28.7

E-W 0.56 26 46.7

JR-3
N-S 1.44 26 18.0

E-W 0.67 6 8.9

KN
N-S 0.73 4 5.5

E-W 0.46 2 4.3

LH
N-S 0.88 4 4.5

E-W 0.34 2 5.8

0 1 2 3
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ea
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(a)
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tio
n North-south(corr. len. 6 cm)

East-west(corr. len. 4 cm)

(b)

Figure 5. JR-1 roughness measurements: (a) Surface height measurements; (b) Surface correlation.

3.3. CYGNSS and Ancillary Data

CYGNSS is a National Aeronautics and Space Administration (NASA) mission con-
sisting of eight low-Earth orbit satellites for GNSS-R [7]. Each satellite has two off-nadir
antennas for science measurements and a zenith antenna for navigation and receiving the
direct GPS signal. CYGNSS satellites generate DDMs from GPS L1 signals. The mission
was originally designed to estimate wind speed over the ocean. However, after launch, it
has been utilized for other applications, including soil moisture estimation. In this work,
we used the CYGNSS L1 v3.1 product [29].

The one-arc-second SRTM DEM [30] was used in the IGOT model as ζDEM. Fur-
thermore, the DEM gradient was calculated using the method presented in [31], which
calculates the gradient of each pixel in the DEM by fitting a plane using a window of a
specific size. This method was used to reduce the noise in the DEM gradient. The window
size in this work has units of DEM samples, each of which is approximately 30 m in extent.

4. Validation Results

In this section, the IGOT model is validated using four tracks: the first and second
tracks are over the WG area, and the last two are over the JER sites. The peak reflectivity
of these tracks is studied, and three full DDMs from the tracks are analyzed. In situ soil
moisture measurements at 5 cm depth are used in the IGOT model. Specifically, the spatially
averaged soil moisture value from all the available nodes is used.
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4.1. Along-Track Results

The first and second tracks over the WG area were acquired on 2019-02-05 and
2019-09-15, respectively. The second track was during the monsoon season. Thus, a higher
VWC is expected. At the time of the first track, the in situ soil moisture was 0.18 m3 m−3.
For the second track, the in situ soil moisture was 0.51 m3 m−3, which is the saturation
level. In the model, the soil clay percentage was set to 20%, and the DEM window size was
set to nine samples for both tracks. Furthermore, the parameter σL of Equation (19) was
set to 0.4◦ for both tracks. Selection of the previous two parameters was made empirically
and acknowledging the fact that this area has rough topography. Moreover, the small-scale
roughness σS was set to 1.25 cm, which is higher than the in situ measurements, but within
the IGOT model validity. We expect the surface roughness to be higher than the in situ
measurements, as the measurements were taken in a low relief area of the sites. Finally, the
vegetation optical depth of the first track was zero, as we expected the vegetation to be dry.
On the other hand, the vegetation parameter κd of the second track was set to 0.2. This
value was selected empirically to match CYGNSS reflectivity. All of the model parameters
and the track information are summarized in Table 2.

The WG track 1 SP and the in situ sensor locations are shown in Figure 6a. The peak
reflectivity of both CYGNSS and IGOT is shown in Figure 6b. In the figure, the points
between the two vertical orange lines are between the SoilSCAPE sites. As illustrated in
the figure, the IGOT model reflectivity follows the CYGNSS reflectivity for most of the
points on the track. Furthermore, the median difference between CYGNSS reflectivity and
IGOT reflectivity is about 2.5 dB. An anticorrelation relation between the elevation and
peak reflectivity of both the IGOT model and CYGNSS can be observed in Figure 6b. This
is mainly due to the fact that the valley basins are smoother than the hills in this region,
which results in higher reflectivity in the valleys.
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Figure 6. WG track 1 : (a) Track elevation map; (b) Peak reflectivity. The SoilSCAPE sites are between
the orange vertical lines.

The WG track 2 SP and the in situ sensor locations are shown in Figure 7a. The peak
reflectivity is shown in Figure 7b. As illustrated in the figure, the peak reflectivity of
the IGOT-VEG model matches the CYGNSS reflectivity with good accuracy except for
three DDMs. These DDMs lie between −110.25◦ and −110.4◦ longitudes, as shown in
Figure 7a. For all peak reflectivity points on the track, the median value of the difference
between CYGNSS and IGOT-VEG reflectivity is about 1.8 dB. The three outlier DDMs,
which IGOT-VEG underestimated, are over the San Pedro river. This river could be the
reason for the high CYGNSS reflectivity, as the high water level of the river during the
monsoon season can cause strong coherent reflections and increase the DDM reflectivity,
which is not accounted for in the parameterization of the IGOT model.

The two tracks over JER were acquired within four hours of each other on 30 May
2022. Selection of the track length was made such that the DDM signal-to-noise ratio (SNR)
is equal to or over 2 dB. All the DDMs in these tracks have an SNR between 2 dB and 10 dB.
During these tracks, the in situ soil moisture was about 0.01 m3 m−3, which is very dry.
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In the model, the soil clay percentage was set to 20%, and σL was set to be 0.1◦. The latter is
lower than the value used for the WG tracks as this area is expected to have less topography,
as illustrated in the elevation maps of Figures 8a and 9a. The small-scale roughness σS
was set to 1.25 cm, which is close to the highest in situ roughness measurement. In the
model, the DEM window size was set to 15 samples, which is larger than the value used
for the WG tracks. The DEM window size was increased to reduce the DEM noise, as the
JER area is relatively flat compared to the WG area. All of the JER tracks used the same
IGOT parameters. A summary of these parameters and the track information is provided
in Table 2.

111.0 110.6 110.2 109.7 109.3
Longitude

31.2

31.4

31.6

31.8

32.0

32.2

32.4

La
tit

ud
e

Reported SPs
In-situ sensors

1000

1500

2000

2500

Elevation [m
]

(a)

110.4 110.2 110.0 109.8
Longitude [deg]

25

20

15

10

Re
fle

ct
iv

ity
 [d

B]

1200

1400

1600

1800

El
ev

at
io

n 
[m

]

IGOT CYGNSS DEM elevation

(b)

Figure 7. WG track 2 : (a) Track elevation map; (b) Peak reflectivity. The SoilSCAPE sites are between
the orange vertical lines.

Table 2. Analyzed track information.

WG Track 1 WG Track 2 JER Track 1 JER Track 2

Date 5 February 2019 15 September 2019 30 May 2022 30 May 2022
Time [UTC] 19:41 14:31 14:27 17:57
Spacecraft ID 8 6 4 5
Channel number 4 4 3 4
Starting sample ID 70,680 104,540 10,419 128,830
Number of DDMs 25 20 14 18
SNR range [dB] 4–13 5–10 2–10 2–10
Soil moisture [m3 m−3] 0.18 0.51 * 0.01 0.01
Soil clay percentage 20% 20% 20% 20%
σL 0.4◦ 0.4◦ 0.1◦ 0.1◦

σS [cm] 1.25 1.25 1.25 1.25
DEM window size 9 9 15 15
κd 0 0.2 0 0

* Saturated soil moisture.

The JER track 1 peak reflectivity of each of CYGNSS and the IGOT model is shown
in Figure 8b, which shows that the reflectivity of the IGOT model follows the CYGNSS
reflectivity. Furthermore, the median difference of reflectivity between CYGNSS and IGOT
is about 4 dB.

For JER track 2, the peak reflectivity of each of CYGNSS and the IGOT model is shown
in Figure 9b. The median difference of reflectivity between CYGNSS and IGOT is about
4 dB. For most of the DDMs, the IGOT model reflectivity follows the CYGNSS reflectivity.
However, there is a jump in CYGNSS reflectivity of the DDM with a longitude of −107.01◦

that the IGOT model did not capture. This increase in CYGNSS reflectivity may be due to a
vertically variable soil moisture profile that is wetter beneath the surface since the SP of
this DDM is located in a valley, as shown in Figure 9.
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Figure 8. JER track 1: (a) Track elevation map; (b) Peak reflectivity. The SoilSCAPE sites are between
the orange vertical lines.
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Figure 9. JER track 2: (a) Track elevation map; (b) Peak reflectivity. The SoilSCAPE sites are between
the orange vertical lines.

4.2. DDM Results

In this section, an analysis of three DDMs is presented. Two DDMs are from WG
track 1, and the last is from JER track 1. These DDMs were selected based on their proximity
to the in situ sensors and distinct features.

The first DDM is sample 70,682 of WG track 1, the third sample from the west. The SP
is located at a latitude of 31.505◦ and longitude of −110.726◦, which is west of the in situ
sensors. Figure 10a,b show the normalized CYGNSS DDM and the normalized DDM
estimated by the IGOT model, respectively. Furthermore, the elevation map of the area
around the SP is shown in Figure 10c. As shown in Figure 10a, this DDM has a strong
positive Doppler tail. Despite the complex shape of this DDM, the IGOT model is able
to estimate the CYGNSS DDM with good accuracy, which includes generating the DDM
horseshoe shape, as illustrated in Figure 10b. However, the intensity of the horseshoe is
not captured fully by the model. The IGOT model has the capability of plotting the WAF
projection of a specific DDM cell. Two cells within the horseshoe shape are of interest.
The first is (4, 2), where the reflectivity of this cell is close to the SP reflectivity. The WAF
projection of this cell is shown in Figure 10d, which illustrates that the majority of the
energy of this cell is from the valleys. The second cell is (8, −3), which was selected due
to the relative reflectivity discrepancies between CYGNSS and IGOT. As illustrated in
Figure 10e, the majority of the cell energy is from a valley.
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Figure 10. DDM of sample 70,682 of WG track 1: (a) Normalized CYGNSS DDM; (b) Normalized
IGOT DDM; (c) DEM; (d) WAF projection of DDM cell (4, 2); (e) WAF projection of DDM cell (8, −3).

The second DDM is sample 70,693 of WG track 1, the closest DDM to the Lucky Hills
site from the west. This DDM SP is located at 31.724◦ latitude and −110.072◦ longitude,
with a reported SNR of 5.5 dB. Furthermore, the normalized reflectivities of the CYGNSS
DDM and the IGOT model DDM are shown in Figure 11a,b, respectively. Moreover,
the elevation map of the area close to the SP location is shown in Figure 11c. This DDM
has non-zero cells in the negative delay. In a DDM, no return is expected before the SP.
To understand this phenomenon, the WAF projection of cell (−7, 3) was examined, the cell
that has the highest reflectivity in the negative delay part of the DDM. The WAF projection
of this cell is presented in Figure 11d. It shows that the cell scattering area is around the
CYGNSS reported SP location. On the other hand, the WAF projection of the DDM SP
(0, 0) shows that its scattering area is on the west side of the reported SP location, as shown
in Figure 11e. This DDM has two strong scattering areas, where the DDM is centered on
the strongest. The first scattering area is associated with the reported SP location, which
contains the valley, as shown in Figure 11d. The other scattering area is associated with the
high elevation area and its slope, as shown in Figure 11e.
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Figure 11. DDM of sample 70,693 of WG track 1: (a) Normalized CYGNSS DDM; (b) Normalized
IGOT DDM; (c) DEM; (d) WAF projection of DDM cell (−7, 3); (e) WAF projection of DDM cell (0, 0).

The third DDM is sample 104,027 of JER track 1. Its SP is located at 32.553◦ latitude and
−106.771◦ longitude with an SNR of 8.7 dB. This DDM was selected due to its proximity
to the in situ sensors and the SP footprint location. Figure 12d shows the elevation map
of the area around the SP. Furthermore, the normalized CYGNSS DDM and IGOT model
DDM are presented in Figure 12a,b, respectively. These figures show that the DDM of the
IGOT model has a similar shape as the CYGNSS DDM. Furthermore, the WAF projection
map of the SP matches the expected shape of a flat region, as shown in Figure 12c. A WAF
projection map of a SP of a flat area is expected to have an elliptical shape.
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Figure 12. DDM of sample 104,027 of JER track 1: (a) Normalized CYGNSS DDM; (b) Normalized
IGOT DDM; (c) DEM; (d) WAF projection of DDM cell (0, 0).

5. Discussion and Future Directions

The IGOT model has been validated with CYGNSS data over three areas: WG, JER,
and SLV. In Section 4, the results of WG and JER were presented. Furthermore, the results
of SLV were discussed in [20]. These sites cover various topographies from rough (WG) to
smooth (JER). The results show that this model can estimate CYGNSS DDMs with good
accuracy under most conditions. Both the peak reflectivity and the DDM shape of the
IGOT model were close to that of CYGNSS with discrepancies in some of the points that
are discussed in this section. The performance assessment criteria we follow are that (1) the
shape of the modeled DDM should track the observed one, and (2) the values of reflectivity
should be within a few dB of the measured ones. Some of the latter may be accounted for
based on the calibration accuracy of CYGNSS land DDMs, and some of it can be accounted
for based on the uncertainties of input parameters.

The discrepancies of some of the points in the tracks can be attributed to the SRTM
noise and vertical resolution, as the model is sensitive to DEMs. In generating the IGOT
DDMs, we assumed that both σL and σS are fixed for the whole area. Hence, we selected
one value for WG sites and another value for JER sites. This assumption was made due
to limited information on these parameters. However, in reality, these parameters are not
constant. Thus, some of the errors in peak reflectivity are also attributed to this assumption.
Using a lidar DEM instead of the SRTM DEM can improve the match between CYGNSS
reflectivity and IGOT reflectivity, as proven in [31].

The results of the WG tracks, demonstrated in Figures 6 and 7, show the importance
of accounting for VWC in modeling GNSS-R. In this paper, the vegetation modeling is
simple and can be applied to low-vegetated terrains. To account for dense vegetation,
including forests, an advanced electromagnetic model is required as the scattering from the
vegetation components is not negligible. An adaptation of the model presented in [32] to
GNSS-R can be used to improve the IGOT model to account for dense vegetation and is the
subject of our ongoing work.

The results of JER track 2 highlight a limitation of the IGOT model. Specifically,
the jump in reflectivity of the DDM located at 32.59◦ latitude and −107.01◦ longitude
(Figure 9b) is expected to be due to the presence of higher moisture content in subsurface
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soil, as the dry surface soil allows for deep penetration of the GPS L1 signal. However,
the model used in this work only accounts for surface reflection. Thus, a modification to
the Fresnel reflection coefficient R is needed to model the reflections from a subsurface
soil moisture profile. We expect the subsurface soil moisture to affect the DDM reflectivity
when the surface soil is very dry. However, the contribution of subsurface soil dielectric
constant change to the Fresnel reflection coefficient for the frequency of the GPS L1 signal
is expected to be negligible when the surface soil moisture is high.

The DDM results, presented in Figures 10–12, give insight into the location and area of
the DDM cells. Furthermore, the DDM of Figure 11 shows a case where the SP location was
changed due to topography. In this DDM (Second DDM), there are two strong returns at
(0, 0) and (−7, 3). The strongest is at (0, 0). However, it does not correspond to the reported
SP location, as shown in Figure 11e. Instead, the scattering is from the high elevation area
and its slope.

The discrepancies in relative reflectivity between CYGNSS and IGOT in the tail of the
first DDM, shown in Figure 10, can be attributed to heterogeneity in the surface roughness
of the scattering regions. These scattering regions are valleys as illustrated in Figure 10d,e.
Although the random roughness scales in the IGOT model can vary spatially, in this work,
we fixed the value due to a lack of spatial information on these roughness scales. Another
possible reason for the discrepancies is the presence of fading effects due to this random
roughness that our incoherent model failed to capture [33].

The cutoff wavenumber between the short-scale and the long-scale component of
the IGOT model needs to be such that the assumptions made in Section 2.1 are valid.
Specifically, the long-scale component is smooth relative to the wavenumber and the short-
scale component has a narrow correlation function. In ocean application, this cutoff was
selected between k/6 and k/3 [22], depending on the wind speed. In [34], the cutoff was
selected to be 3k(σXσY)

1/2, where σX and σY are the standard deviations of the long-scale
component in the x and y directions, respectively. The model in [34] was developed for
both ocean and land applications, and the cutoff wavenumber was selected to ensure a
smooth transition between the two scales and the constraints of each component.

In validating the IGOT model, both σL and σS were fixed to a single value for each
area. However, these parameters can vary spatially. Varying σL was explored in [31] by es-
timating the parameter from lidar measurements with 30 cm spatial resolution. The results
showed that estimating σL from lidar can improve the matching with CYGNSS observa-
tions. In theory, σS can also be estimated from lidar for some surfaces. For surfaces with
known spectral shapes, the spectra of the surface can be estimated from the lidar mea-
surements. Then, σS can be estimated from the area of the spectra within the small-scale
roughness region.

The JER DDM presented in Figure 12 resembles a land DDM from flat regions. Thus,
the WAF projection of the SP has an almost convex shape, as shown in Figure 12c. These
DDM properties are the result of the special characteristics of this area. The JER sites are
located in a relatively flat region with minimal vegetation and almost homogeneous soil
moisture. Thus, the IGOT model can potentially assist in validating the CYGNSS calibration
over land and other systems in the future. However, a lidar DEM needs to be used instead
of the SRTM DEM to reduce the DEM noise. It should be noted that the validation should
be restricted to the DDMs located in the flat area and not the full extent of the analyzed
JER tracks.

This model can be used in a physics-based soil moisture retrieval method to estimate
the surface soil moisture value from CYGNSS observation(s). Such a method was presented
in [35], which used a global optimizer and a forward model to estimate soil moisture
from CYGNSS DDMs. However, unlike the IGOT model, the forward model in [35]
can be applied to flat terrains only. Thus, by replacing the model in [35] with the IGOT
model, the retrieval method can be extended to retrieve soil moisture value from areas
with topography.
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Studying the sensitivity of the IGOT model to noise and errors in its input parameters
and their implications on soil moisture retrievals is essential for estimating the performance
of using the IGOT model for retrievals.

6. Conclusions

This paper presented a GNSS-R model, which was validated with CYGNSS DDMs
over two areas. The peak reflectivity of four tracks over the validation sites was studied.
Additionally, three full DDMs from the studied tracks were presented with WAF projection
maps for some of the DDM cells. The IGOT model results matched CYGNSS with good
accuracy under most conditions, in both peak reflectivity and the DDM shape. For the
studied tracks, the average error in peak reflectivity was between 1 dB and 4 dB. The model
of this paper increases the fidelity of GNSS-R signal modeling for land applications.
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