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Abstract: Spatially continuous surface air temperature (SAT) is of great significance for various
research areas in geospatial communities, and it can be reconstructed by the SAT estimation models
that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived
from remotely sensed observations of spaceborne instruments. As land surface temperature (LST)
strongly correlates with SAT, estimation models are typically developed with LST as a primary input.
Geostationary satellites are capable of observing the Earth’s surface across large-scale areas at very
high frequencies. Compared to the substantial efforts to estimate SAT at daily or monthly scales using
LST derived from MODIS, very limited studies have been performed to estimate SAT at high-temporal
scales based on LST from geostationary satellites. Estimation models for hourly SAT based on the
LST derived from FY-4A, the first geostationary satellite in China’s new-generation meteorological
observation mission, were developed for the first time in this study. The models were fully cross-
validated for a very large-scale region with diverse geographic settings using random forest, and
specified differently to explore the influence of time and location variables on model performance.
Overall predictive performance of the models is about 1.65–2.08 K for sample-based cross-validation,
and 2.22–2.70 K for site-based cross-validation. Incorporating time or location variables into the
hourly models significantly improves predictive performance, which is also confirmed by the analysis
of predictive errors at temporal scales and across sites. The best-performing model with an average
RMSE of 2.22 K was utilized for reconstructing maps of SAT for each hour. The hourly models
developed in this study have general implications for future studies on large-scale estimating of
hourly SAT based on geostationary LST datasets.

Keywords: surface air temperature; large-scale estimation; hourly resolution; geostationary satellite;
land surface temperature

1. Introduction

Surface air temperature (SAT), a key meteorological element, is routinely measured
at weather stations by thermometers mounted about 2.5 m above the ground. Networks
of ground weather stations operated around the world provide high-quality, point-scale
measurements at high temporal scales, from which many observational data products have
been developed with strict quality assurance measures. Observational products for site
observations are crucial for a variety of research disciplines, such as climate studies [1].
For example, GHCN (Global Historical Climatology Network) datasets, containing both
daily and monthly air temperature measurements, were generated by assembling large
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numbers of station records from various sources [2,3]. However, ground weather stations
or observational data products only provide point measurements of SAT at stations, repre-
senting thermal states of the ambient atmosphere around the stations. Point measurements
from scarce and unevenly distributed ground sites are difficult to use to quantify complex
spatiotemporal patterns of SAT over large-scale areas, especially over areas with complex
topographic features and a wide range of geographic settings. Very limited weather stations
are installed and operated in the areas with harsh environments, such as mountainous
regions, and thus the atmospheric conditions of these areas are severely undersampled by
observations from weather stations. In contrast to point measurements of SAT, spatially
continuous SAT provides an important data source for many studies, such as urban heat
islands [4], exposure to heatwaves [5] and assessment of local climate [1], and has also been
used to drive local land surface numerical models [6,7].

Remote sensing techniques have the superior advantage of continuously scanning the
atmosphere and Earth surfaces over large-scale areas at regular periods using scientific
instruments onboard satellites. In particular, spaceborne multispectral imaging sensors
configured with split-window channels in the thermal infrared (TIR) spectrum can produce
wall-to-wall TIR radiative observations for characterizing thermal states of land surface.
TIR observations are typically used to derive land surface temperature (LST), which is
strongly associated with ground-observed SAT [8,9]. Thus, spatially continuous SAT can
be reconstructed at high spatial resolutions by integrating accurate point measurements
of SAT from weather station and TIR observations from satellites [10,11]. LST, together
with auxiliary spatial variables, has been widely used as the primary input variable for
SAT estimation models for reconstructing spatial fields of SAT. It is worth noting that
original calibrated radiative observations from TIR bands can also be used directly for
developing estimation models [12]. SAT estimation models are built on the statistical
relationships between ground-observed SAT and these spatial variables at sites. Previous
studies have developed SAT estimation models using various methods, which can be
generally classified into three categories, including the TVX (temperature vegetation index)
methods, parametric methods of energy balance and methods based on statistical learning
algorithms [13].

The TVX method is based on the assumption that air temperature of a vegetation
canopy is approximated as the surface temperature of the canopy, and estimates SAT
of a ground pixel using the relationship between LST and vegetation index, which is
calibrated from paired samples in a neighboring window around the pixel [13,14]. As
the validity of TVX severely depends on the temperature–vegetation relation, the method
is limited to areas with high spatially variable vegetation coverage [9]. Robustness of
fitting the relation is further impacted by the number of paired samples in a neighboring
window [15]. Estimation models based on energy balance estimate the SAT for each
pixel using a physically parameterized energy process between land surface and ambient
atmosphere. The satellite-derived LST was used as a key input for the parameterized
energy balance models [16,17]. As deriving representative parameterizations of energy
processes at finer scales is difficult, this method is seldom applied for estimating SAT. In
contrast, SAT estimation models have been extensively developed using various statistical
methods or learning algorithms, such as linear regression [18], fixed effect regression [19],
spatially explicit regression [20,21], Bayesian spatial modeling [11], ensemble learning
algorithms [22–24] and neural networks [25]. Statistical learning algorithms have great
flexibility and high capability in modeling nonlinear relationships and have received
increasing popularity in estimating SAT in recent years. Although deep learning techniques
have been applied for SAT estimation in a recent study [25], deep learning is more suitable
for inherently complex modeling tasks with huge amounts of labeled samples and high-
dimensional input features, such as computer vision and natural language processing [26].
Additionally, we should note that there is no absolutely best-performing learning algorithm
for all modeling tasks under all scenarios. Predictive capabilities of the SAT estimation
models developed using learning algorithms not only depend on the types of algorithms,
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but also is affected by the tuning of algorithm parameters, settings of hyperparameters of
the algorithms, scales of study areas, and selection of input features for modeling of SAT.
However, conventional machine learning algorithms, such as random forest and gradient
boosting, are adequate for the modeling task involved in SAT estimation, considering the
complexity and characteristics of data samples involved in the tasks [27].

Although substantial studies have been performed to estimate SAT using various
methods, these studies are primarily focused on introducing new statistical methods
or comparing between different learning methods. In addition, previous studies are
predominantly based on the LST retrieved from MODIS for estimating daily and monthly
SAT. For example, a recent study [28] has also used MODIS LST for estimating monthly SAT
over the United Arab Emirates. MODIS is the multispectral sensor mounted on NASA’s
polar-orbiting satellites Terra and Aqua, which have been acquiring Earth observation data
since about 2000 and will soon be decommissioned. Many countries and agencies across
the world are developing and maintaining their spaceborne Earth observation systems of
satellites, resulting in comprehensive systems of Earth observation satellites. Thus, there
is a need to extend and facilitate the studies for SAT estimation based on the diverse TIR
observations and corresponding LST data products from the satellite systems. In this
regard, Zhang and Du [29] developed an ensemble of models for estimating daily SAT
using LST datasets from the new-generation meteorological satellite missions, including
NOAA’s JPSS and EUMETSAT’s EPS. Imaging sensors onboard geostationary satellites
can scan a large-scale region at very high frequencies. Few studies have been carried
out to estimate SAT at high temporal scales using the observations from geostationary
satellites, and most are based on the LST derived from the SEVIRI sensor mounted on MSG
geostationary satellites. In these studies, different methods have been used to develop high-
temporal SAT estimation models, such as the TVX methods [30,31], parameterized energy
process models [16] and statistical learning [12,32,33]. Recently, a study for hourly SAT [27]
has developed hourly SAT estimation models based on LST datasets from the GOES-R
meteorological geostationary satellites. However, compared to the substantial studies for
estimating daily SAT, the studies for estimating high-temporal SAT using geostationary
observations is severely limited, and moreover, the existing studies for estimating high-
temporal SAT are limited to small-scale areas. FY-4 (Fengyun), China’s new-generation
geostationary meteorological satellite mission [34], is now in operational orbits as a twin
satellite system including FY-4A and FY-4B for routinely observing over Asia and Oceania,
but there are no studies for developing an estimation model for high-temporal SAT using
the LST derived from TIR observations of the FY-4 satellites.

In this study, we developed hourly SAT estimation models based on the LST derived
from FY-4A TIR observations to obtain spatially continuous SAT at an hourly scale. The
estimation models were developed with a very large number of stations for a very large-
scale region contained in the observation coverage of FY-4A’s full-disk. Random forest, a
popular ensemble learning algorithm with great capabilities in nonlinear complex modeling
tasks, was adopted to develop the hourly estimation models with the FY-4A LST as the
primary input. Variables related to time and location are important in spatial modeling
tasks, and to explore the influence of the variables on predictive performance of hourly
SAT models, four hourly estimation models were specified, including a baseline model and
three other models additionally incorporating the time or location variables. Predictive
performance of the four specified hourly models was assessed using cross-validation
approaches. Overall model performance and model predictive errors at temporal scales
and across sites were analyzed and compared between different models. The estimation
model with the highest performance was then utilized to reconstruct hourly maps of
SAT over the study area. As LST retrievals contain many missing pixels due to cloud
contamination that result in missing estimates in the hourly maps of SAT, data coverage of
the estimated hourly SAT was analyzed.
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2. Materials and Methods
2.1. Study Area

We developed SAT estimation models for the land areas, which are contained in a very
large-scale geographic extent with longitudes ranging from 55◦E to 255◦E and latitudes
ranging from 45◦S to 55◦N (Figure 1).
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Figure 1. Map of the study areas overlaid with the ground meteorological sites used for developing
SAT estimation models. The inset map on the lower left shows the full-disc observation area of the
FY-4A geostationary satellite, which is delimited by the black line, and the spatial extent of study
areas is denoted by the red line.

The spatial extent of the study areas was selected based on the full-disc observation
coverage of the FY-4A satellite, which is located at 104.7◦E above the Equator. The full-
disc of FY-4A, as indicated by the black line in the inset map of Figure 1, encompasses a
vast geographic area spanning from Africa in the west to the central Pacific Ocean in the
east. Instantaneous footprints of the imaging sensor onboard FY-4A decrease in spatial
resolutions due to imaging geometry, and the footprints over the fringe region, which are far
from the central area of the observation disc, severely degrade in terms of both shape and
resolution. Thus, a spatial extent excluding the outer edge region from the full disc, which
is delimited by a red line in the inset map, was selected. The land areas within the extent
were used as the study areas, covering South Asia, East Asia, Central Asia, most island
countries in the Pacific region and part of the Middle East. The study areas are dominated
by seven major mountain systems, with four mountain ranges including the Himalayas,
the Karakoram, the Tianshan Mountains and the Hindu Kush, clustered around the Tibet
Plateau, and three other mountain ranges are the Altai Range, stretching southeastward in
the northern regions of China’s Xinjiang region, the Ghats in the coastal areas of India, and
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the Great Dividing Range running along the east coast of Australia. Various climate types
and zones, such as tropics, subtropics and temperate climate, characterize the study area
with vast geographic coverage and complex topographic patterns.

2.2. Data Sources

We extracted point measurements of SAT and spatial continuous variables for SAT
estimation models from the publicly available datasets listed in Table 1, including the
site-based observational product (ISD), the atmospheric reanalysis dataset with hourly
resolutions (ERA5), the digital elevation model for topographic features (GMTED2010), and
the variables derived from remotely sensed observations for characterizing land surface
properties. We collected hourly FY-4A LST from August 2019 to July 2020, which covers an
entire year cycle. All other datasets during the period were acquired from relevant sources
of data archive centers listed in Table 1.

Table 1. Data sources from which the input variables for SAT estimation models were extracted.

Dataset Variable Type Resolution Source 1

ISD ground site observations hourly, point-scale NOAA NCDC
FY-4A LST land surface temperature hourly, 4 km CMA NSMC
MOD13C1 vegetation indices 16 day, 0.05◦ NASA LP DAAC
MCD12C1 land cover types yearly, 0.05◦ NASA LP DAAC

ERA5 atmospheric reanalysis hourly, 0.25◦ C3S CDS
GMTED2010 global digital elevation static, ~1 km USGS

1 The datasets used in this study can be accessed from: NOAA National Climatic Data Center (NCDC, https://
www.ncdc.noaa.gov/isd, accessed on 12 June 2022), CMA NSMC (China Meteorological Administration, National
Satellite Meteorological Center, http://satellite.nsmc.org.cn, accessed on 23 September 2022), LP DAAC (The Land
Processes Distributed Active Archive Center, https://lpdaac.usgs.gov, accessed on 23 September 2022), C3S CDS
(Copernicus Climate Change Service, Copernicus Climate Data Store, https://cds.climate.copernicus.eu, accessed
on 2 July 2022), and USGS GMTED2010 (https://www.usgs.gov/coastal-changes-and-impacts/gmted2010,
accessed on 5 July 2022).

2.2.1. ISD Surface Observations

ISD (Integrated Surface Database) is an observational dataset of surface meteorological
elements, which was developed through merging numerous surface observations from
more than 100 data sources into a common data model [35]. The ISD dataset, developed
and routinely updated by NASA’s NCDC (National Climatic Data Center), consists of
the surface observations measured at more than 20,000 sites across the global land areas.
Although the source datasets of ground observations have undergone some quality control
(QC) measures before being merged into the ISD dataset, a uniform QC procedure that
contains 54 QC steps, such as validity checks, internal consistency tests and external
continuity checks, is strictly performed in producing the ISD dataset. Therefore, the ISD
dataset can provide high-accuracy point measurements of hourly SAT, which were treated
as ground truth when training and cross-validating the hourly SAT estimation models
developed in this study. Hourly measurements of SAT at 2236 ground sites across the study
areas, which are plotted in Figure 1, were extracted from the ISD dataset.

2.2.2. FY-4A Land Surface Temperature

FY-4A (Fengyun), the first satellite in China’s second-generation geostationary satellite
mission for meteorological observations (Fengyun-4), was launched on 11 December 2017.
The primary scientific instrument onboard FY-4A named as AGRI (Advanced Geosyn-
chronous Radiation Imager) is a multichannel imaging sensor designed with 14 spectral
bands covering visible and infrared spectrums. Imaging capabilities and performance of
the sensor have been substantially improved compared to the same type of multispectral
sensors mounted on the satellites from Fengyun-2 (FY-2), which is the first-generation
geostationary meteorological satellite mission of China. Observations from FY-4A’s AGRI
have spatial resolutions of 0.5–1 km at the visible and near-infrared bands, and 2–4 km
at mid-wave infrared to thermal infrared bands. AGRI is configured with two typical

https://www.ncdc.noaa.gov/isd
https://www.ncdc.noaa.gov/isd
http://satellite.nsmc.org.cn
https://lpdaac.usgs.gov
https://cds.climate.copernicus.eu
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
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thermal infrared channels centered at 10.7 and 12.0 µm, which are known as split-window
channels and primarily used for retrieving land surface thermal states. AGRI is capable of
scanning at a high frequency of 15 min for a full-disk area of Earth surface, which is shown
in the inset map of Figure 1. Various data products that characterize the properties of atmo-
sphere and land surface have been operationally generated based on the observations from
Fengyun satellites, and are archived by China’s NSMC (National Satellite Meteorological
Center), facilitating the studies in geoscientific disciplines and remote sensing communities.
Detailed information about FY-4A and the data products derived from its observations
are provided in [36,37]. The land surface temperature product (FY-4A LST) derived from
infrared thermal observations of FY-4A AGRI was developed using the split-window (SW)
retrieval algorithm that effectively corrects the atmospheric absorption effects on the TIR
observations. Owing to its good performance, variants of algorithms built on the SW
algorithm for retrieving LST, for instance, generalized SW [38] and ensemble SW [39],
have been developed and validated. The SW algorithm and its variants [40] have been
used as the routine retrieval techniques in generating LST products for different imaging
sensors, such as MODIS, AVHRR and VIIRS. Retrieval accuracies of the FY-4A LST product
have been explored by several studies using ground observations [41–43]. FY-4A LST
generally agrees well with ground observations, but it shows high random errors and
biases for mountainous areas [41]. For example, Fan et al. [41] evaluated FY-4A LST for
Hunan Province of China and observed that it has a general underestimation against site
observations with a bias of −0.63 K. A study that cross-validates the LST derived from
FY-4A and Himawari-8 satellites indicates that the variation trend in LST from the two
satellites is consistent in their overlapping regions, and that the discrepancy between FY-4A
LST and Himawari-8 LST is about 2.3 K in terms of RMSE [42]. Meng et al. [43] found that
the RMSE between FY-4A LST and ground observations in the Heihe River basin varies
from 2.4 to 4.1 K, and suggests that the high RMSE for some sites could be attributed to the
scale mismatch between point observations and pixel-based LST retrievals.

2.2.3. Auxiliary Datasets

In addition to LST that is used as the primary input for SAT estimation models, pre-
vious studies have also incorporated some auxiliary variables into the models to achieve
higher mapping accuracy of SAT at different time scales. Most commonly used auxiliary
variables are related to topographic features, spatial locations, time or seasonal information,
land surface features and simulated atmospheric states. In this study, a set of ancillary
variables obtained from different sources of Earth observation datasets were used in de-
veloping hourly SAT estimation models, including normalized vegetation index (NDVI),
land cover types, simulated atmospheric variables and topographic elevations (Table 1).
Variables for NDVI and land cover types were extracted from MODIS products, which were
developed by NASA’s MODIS Land teams. Three simulated atmospheric state variables
including boundary layer height, column water vapor content and ground solar radiation
were obtained from the ERA5 reanalysis dataset developed by ECMWF. The GMTED2010
(Global Multi-Resolution Terrain Elevation Data) product from the USGS was used to
extract the topographic elevation variable. Specific information regarding data properties
and the retrieval methodology for these products could be accessed at the homepage of
the data source centers (Table 1). Additionally, hourly SAT estimation models developed
in this study considered the time-related variables including HOD and month, and the
location-specific variables including longitude and latitude.

2.3. Modeling of Hourly SAT

The spatial inputs available for developing hourly SAT estimation models, including
FY-4A LST and auxiliary environmental variables, have different spatial coordinate refer-
ences and resolutions. All spatial variables (Table 1) were reprojected and then regridded
into a common regular geographic grid with a resolution of 4 km, which is consistent
with the data grid of FY-4A LST. Cells in the grid were spatially matched with the ISD
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site locations for establishing the indexing between cells and sites, which was then used
to extract the data samples for modeling hourly SAT. Generally, there is no absolutely
superior machine learning algorithm for the modeling tasks in all scenarios. The predictive
performance of the SAT estimation models using cross-validation approaches not only
depends on the selection of methods for modeling tasks, but also relates to the scales of
study areas, characteristics of data sample and setting of parameters. In this study, random
forest was adopted for the hourly estimation models considering its ability to model non-
linear relationships. Random forest, a type of ensemble learning techniques, is a flexible
and easy-to-use learning algorithm that can usually achieve high prediction accuracy for
modeling tasks in various research fields, even without much tuning of hyperparameters.
The algorithm constructs a collection of mutually independent decision trees for classifying
or regressing an output variable based on input variables. Random subsets of data samples
with randomly selected input features are used to grow each individual tree, and the high
randomness in the growing of the trees ensures a more accurate and robust prediction,
which is the average of the predictions from the trees.

The study is primarily focused on developing an hourly SAT estimation model based
on FY-4A geostationary LST over a very large-scale area. In addition to the LST variable,
we selected a set of auxiliary variables for SAT estimation models, which are also widely
used in previous studies. In this study, four SAT estimation models, including RF, SRF,
TRF and STRF, were specified using different input variables to evaluate and compare
the influence of the variables related to time and location information on the predictive
performance of hourly SAT estimation models. All four models were constructed using the
random forest algorithm, and trained using 10-fold cross-validation. The RF model was
developed as the baseline model, which does not consider the variables related to time and
location. In addition to the inputs for RF (random forest), the three other models including
SRF (spatial RF), TRF (temporal RF) and STRF (spatiotemporal RF) were specified with the
variable related to time or location. The specifications of the four models (Table 2) are aimed
at exploring the degrees of increases in model performance when modeling hourly SAT
additionally considering time and location information. The baseline input variables were
determined according to the studies by Zhou et al. [33] and Shen et al. [25]. All variables
used in the hourly models were acquired from publicly available Earth data sources. The
model with the highest predictive performance among the four specified models was then
used to reconstruct spatially continuous maps of SAT at each hour-point throughout the
study period.

Table 2. Input variables specified for the four hourly SAT estimation models.

Model Input Variables 1

RF baseline inputs = {LST, NDVI, ELEV, SLP, LCPWAT, LCPURB, LCPHF, TCW, BLH, SSR}
SRF {baseline inputs} + {LON + LAT}
TRF {baseline inputs} + {HOD + MON}

STRF {baseline inputs} + {HOD + MON + LON + LAT}
1 ELEV and SLP represent topographic elevations and slope, respectively. LCPWAT, LCPURB and LCPHF are
the percentages of the areas covered by water, urban and vegetation, respectively, and the three variables are
extracted from the MCD12C1 dataset. Total column water (TCW), boundary layer height (BLH) and surface solar
radiation (SSR) are simulated atmospheric state variables that are extracted from the ERA5 reanalysis dataset.
LON and LAT are location variables for longitude and latitude. Time-related variables include HOD (hour of day)
and MON (month of a year).

2.4. Validation Methods

Cross-validation (CV) methods, including sample-based CV and site-based CV, were
used to assess the four hourly SAT estimation models. In sample-based CV, we randomly
split the data samples obtained from ground sites into 10 folds of samples, while in site-
based CV, sites were first randomly partitioned into 10 sets and 10 folds of data samples
and were then obtained from the sets of sites. For the two types of CV, each fold of data
samples was used to validate a fitted model, which was trained using another nine folds of
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samples. Therefore, the four SAT estimation models were trained and validated against
different data samples in ten rounds. In each round of model training and validation, the
four models were first fitted on a training set and the fitted models were then used to
make predictions for SAT at sites using the input variables in the samples of a validation
set. Predicted SAT and the true values of SAT in the validation samples were used to
compute statistical metrics for model predictive performance, such as root mean squared
error (RMSE), mean absolute error (MAE) and R squared, which all measure the difference
between predicted SAT and the actual observed SAT at ground sites. In this study, we use
RMSE as the primary metric for characterizing and comparing the predictive performance
of the four SAT estimation models. RMSE for sample-based CV is generally higher than
that for site-based CV, as spatial configuration of ground sites affects the characteristics of
the data samples collected from the sites.

3. Results
3.1. Overall Predictive Model Performance

The four specified hourly SAT estimation models were trained and validated using
two types of 10-fold CV. For each of the four models, Figures 2 and 3 compare the actual
observed SAT and predicted SAT at ground sites using all validated data samples for
sample-based and site-based CV, respectively. We observed that the incorporation of time-
related and location-related variables into the estimation models can greatly increase the
predictive performance for estimating hourly SAT, as seen in the two figures. Overall
mean RMSE computed using all 10 folds of sample-based validated data samples is 2.08,
1.94, 1.82 and 1.65 K for RF, SRF, TRF and STRF, respectively. When cross-validated by
sample-based CV, the SRF model that consider the location-related variables (longitude
and latitude) and the TRF model that includes time-related variables (HOD and month),
respectively, decrease the mean RMSE by about 0.14 and 0.26 K, compared to the baseline
model RF. The decreases in the mean RMSE achieved by the two models are apparent as
the relative decreasing rates of the two models are about 7% and 12.5% with respect to the
mean RMSE of 2.08 K for the baseline model. Furthermore, the STRF model that considers
both time- and location-related variables substantially increases the predictive performance
of estimating hourly SAT with a decrease in RMSE by 0.43 K (a decreasing rate of 21%)
relative to the baseline model RF.

Similarly, comparison of the four models using site-based CV, as shown in Figure 3,
also indicates the increases in model performance due to the inclusion of time- and location-
related variables in SAT hourly models. The baseline model RF has an overall RMSE of
2.7 K for site-based CV, while the mean RMSE of the other three models, SRF, TRF and
STRF, are 2.5, 2.43, and 2.22 K, respectively. The best-performing estimation model STRF
significantly reduces the predictive error by 0.48 K with a decreasing rate of 22%, compared
to the baseline model RF. As spatial locations and distributional patterns of ground sites
greatly influence statistical representation in the data samples, predictive errors (RMSE)
of a model validated using site-based CV will be higher than the model validated using
sample-based CV, which is revealed in Figures 2 and 3.
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3.2. Temporal Variation in Model Performance

Site-based validated samples for the best-performing model STRF were used to com-
pare the differences in model performance across months of the study period, which covers
an entire year cycle (Figure 4). As seen from the figure, the mean RMSE across 12 months
ranges from 2.01 to 2.49 K. STRF performs relatively better for summer months (July to
September) with mean RMSE of about 2.0 K, while the model has higher predictive errors
for winter months (December and January) with mean RMSE above 2.4 K. The difference
in the mean RMSE across the months may be due to the temperature range and number
of available samples used for model training and validation. In Figure 4, one can observe
that number of data samples for summer months (indicated by the annotation N in the
figure) is roughly 14% lower than that for winter months, and that the temperate ranges
for summer months are considerably narrower than that for other months, especially for
winter months, which is primarily because the study areas cover a large span of latitudes.
The temperature contrasts between high latitudes and equatorial areas would be more
distinct in winter months, and the models cross-validated using the data samples for all
months will generally have lower RMSE for summer months. Thus, the different character-
istics and the sizes of the data sample across the months lead to the temporal variation in
model performance. The number of data samples differs across the months is due to the
data gaps in the LST data product, which are primarily attributed to cloud contamination.
Similar patterns are also revealed from Figure 5, which shows the mean RMSE on a daily
basis for STRF using site-based validated samples. Thus, SAT estimation models should
be cross-validated using data samples with varying temporal characteristics during long
time periods, which could result in a more objective and conservative assessment of the
predictive performance of SAT estimation models.
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3.3. Predictive Performance across Sites

We computed the mean RMSE for each site across the study area using the cross-
validated samples available at the site for the four models. Figures 6 and 7 show the spatial
distribution of site-specific mean RMSE of the four models for two types of cross-validation.

As shown in the two figures, the four models have relatively poorer performance for
the sites at high latitudes (northern regions) than the sites at lower latitudes or regions
around the Equator, which is more obvious for the four estimation models when validated
by site-based CV (Figure 7). When using sample-based cross-validation, site-specific RMSE
for the baseline model (RF) ranges from 2 to 3.5 K at most sites in northwestern areas
(above 30◦N), with RMSE for a few sites being more than 4 K. However, the higher RMSE
errors for the sites in northwestern areas are apparently reduced by the estimation models
considering time-related or location-related variables. The STRF model, which achieved
the highest predictive performance in terms of overall RMSE, also performs better for the
sites in northwestern areas with site-specific RMSE ranging from 1.0 to 2.5 K. Additionally,
RMSE of the baseline model for the sites with extremely high errors (denoted as round dots
colored with orange to red in Figure 6) decreases when using the STRF model. Compared
to site-specific RMSE of the models cross-validated by sample-based CV, RMSE for the
sites in northwestern areas, especially for the sites around the rim of the Tibetan Plateau
and the sites in the Mongolian Plateau, is significantly higher than the sites at lower
latitudes for the four models when using site-based CV (Figure 7). In addition to the high
sensitivity of model performance to spatial distribution of sites used for model training,
complex topographic features and local atmospheric conditions in the Tibetan Plateau and
Mongolian Plateau may also lead to higher predictive errors for the sites in these regions
when cross-validating the models in site-based CV. Site-specific RMSE of the baseline model
for site-based CV in northwestern areas generally ranges from 3 to 4.5 K, with several sites
having RMSE of more than 5 K. In contrast, site-specific RMSE of the STRF model for
site-based CV has lower values in these areas, which primarily range from 2.5 to 3.5 K. It is
worth noting that during a year, equatorial areas and lower latitudes experience narrow
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temperature ranges compared to broader temperature ranges in high-latitude areas, which
may also influence the site-specific predictive errors.
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3.4. Coverage Analysis of Estimated SAT

The best-performing estimation model STRF was used to generate hourly maps of
spatial continuous SAT over the study areas for each hour-point during the study period.
As cloud coverage and heavy aerosol contamination conditions cause the missing values
in the LST retrieval product, maps of estimated hourly SAT also suffer from the issue of
missing values. To explore the spatial and temporal coverage of estimated hourly SAT, we
computed daily coverage percentage and pixel-by-pixel annual coverage percentage, as
shown in Figure 8.
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Figure 8. Spatial coverage of hourly maps of SAT estimated using the STRF model: (a) annual
coverage percentage on a pixel-by-pixel basis; (b) daily mean coverage percentage of the estimated
maps at 24 h points of a day (denoted by the black line) with the gray ribbon indicating the lowest
and highest coverage of the 24 maps of hourly SAT.

Daily coverage percentage was computed as the mean of 24 coverage percentage
values for each hour-point, which is the ratio of number of pixels with SAT estimates to
total number of pixels in the study areas. Pixel-by-pixel annual coverage was computed
for each pixel in the study areas and the percentage of the pixel is the ratio of the number
of hours with SAT estimates to the total number of hours in a year. As can be seen from
Figure 8, most parts of Australia and the Middle East have the distinctly higher coverage of
SAT estimates with annual coverage percentage above 70%, while the equatorial areas, the
Sichuan Basin and parts of Japan have lower coverage of SAT estimates with annual mean
coverage below 30%. The spatial coverage of SAT estimates across different areas reflects
the spatiotemporal coverage of clouds during the study period, which is controlled by
atmospheric circulation and local atmospheric conditions. For example, the equatorial areas
have high solar radiation and abundant warm water supply, facilitating cloud formation
over these areas. Daily mean coverage of estimated SAT shown in Figure 8 is primarily
between 42% and 58%, with the highest coverage occurring on the 129th day of a year cycle.
Figure 9 shows the estimated SAT at six different hour-points for the day with the highest
daily mean coverage. The pixels with missing values in the six maps shown in Figure 9 are
denoted in white. We can observe that the estimates of SAT for the six hour-points over the
equatorial land areas are nearly completely missing.
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throughout the study period.

4. Discussion
4.1. Comparison with Previous Studies

In previous studies, substantial efforts have been made to estimate daily or monthly
SAT using the LST derived from MODIS. Estimating high-temporal SAT, however, is only
performed in very limited studies, and the studies are primarily based on the LST derived
from the MSG geostationary satellites for small-scale areas. For examples, MSG SEVIRI
LST has been used for sub-daily SAT estimation over small-scale areas by using the TVX
or simple linear regression methods [30,31]. Zhou et al. [33] estimated hourly SAT for
Israel using machine learning algorithms, which is also based on MSG LST. The study
by Zhang and Du [27], for the first time, developed hourly SAT estimation models based
on LST datasets derived from the GOES-R satellites by using learning algorithms for a
large-scale area that contains most parts of North America. However, the hourly SAT
estimation models developed in this study are for an even larger region that contains
land areas of Asia and Oceania, and moreover, we are the first to apply the LST derived
from China’s geostationary satellites FY-4 for SAT estimation. The hourly SAT estimation
studies by Zhou et al. [33] and Zhang and Du [27] reported an overall RMSE of 0.9 K
(sample-based cross-validation) and 1.9 K (site-based cross-validation), respectively. In this
study, the best-performing model STRF achieved an overall RMSE of 1.65 for sample-based
cross-validation and 2.22 K for site-based cross-validation. However, we should note that
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strictly comparing predictive performance of the models developed in different studies is
meaningless in terms of only RMSE, as the RMSE computed from cross-validated samples
is affected by many factors, such as selection of learning algorithms, parameter tuning,
setting of hyperparameters and splitting of samples in cross-validation. In addition, data
samples extracted from the areas with complex geographic settings or areas spanning large-
scale geographic extents contain more spatiotemporal variability compared to small-scale
areas, and thus, scales and selection of study areas also significantly affect the RMSE of
cross-validated SAT estimation models.

Predictive performance of SAT estimation models is conventionally quantified by
the statistical metrics computed using cross-validation approaches. All cross-validated
samples can be used to calculate the mean RMSE for an overall assessment of model
performance. However, the simple cross-validation (sample-based), in which samples
are treated equally and are randomly split into different folds for training and validation,
could result in serious overestimation of predictive performance for data samples with
spatiotemporal structures in the field of spatial–temporal modeling [44,45]. Different types
of cross-validation, including leave-location-out cross-validation (site-based), leave-time-
out cross-validation (time-based) and leave-time-and-location-out cross-validation, are
designed to account for the sensitivity of model performance to spatiotemporal structures
in data samples [46]. In most recent years, there are many studies for SAT estimation
that only used simple cross-validation approaches [10,25,33,47], which are inadequate for
comprehensively evaluating predictive errors of SAT estimation models. Combination of
the simple cross-validation and the approaches considering spatiotemporal characteristics,
such as site-based cross-validation, should be ensured in SAT estimation studies [29,48,49].
As spatial patterns of ground sites significantly influence the training and validation of
SAT models, site-based cross-validation generally yields higher predictive errors (RMSE)
compared to simple sample-based cross-validation. For example, Zhang and Du [29]
demonstrated that the overall mean RMSE of an ensemble of models based on different LST
datasets for estimating daily SAT over China is 1.80 K for sample-based cross-validation and
2.06 K for site-based cross-validation. Similarly, Chen et al. [50] developed three daily SAT
estimation models for mainland China and the mean RMSE of the three models assessed
by sampled-based and site-based cross-validation is 1.41 and 1.79 K, respectively. In this
study, predictive errors (RMSE) of the four specified hourly SAT estimation models for
site-based cross-validation are all higher than that for sample-based cross-validation, with
a difference of about 0.6 K. Therefore, a more conservative assessment of SAT estimation
models could be ensured when using site-based cross-validation.

Analysis of predictive errors of the four hourly models across ground sites suggests
that spatial configuration and density patterns of sites can influence model training. Sites
in the areas with low coverage of stations and complex geographic settings, such as
mountainous regions, generally have higher predictive errors, which are also confirmed
in previous studies [49]. In this study, we observed that site-specific RMSE for the four
hourly models is generally higher over the Tibetan Plateau and the Mongolian Plateau,
which are covered with few stations. The studies for daily SAT over China [23,25,29,50] all
showed higher predictive errors across the site in the Tibetan Plateau and the northwestern
region of China due to the limited coverage of sites in these regions. Kilibarda et al. [21]
used a spatiotemporal kriging model for estimating global daily SAT with the MODIS
8-day composite LST dataset and indicated that cross-validated RMSE for several sites in
the areas with very low site density, such as the Tibetan Plateau and the western South
America, can even approximate 6 K. Areas with a low density of meteorological stations are
usually subject to complex geographic environments and variable atmospheric processes,
and thus, samples from the very limited sites in the areas are severely under-represented,
resulting in the poor predictive performance of SAT estimation models in these areas.

Although various learning methods have been applied to develop SAT estimation
models in previous studies, the learning methods for their own sake have an absolute
superiority. Performance of the SAT estimation models developed using different learning
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algorithms not only depends on the capability of the algorithms, but also relates to the fac-
tors that influence the RMSE computed from cross-validated samples, which are discussed
above. In terms of the modeling task of hourly SAT estimation, models considering time-
related and location-related variables generally achieve better performance, as indicated by
the comparison of the four hourly models developed in this study. Given the characteristics
of the modeling task of SAT estimation and the scales of complexity involved in the task,
conventionally used ensemble learning algorithms, such as random forest and gradient
boosting, are adequate for the task of modeling involved in SAT estimation. Random forest
is widely used in SAT estimation studies due to its flexibility in modeling and insensitivity
to overfitting. Recently, the studies for estimating hyperlocal SAT over urban areas using
high-temporal LST derived from Landsat all adopted random forest [10,51,52]. The four
hourly SAT estimation models developed in this study are based on random forest, and the
models were not tuned exhaustively in cross-validation for pursing lower RMSE. Consider-
ing the large-scale study regions with broad geographic extents and diverse geographic
settings, the reported RMSE for the four models using site-based cross-validation can be
viewed as conservative indicators for the predictive performance of general models for
estimating hourly SAT over large-scale areas, and the specifications of input variables for
the four models have general implications for future studies on large-scale estimation of
hourly SAT.

4.2. Implications for Future Studies

The differences in cross-validated RMSE between the four specified hourly SAT esti-
mation models demonstrate the importance of considering the HOD variable in modeling
hourly SAT, which is also confirmed in Zhang and Du [27]. Although LST derived from
geostationary satellites provides the opportunity for estimating high-temporal SAT over
large areas, geostationary LST have lower spatial resolutions compared to the LST retrieved
from polar satellites, such as NASA’s Terra and Aqua, whose LST has been widely used for
daily SAT estimation. For example, the operational LST products retrieved from GOES-R
and FY-4A have a spatial resolution of 2 and 4 km, respectively. We should note that spatial
resolutions of LST products are not equal to the nominal resolutions of the observations
acquired by satellites, which depend on the size and shape of ground footprints of the
observations. The footprints become more irregular and larger as the distance between
the footprints and the nadir of satellites increases. Thus, estimates of SAT obtained from
the models based on geostationary LST datasets, in fact, have spatially varying resolu-
tions across the study area, and the inconsistency of spatial resolution is more severe for
large-scale areas or areas far from the nadir of satellites. Models that integrate LST from
polar-orbiting and geostationary satellites are a way for achieving estimates of SAT with
spatially consistent resolutions across large-scale areas.

As clouds contaminate thermal infrared observations, LST datasets retrieved from
TIR observations contain many missing pixels, resulting in the missing pixels in estimated
SAT. To tackle the issue of missing estimates, gap-filling approaches that target on LST
or estimated SAT have been explored in previous studies for obtaining seamless maps
of SAT [19,53,54]. However, gap-filling approaches that infill missing pixels using the
spatiotemporal information of their neighboring pixels can introduce large errors for
missing pixels. Thus, gap-filling the missing estimates of SAT for the areas with high
frequency and large blocks of cloud coverage, such as the equatorial areas, is nearly an
impossible task because the pixels to be filled have no available neighboring pixels with
estimates. As simulated air temperature in reanalysis datasets are spatially complete with
high temporal resolutions but very low spatial resolutions, simulated SAT can be used with
SAT estimation models for obtaining spatially complete estimates of SAT [55].

5. Conclusions

This study developed the models for estimating hourly SAT using the LST retrieved
from FY-4A, which is a geostationary meteorological satellite in China’s Fengyun-4 mission.
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The hourly models were developed with a data sample from more than 3000 ground sites
for a very large-scale study region, consisting of Asia and Oceania. In contrast to the
baseline model RF specified with FY-4A LST and a set of auxiliary variables, three other
models, including SRF, TRF and STRF, were also specified with the addition of time- and
location-related variables. Overall predictive errors of the four models in terms of RMSE
are about 1.65–2.08 K for sample-based cross-validation and 2.22–2.70 K for site-based
cross-validation. The SRF and TRF models, which, respectively, consider time and location
variables, reduce predictive errors by about 0.15–0.20 K and 0.26–0.27 K with respect to the
baseline model. Temporal variation and site-specific patterns of predictive errors across the
four models were analyzed, and their differences across the models indicate the importance
of incorporating time and location information into SAT estimation models. Different types
of cross-validation approaches have great impacts on the training and assessment of SAT
estimation models. Spatial configuration and density of the sites used in model training
greatly influence the representativeness and spatiotemporal variability of the data samples
extracted at the sites, and thus site-based cross-validation usually produces larger RMSE
compared to simple sample-based cross-validation. Overall RMSE of the four models in this
study for the site-based cross-validation is about 0.5 K higher than that for sample-based
cross-validation, and could be used as conservative indicators for assessing the predictive
performance of general hourly SAT estimation models. Random forest is insensitive to
model overfitting and the four hourly SAT estimation models specified in this study
were not tuned exhaustively in pursing lower errors. In addition, the four models were
developed and comprehensively cross-validated for a very large-scale area with diverse
geographic settings. Therefore, the four hourly models have general implications for future
studies on large-scale estimation of hourly SAT based on geostationary LST datasets.
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