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Abstract: Automatic road extraction from remote sensing images has an important impact on road
maintenance and land management. While significant deep-learning-based approaches have been
developed in recent years, achieving a suitable trade-off between extraction accuracy, inference
speed and model size remains a fundamental and challenging issue for real-time road extraction
applications, especially for rural roads. For this purpose, we developed a lightweight dynamic
addition network (LDANet) to exploit rural road extraction. Specifically, considering the narrow,
complex and diverse nature of rural roads, we introduce an improved Asymmetric Convolution
Block (ACB)-based Inception structure to extend the low-level features in the feature extraction layer.
In the deep feature association module, the depth-wise separable convolution (DSC) is introduced to
reduce the computational complexity of the model, and an adaptation-weighted overlay is designed
to capture the salient features. Moreover, we utilize a dynamic weighted combined loss, which can
better solve the sample imbalance and boosts segmentation accuracy. In addition, we constructed
a typical remote sensing dataset of rural roads based on the Deep Globe Land Cover Classification
Challenge dataset. Our experiments demonstrate that LDANet performs well in road extraction
with fewer model parameters (<1 MB) and that the accuracy and the mean Intersection over Union
reach 98.74% and 76.21% on the test dataset, respectively. Therefore, LDANet has potential to rapidly
extract and monitor rural roads from remote sensing images.

Keywords: remote sensing image; rural roads; lightweight neural networks; Inception; dynamic weight

1. Introduction

As basic geographic information, rural roads are an important part of the transport
system and play a significant role in urban planning, traffic navigation and digital map
updating. With the advancement of science and technology, efficient and high-accuracy
road extraction must be carried out in geographic mapping. Traditional methods for road
area labeling are mostly manual and GPS-based methods, but the former is burdensome
and the latter usually loses road details such as width, edges, etc. [1]

Remote sensing images have the advantages of being large-scale, fast-updating, easy
to access and rich in information. With increasing resolution, the value and universality
of remote sensing images have been greatly expanded. This introduces the possibility
and potential of various Earth observation tasks by providing powerful data support [2].
Therefore, using remote sensing images for rapid and efficient road extraction has been a
key research topic for many scholars in recent years. There are two main areas of study in
remote-sensing-based road network extraction technology. The first is the shallow feature
observation method, in which early scholars used the inherent geometric, textural and
spectral features of images for road network extraction. However, these features are so
simple that the method resulted in low accuracy [3–6], so some researchers combined it with
multi-source data fusion, template matching and model orientation application methods to
improve accuracy and efficiency. Zhao et al. [7] used the Extended Kalman Filter (EKF) and
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Particle Filter (PF) models for road extraction, achieving acceptable performance in moder-
ately and highly noisy backgrounds. Perciano et al. [8] used a two-layer Markov random
field (MRF) to analyze multi-source fused data and to improve accuracy. Zang et al. [9]
proposed a non-periodic directional structure measure (ADSM) method by introducing
the representation of road-like features to enhance its effectiveness. Chinnathev et al. [10]
referenced morphological features to develop an automatic road-centerline-extraction field-
programmable gate array (FPGA) architecture to meet the demand for real-time road
extraction. Although these studies have been effective, there are still problems with low
stability and adaptability to complex information, gradient loss and overfitting of results.

The second method is the deep feature mining method, which uses multilayer networks
to expand the non-linear mapping of image features and extract them. Hinton et al. [11] intro-
duced a neural network that made the deep learning approach gain widespread attention.
Compared with traditional machine learning, deep learning focuses on automatic feature
learning from huge datasets with multilayer neuron organization. With the development
of artificial intelligence, many scholars have been interested in the intelligent extraction of
road networks. Zhong et al. [12] used full convolutional networks (FCNs) for road extrac-
tion from remote sensing images and obtained acceptable performance. Varia et al. [13]
validated the effectiveness of deep learning methods by using conditional generative ad-
versarial networks (GANs) and FCNs to extract roads from the data of unmanned aerial
vehicles (UAVs). Doshi et al. [14] combined the ResNet network and the Inception network
to propose a Residual Inception Skip Network and greatly improved the performance of
road network extraction. Zhou et al. [15] constructed a D-LinkNet model by improving the
extended convolutional layers in LinkNet, which expanded the perceptual field without
reducing the resolution of the feature map. Li et al. [16] developed the hybrid convolutional
network (HCN) by referring to FCN, Unet and VGG. Boonpook et al. [17] proposed a
deep residual deconvolutional network with SegNet, which improves model extraction
accuracy by enhancing feature relationships to overcome interference with complex scenes.
Lu et al. [18] constructed a multi-scale and multi-task deep learning framework based
on Unet, which concerns both road detection and centerline extraction operations, and it
outperformed in deep-learning-based road extraction methods. However, it was found that
while the higher complexity may achieve better performance, it may also result in greater
requirements. Therefore, most of the deep mining models in road extraction are seeking to
overcome the problems of training and application.

For meeting the requirements of practical applications, many lightweight networks
have been proposed, with the primary intention of lightening the network in size and speed,
while maintaining as much accuracy as possible. MobileNets [19–21] replaces the standard
convolutions with depth-wise separable convolutions (DSC), which effectively reduces the
number of parameters by decomposing the convolution operations. ShuffleNets [22,23]
came up with a split–shuffle structure to speed up the model training process and enhance
inter-channel correlation. ENet [24] was proposed to solve the problem of the large num-
ber of floating point operations in the network by compressing the channel, but with the
resulting loss of spatial information, the accuracy does not perform well. In recent years,
multiple networks have been proposed that employ optimized convolution, which can
balance the network’s number of parameters, inference speed and segmentation accuracy.
LiteSeg [25] applies the Atrous Spatial Pyramid Pooling module to MobileNetV2 and has
shown strong performance. ERFNet [26] uses residual connections and factorized convo-
lutions to remain efficient while retaining remarkable accuracy. EDANet [27] proposes a
bottleneck structure that combines asymmetric convolution with depth-wise convolution.
ESPNet [28] and ESPNetv2 [29] introduce aurous convolution into their networks because
they can obtain more features over larger areas using the same parameters. ELANet [30]
uses an attention mechanism to strengthen different levels of information. MADNet [31]
proposes a dense lightweight network by combining the residual multiscale module with
an attention mechanism with the dual residual path block, which effectively reduces the
model parameters and complexity. Despite these achievements, we believe that the balance
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between the accuracy and efficiency of these design strategies for the extraction of single
vulnerable targets still need to be improved. Designing a reasonable network structure
that achieves greater accuracy with few computational resources by making full use of
remote sensing image features is important to facilitate the application of deep learning to
road extraction.

To achieve a lightweight, efficient and high-accuracy real-world application of rural
road extraction, we designed a lightweight dynamic addition network (LDANet) based
on the encoder–decoder framework. Firstly, we constructed an improved ACB-based
Inception structure to extend the low-level features in the feature extraction layer. Then,
we developed a deep feature association module by introducing DSC and an adaptation-
weighted overlay to reduce the computational complexity. Finally, we built a typical rural
road dataset to evaluate the performance and utilize a dynamically weighted combined
loss function to solve the sample imbalance. The main contributions of this article are
as follows:

1. A lightweight rural road extraction model is proposed and shows significant perfor-
mance on two datasets, enhancing the applicability of remote sensing techniques.

2. We extended shallow features using ACB-based Inception and designed a lightweight
deep correlation module by referring to DSC and an adaptation-weighted overlay.

3. We designed a dynamic hybrid loss function to improve the accuracy of unbal-
anced samples.

2. Data

In this paper, we evaluate the performance of the LDANet on two datasets: (1) the
typical rural road dataset and (2) the Massachusetts roads dataset [32].

2.1. The Typical Rural Roads Dataset

This dataset is constructed based on the DeepGlobe Land Cover Classification Chal-
lenge dataset [33], which is a publicly available dataset of high-resolution remote sensing
images that can be obtained from the website http://Deepglobe.org/challenge.html (ac-
cessed on 10 March 2022). The dataset’s spatial resolution is 50 cm/pixel and includes
1000 images, each 1024 × 1024 in size. The training set, validation set and test set were
divided from the typical rural road dataset in a ratio of 75%, 15% and 10%, respectively,
and the types of roads contained in the dataset include unpaved roads, paved roads and
dirt roads. In the experiment, we used the data augmentation method which includes
geometric transformations (scaling and rotation) and pixel transformations (noise addition
and gamma transform) [34] to expand the training set and the validation set to a size of
7500 and 1500 images, respectively, with image sizes of 256× 256. In the test set, 100 images
of size 1024 × 1024 were used. Sample images are shown in Figure 1.

2.2. The Massachusetts Roads Dataset

This dataset was downloaded from https://www.cs.toronto.edu/~vmnih/data/ (ac-
cessed on 15 December 2021). The dataset’s spatial resolution is 1.2 m/pixel and the image
size is 1500× 1500. The Massachusetts roads dataset covers both urban and suburban areas.
In this paper, we split the images from the original dataset into multiple 256 × 256 images
and expanded the training set and validation set to 6000 and 1200 images, respectively, for
the experiment. In the test set, we used 100 images of size 1500 × 1500. Sample images are
shown in Figure 2.

http://Deepglobe.org/challenge.html
https://www.cs.toronto.edu/~vmnih/data/
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3. Methodology

In this work, we aimed to construct a lightweight dynamic addition network (LDANet)
for rural road extraction. LDANet consists of two modules: the feature expansion module
based on the improved Inception framework and the deep feature association module
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based on the DSC and dynamic feature superposition. The model framework is shown in
Figure 3.
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In the feature expansion module, the model obtains global and multi-scale features
from the input image by averaging pooling and convolving at different scales, and uses
1 × 1 convolution for the fusion and dimensionality enhancement of feature layers. The
deep feature association module is divided into two stages: the encoder and the decoder.
In the encoder stage, six convolutional layers are constructed to extract the deep features
of the expanded feature layers, where every two layers are pooled once to compress the
image size, and the two feature layers are dynamically weighted and superimposed. In the
decoder stage, the image size of the deep feature layers is expanded by upsampling, then
the expanded layers are fused with the upper superimposed layers, and finally, a result
map the same size as the input data is produced.

3.1. Feature Expansion Module

Based on previous research [35], we have found that road texture, color and geometric
features have a positive effect on road extraction. Rural roads are narrow, complex and
diverse, so enriching shallow information is essential and important. To fully reflect the
performance of shallow features, we built a feature expansion module based on the Incep-
tion network module (Figure 3a). First, the input layer is up-dimensioned using a 1 × 1
convolution kernel, which not only reduces the convolution parameters but also integrates
features across channels to ensure the validity of the features while simplifying the model.
Then, we use the asymmetric convolution block (ACB) [36] to expand the feature layers.
The ACB (Figure 3b) contains three branches—a 3 × 1 horizontal kernel, a 1 × 3 vertical
kernel and a 3× 3 global kernel—and each branch extracts the layer features separately and
then fuses the results. Compared with double-layer convolution, ACB not only reduces the
model parameters but also improves the saliency of node features while ensuring feature
globalization. As roads have certain geospatial correlations, expanding the perceptual
field can further enhance the road feature information, so we set the convolutional ker-
nel size to 3 × 3 versus 5 × 5. Finally, the features are up-dimensioned and output by
1 × 1 convolution.

3.2. Deep Feature Association Module

As shown in Figure 4b, we use a multi-layer convolutional network for deep feature
extraction and to enhance feature association with dynamic weighted superposition. This
module is based on the Unet [37] network framework (Figure 4a). In the encoder stage, we
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expand the feature space dimension by 3 × 3 convolution to enhance the deep information
and then compress the feature layer size by MaxPool to reduce the model’s computational
complexity and to improve the computational efficiency. In the decoder stage, we recover
and output the image by jump connection and upsampling. In this module, we introduce
an adaptation-weighted overlay layer. In the encoder stage, the layer has an overlap and
dynamically adjusts the weights of the convolutional output feature layer, which increases
the expressiveness of salient features and improves the efficiency of feature extraction. In
the decoder stage, dynamically weighted overlay layers and 1 × 1 convolution realize
the jump connection in the network. Compared with the complex jump connection in
Unet++ [38] and Unet+++ [39], this method can not only strengthen the association of
salient features but can also better preserve the structure of the feature space and achieve
model simplification based on ensuring the accuracy of extraction. As shown in Figure 4b,
this module takes fewer feature dimensions than Unet because, on the one hand, the road is
a two-class model, and too rich a feature space will cause greater calculation pressure, and
on the other hand, this module uses DSC instead of traditional convolution calculation to
reduce model parameters. Because one convolution kernel is responsible for one channel in
DSC, and one channel is only convolved by one convolution kernel, the number of features
mapped is the same as the number of channels in the input layer [40]. So, we added an
intermediate feature layer to the DSC, first by up-dimensioning the input features by 1 × 1
convolution, then using DSC to generate the intermediate feature layer, and finally using
the 1 × 1 convolution output; the convolution process is shown in Figure 5.
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3.3. Loss Function

Loss functions are often used to measure the extent to which a model’s predictions
differ from the actual data, and selecting the correct loss function can guide model training
in the right direction.

Cross-Entropy Loss is a loss function that evaluates the difference between the proba-
bility distribution and the true distribution of the current training set to judge the training
effect on the model. The model in this paper is dichotomous, so Binary Cross-Entropy Loss
(BCE Loss) was chosen as the loss function.

BCE Loss = − 1
N ∑i[yi· log(pi) + (1− yi)· log(1− pi)] (1)

where yi is the sample value, the positive class is 1 and the negative class is 0. pi is the
predicted value, taking values within (0, 1).

Roads behave narrowly in the dataset, covering a small area, and can suffer from
severe sample imbalance during training. Dice Loss solves the problem of having too small
a proportion of foregrounds by measuring the overlap of two samples, and it has acceptable
performance in binary classification problems.

Dice Loss = 1−∑N
1

2yipi + ε

yi + pi + ε
(2)

where yi is the sample value, the positive class is 1 and the negative class is 0. pi is the
predicted value, taking values within (0, 1).

Dice Loss has acceptable performance for scenarios with a severe imbalance between
positive and negative samples, but the loss tends to be unstable when training small tar-
gets, which leads to drastic gradient changes. Therefore, this paper proposes a Combined
Weighted Loss (CWL), which sets the weights according to the ratio of BCE Loss to Dice
Loss, giving higher weights to functions with larger loss values and lower weights to func-
tions with smaller loss values, to increase the proportion of high-value loss functions while
using low-value loss functions to maintain the stability of the model, thereby accelerating
the convergence of the model and improving its accuracy.

CWL = WCB·BCE Loss + WCD·Dice Loss (3)

WCB =
|BCE Lossn|

|BCE Lossn|+ |Dice Lossn|
(4)

WCD = 1−WCB (5)

where WCB is the proportion of BCE Loss, and WCD is the proportion of Dice Loss.

4. Experimental Study
4.1. Model Evaluation Criteria

In this paper, four precision metrics, Precision, Recall, F1 Score and IoU (Intersection
over Union), were chosen to evaluate the road extraction results, and their expressions are
as follows.

Precision is the ratio of the area of the real road area in the resulting image to the area
of the road in the labeled image.

Precision =
TP

TP + FP
(6)

Recall is the proportion of correctly identified roads to the total roads in the tagged image.

Recall =
TP

TP + FN
(7)
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The F1 Score, a statistical measure of the accuracy of a dichotomous model, is often
used to determine the overall performance of a dichotomous model.

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

IoU is the degree of overlap between the pre-target measurement results and the
target label.

IoU =
Result(Road) ∩ Label(Road)
Result(Road) ∪ Label(Road)

(9)

where TP (true positive) represents a positive label and a positive prediction, FP (false
positive) represents a negative label and a positive prediction and FN (false negative)
represents a positive label and a negative prediction.

4.2. Loss Function Selection

In this section, we use BCE Loss, Dice Loss, BCE Loss + Dice Loss and CWL as model
loss functions and test them on the rural road dataset. The experimental results were
evaluated using both Precision and IoU, and the results are shown in Table 1. From the
comparison of the single-loss-function applications, it can be seen that BCE Loss performs
better in terms of extraction accuracy compared to Dice Loss, but Dice Loss has better
performance in terms of IoU, which is because Dice Loss focuses more on the overlapping
area of image samples, while BCE Loss focuses more on the global performance. The
combined loss results show that the Precision and IoU of BCE Loss + Dice Loss and CWL
are higher than that of using a single loss function, indicating that the combination of loss
functions can effectively improve the performance of the model. The results show that
the Precision and IoU of CWL are the highest, which shows that the dynamic weighting
method can give full play to the advantages of the combination of loss functions, so that
the model in this paper can fully utilize the advantages of Dice Loss in the secondary
classification while ensuring stability and improving the applicability of the model to
situations of serious imbalance between positive and negative samples. Therefore, CWL
was selected as the loss function for road extraction in this paper.

Table 1. Effect of different loss functions on road extraction results.

Precision IoU

BCE Loss 0.9862 0.7322
Dice Loss 0.9850 0.7561

BCE Loss + Dice Loss 0.9866 0.7605
CWL 0.9874 0.7621

4.3. Results and Discussion

To estimate the performance of our model, we compared the model with five other
models: Unet, Unet++, Unet+++, MACUnet [41] and MobileNet. Unet++, Unet+++ and
MACUnet are all Unet-based networks, with Unet++ and Unet+++ refining the jump layer
and enhancing global feature linkage, and MACUnet improving upon Unet with the ACB
module and multi-scale jumps to enhance network feature acquisition. MobileNet was
used as a benchmark for the comparison of lightweight models. All experiments were
implemented on an NVIDIA Tesla P100 GPU with Adam as the optimizer and a learning
rate of 0.001. LDANet uses CWL as the loss function and the rest of the models use a
Cross-Entropy Loss function.

4.3.1. Results of the Typical Rural Roads Dataset

In this section, we compare LDANet with five other image segmentation models on the
rural road dataset. Table 2 shows the results of four accuracy evaluation metrics, Precision,
Recall, F1 Score and IoU, for the six models on the rural road test set. Since we aimed to
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build fast and efficient lightweight models for rural road extraction, it was necessary to
evaluate the model complexity, so we conducted statistics on the training time and model
parameters for each of the six models mentioned above to measure the model performance.

Table 2. Comparison of six models evaluated on the rural roads dataset.

Precision Recall F1 Score IoU Parameters
(M)

Train Time/Epoch
(S)

Unet 0.9754 0.9728 0.9741 0.7482 9.85 580
Unet++ 0.9831 0.9822 0.9826 0.7593 11.80 1318

Unet+++ 0.9881 0.9875 0.9878 0.7644 6.75 1530
MACUnet 0.9840 0.9817 0.9829 0.7617 5.15 725
MobileNet 0.9683 0.9632 0.9657 0.7431 0.17 178
LDANet 0.9874 0.9870 0.9872 0.7621 0.20 183

From Table 2, Unet++ has the highest Precision and IoU, scoring 0.9881 and 0.7644,
respectively. This is because it deepens the network context and can fully learn the char-
acteristics of the target. However, the complex network structure degradation increases
its operation difficulty, making it not perform well in terms of model parameters and
training time. In terms of training efficiency, MobileNet uses DSC to replace the traditional
convolution process, which reduces the cost of convolution and makes it perform best in
terms of model parameters and training time. However, due to image restoration only
occurring through the upsampling method, the global feature association of the target is
insufficient in the modeling process, resulting in low extraction accuracy.

In terms of model accuracy, LDANET has a Precision of 0.9874 and an IoU of 0.7621,
which are 1.98% and 2.13% lower than Une+++, respectively, but LDANET greatly im-
proves training efficiency with a model parameter count of 0.20 M and a training speed of
183 s/epoch, thus having 3375% fewer parameters and being 836% faster than Unet+++.
Meanwhile, LDANET performed comparably to MobileNet in terms of training efficiency,
but with 1.91% and 1.9% improvements in accuracy and IoU, respectively.

The results show that compared with Unet++, LDANet is relatively lightweight be-
cause it introduces ACB and DSC at the cost of slightly reducing model accuracy, which
greatly enhances the applicability of the model. Compared with MobileNet, although
LDANet’s calculation parameters have increased, it can significantly improve the accuracy
of the model. This is because LDANet uses the encoder and decoder structure to strengthen
the feature association and to significantly improve the expression of dominant features by
introducing dynamically weighted overlay layers.

Figure 6 shows the extraction results of the six models on the rural road test set. From
the figure, it can be seen that all six models have some defects in the road extraction effects,
but compared with other models, Unet+++ and LDANet have an obvious improvement in
terms of road extraction. In summary, the use of LDANet for rural road extraction has a
high application value.
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4.3.2. Results of the Massachusetts Roads Dataset

To further validate the superiority and robustness of our LDANet, we also compared
the LDANet with other methods on the Massachusetts roads dataset, using Precision,
Recall, F1 Score and IoU metrics for evaluation.

The comparison results are shown in Table 3. The table shows that LDANet also
performs well on the Massachusetts roads dataset, with Precision, Recall, F1 Score and
IoU reaching 0.9755, 0.9707, 0.9731 and 0.6834, respectively. Figure 7 shows the extraction
results of LDANet on the Massachusetts roads dataset compared to the ground truth
map comparison, and it can be seen that our method achieves adequate visual results of
road extraction.

Table 3. Comparison of the six models evaluated on the Massachusetts roads dataset.

Precision (%) Recall F1 Score IoU Parameters
(M)

Train Time/Epoch
(S)

Unet 0.9612 0.9584 0.9598 0.6513 9.85 480
Unet++ 0.9710 0.9667 0.9688 0.6769 11.80 1130

Unet+++ 0.9768 0.9716 0.9742 0.6957 6.75 1280
MACUnet 0.9721 0.9683 0.9702 0.6774 5.15 605
MobileNet 0.9533 0.9412 0.9472 0.6455 0.17 152
LDANet 0.9755 0.9707 0.9731 0.6834 0.20 163
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4.3.3. Discussion

Deep learning methods to achieve road extraction from remote sensing images are
important to promote the application of remote sensing images and the development of
cities. In this work, a lightweight model was constructed based on the Unet network
structure. The model enhances the shallow feature information by introducing a feature
expansion module and uses dynamic weighted superposition to improve the feature
representation. Compared with Boonpook and Lu et al., this method can significantly
reduce the modeling parameters by using DSC, making the model lighter and faster.
Compared with MobileNets and ShuffleNets, this model can obtain high-accuracy road
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extraction results by upsampling and hopping connections of the Unet network structure
to fully learn contextual features.

5. Conclusions

We have proposed a lightweight extraction model based on rural road data. The model
is composed of a feature expansion module and a deep feature association module. In
addition, we used a dynamically weighted loss function according to the small proportion
of rural roads. Compared with complex methods which are expensive to calculate, our
method focuses on enriching shallow features and strengthening the correlation of deep
salient features, which can effectively balance reliability and speed. In the typical rural roads
dataset, our model’s accuracy was 0.9874, and its IoU was 0.7621. In the Massachusetts
roads dataset, our model also performed well. Our model has the characteristics of a
small number of parameters and a fast training speed, which can greatly reduce the
requirements for hardware while still ensuring extraction accuracy in practical applications.
Therefore, it is of great significance to promote the portable and rapid application of remote
sensing technology.

Future work will involve optimization strategies based on combined model appli-
cations to achieve multi-objective learning applications by enhancing global information
interactivity based on constrained model complexity.
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