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Abstract: Downward short-wave (SW) solar radiation is the only essential energy source powering
the atmospheric dynamics, ocean dynamics, biochemical processes, and so forth on our planet.
Clouds are the main factor limiting the SW flux over the land and the Ocean. For the accurate mete-
orological measurements of the SW flux one needs expensive equipment-pyranometers. For some
cases where one does not need golden-standard quality of measurements, we propose estimating
incoming SW radiation flux using all-sky optical RGB imagery which is assumed to incapsulate the
whole information about the downward SW flux. We used DASIO all-sky imagery dataset with
corresponding SW downward radiation flux measurements registered by an accurate pyranome-
ter. The dataset has been collected in various regions of the World Ocean during several marine
campaigns from 2014 to 2021, and it will be updated. We demonstrate the capabilities of several
machine learning models in this problem, namely multilinear regression, Random Forests, Gradient
Boosting and convolutional neural networks (CNN). We also applied the inverse target frequency
(ITF) re-weighting of the training subset in an attempt of improving the SW flux approximation
quality. We found that the CNN is capable of approximating downward SW solar radiation with
higher accuracy compared to existing empiric parameterizations and known algorithms based on
machine learning methods for estimating downward SW flux using remote sensing (MODIS) imagery.
The estimates of downward SW radiation flux using all-sky imagery may be of particular use in case
of the need for the fast radiative budgets assessment of a site.

Keywords: downward solar radiation; clouds; machine learning; deep learning; random forests;
multilinear regression; gradient boosting; convolutional neural networks; ResNet50; all-sky imagery

1. Introduction

Solar radiation is the main source of energy on Earth [1]. It is also of great significance
for biogeochemical, physical, ecological, and hydrological processes [2,3]. Cloud cover, in
turn, is the main physical factor limiting the downward solar radiation flux [4–6]. Cloud
cover during the day reduces the influx of solar radiation to the Earth’s surface, and
significantly weakens its outgoing long-wave radiation at night due to backscattering [7].
This entails corresponding changes in other meteorological quantities. The functioning of
agriculture, transport, aviation, resorts, alternative energy enterprises, and other sectors of
the economy, in one way or another, depends on the amount and shape of clouds.

There are two options for flux estimation in modern models of climate and weather
forecasts. The first is physics-based modeling of radiation transfer through two-phase
medium (clouds), which includes modeling of multi-scattering, taking into account the
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microphysics of cloud water drops [8] and aerosols. This option is extremely computa-
tionally expensive. Alternatively, one may use parameterizations which are simplified
schemes for approximating environmental variables using only routinely observed cloud
properties, such as Total Cloud Cover (TCC), cloud types, and cloud cover per height layer.
The existing parametrizations are empirical and were proposed years and decades ago
based on observations and expert-based assumptions [9,10]. As a result, they may not take
into account the entire variety of cloud situations occurring in nature, which may lead to a
reduced quality of approximation of downward SW solar radiation flux.

Our goals were to get computationally cheaper estimations of downward solar radi-
ation flux and to study flux dependence on structural characteristics of clouds. The aim
of this study was to improve the accuracy of existing parameterizations of downward SW
radiation flux. In this study, we assess the capability of machine learning models in the
scenario of statistical approximation of radiation flux from all-sky optical imagery. We
solve the problem using various machine learning (ML) models with the assumption that
an all-sky photo contains complete information about the downward SW radiation.

There are a number of studies on the forecasting of downward SW radiation using
advanced statistical models, namely, machine learning models [3,11,12]. Most of them deal
with the time-series of SW radiation flux measured directly by an instrument (radiometer);
thus, in case of the need for a low-cost assessment package, one cannot apply this approach.
There are also a number of ML methods published for estimating other useful properties of
the clouds, for example, total cloud cover [13,14] or cloud types [15–17].

There are a number of studies demonstrating the capabilities of machine learning
methods in estimating the SW flux from remote sensing data, for example, MODIS [3,18] or
GMS-5 [19]. There are also studies demonstrating the links between properties of cloud
cover and surface solar irradiance [20,21]. However, these studies are not focused on
approximating the flux directly from all-sky imagery. Rather, in these studies, all-sky
imagery is commonly used for assessing some semantically meaningful properties of cloud
cover, that are then used to categorize the events of solar irradiance measurements.

To the best of our knowledge, there is only one study demonstrating the capabilities of
statistical modeling in the problem of the estimation of downward SW radiation flux [22].
In this study, though, the statistical relation is demonstrated between the semantically rich
meteorological features (solar zenith angle, surface albedo, hemispherical effective cloud
fraction, ground altitude and atmospheric visibility) and the SW radiation flux. In contrast
with this study, we model the statistical relations between the raw all-sky imagery and the
SW radiation flux. We do not propose to infer any of semantically significant features of
the all-sky visual scene. The only semantically meaningful feature we propose to use is the
sun altitude, which we compute using the position, date, and time of observations.

The rest of the paper is organized as follows: in Section 2, we describe the dataset that
we used in our study; in Section 3, we introduce the methods we exploited in our study
for approximating the SW downward radiation flux; in Section 4, we present and discuss
the results of our study. In Section 6, we summarize the paper and present the outlook for
further study.

2. Data

In this section, we present source data for our study. The problem we tackle is to map all-
sky imagery to net downward SW radiation flux using state-of-the-art statistical models (also
known as machine learning models). We used a high-resolution fish-eye cloud-camera «SAIL
cloud v.2» [14], also known as SAILCOP (which stands for “Sea–Air Interactions Laboratory
Clouds Optical Package”) [13] to collect all-sky images, and a Kipp and Zonen CNR-1 net
radiometer (Kipp and Zonen, Delft, The Netherlands) to measure net downward SW flux. In
Figure 1, we present the equipment used to collect the data.
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(a) (b) (c)

Figure 1. Equipment we used to collect the data, and an example of all-sky optical imagery over the
ocean: (a) radiometer Kipp and Zonen CNR-1; (b) cloud-camera SAILCOP [13]; (c) an all-sky photo
with its mask covering the structures of the ship.

The net radiometer Kipp and Zonen CNR-1 is a tool used for the measurements of
incoming and outgoing net solar (also known as short-wave, SW hereafter) and far-infrared
(also known as long-wave, LW hereafter) radiation in various weather conditions, including
rough seas. The CNR-1 net radiometer is equipped with four separate sensors: two for
downward fluxes (SW and LW components), and the rest for outgoing radiation (SW and LW
components). The CNR-1 design is such that both the upward-facing and downward-facing
sensors measure the energy that is received from the whole hemispheres, upper and lower,
thus having a 180-degree field of view. The output is expressed in Watts per square meter; thus,
one may use the measurements as is, without any transformations. The spectral range covers
both the SW radiation, meaning wavelengths from 300 to 3000 nm, and the LW radiation,
meaning wavelengths from 4.5 to 42 µm. SW net radiation is measured by two pyranometers,
one for measuring incoming radiation from the sky, and the other, which faces downward,
for measuring the reflected SW radiation. LW radiation is measured by two pyrgeometers,
one for measuring the LW radiation from the sky, and the other from the sea surface. We use
the CNR-1 net radiometer in the four Separate Components Mode (4SCM) [23]. According
to the user manual [23], the nonlinearity of the measurements of both SW and LW sensors
is ±2.5%. In recent studies, the CNR-1 net radiometers were compared to high-standard
reference radiation instruments measuring individual SW and LW downward and upward
flux components [24]. It was shown that the CNR-1 radiometer demonstrates quite a high
measurement quality commonly characterized by root-mean-square errors below 14 Wm−2.
In our study, we used the measurements as is, without any corrections. In our marine missions,
though, the CNR-1 net radiometer was mounted close to the shipboard; thus, the reflected SW
and LW radiation was strongly influenced by the reflection and self-irradiance of the board.
Thus, we did not use the outgoing radiation measurements.

The fish-eye cloud-camera SAILCOP is developed and assembled in Sea-Air Interac-
tions Laboratory, Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow,
Russia. It was first presented in 2016 [14]. It was designed following the concept of all-sky
digital optical imagers presented in 1998 by Long et al. [25]. The concept was then adopted
in various recent studies [26–34]. The term “cloud-camera”, which we use here, is a syn-
onym for “all-sky camera”, “all-sky imager”, “whole sky camera”, “total sky imager”, and
many others similar to those mentioned in the studies referenced above. The main function
of these packages is to register the visual image of the visible hemisphere of the sky-dome
using a ground-based optical fish-eye camera. In our marine expeditions, our all-sky cam-
era was mounted onboard a ship, and directed upwards when the ship was not waving. An
all-sky camera commonly has a 180-degree field of view; thus, an image taken by it presents
the whole visible part of the sky. The common purpose of an all-sky imager is to register
the sky with visible clouds in order to automatically retrieve properties of clouds that are
historically assessed by a human observer, for example, total cloud cover [13,31,34] or cloud
types [17,35–39]. In our optical package, we used an all-sky fish-eye optical camera, Vivotek
FE8171V [40,41]. One may examine its complete characteristics in the Data Sheet [41] or
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User’s Manual [40]. Here, we emphasize its main properties in Table 1. The camera was
operated by a software package developed in our Sea–Air Interactions Laboratory of the
Shirshov Institute of Oceanology, Russian Academy of Science. The software runs on a
personal computer collecting the imagery and concurrent data. The concurrent data were
acquired by an extra mini-computer equipped with a GPS device and a positioning sensor
(see the box under the camera in Figure 1b). The concurrent data include NMEA sentences
from the GPS device, 50 Hz three-dimensional accelerometer measurements, 50 Hz three-
dimensional gyroscope measurements, and additional service readings. The software on
the operating personal computer requests imagery from the optical camera once during a
10-s period if the camera is horizontal according to the accelerometer. The communication
of an operating personal computer with the camera and mini-computer was established
using a high-speed TCP/IP connection over an Ethernet cable, which was also used to
provide a power supply to both the camera and the mini-computer using PoE (Power over
Ethernet) technology. SAILCOP includes two identical optical cameras, each equipped with
its own extra mini-computer, GPS device, and positioning sensor. We mounted them apart
from each other and measured the distance between them. The software on the operating
personal computer requests imagery from both optical cameras simultaneously. This way,
we always acquire two images of the same sky-dome taken from two different points 15 to
35 m apart, depending on the ship and mounting scheme.

Due to a common misconception that can be observed during various discussions
about all-sky imagery, we describe here the sense of all-sky images. They are the hemi-
spheric photographs of the upper visible hemisphere taken from the ground, from the sea
surface, or from the board of a ship using a fish-eye optical camera directed upwards, or
employing a hemispherical mirror with a narrow-angle camera [25] (see an example of
an all-sky image in Figure 1c). In an all-sky image, one may usually observe the blue sky
partially covered with (commonly) white clouds of various degrees of translucency. An
all-sky camera is commonly used to assess cloud features; thus, it is usually mounted apart
from large structures in order to prevent them from obscuring a substantial fraction of
a visible sky-dome. In the case of marine expeditions, one cannot place the cameras far
enough from high structures of the ship; thus, we use a mask covering the parts of the ship
in an image (see black regions in Figure 1c).

Table 1. Key features of the Vivotek FE8171V fish-eye camera [41], the main component of our optical
package, SAILCOP.

Feature Value, Property, Description

Lens Board lens, Fixed, f = 1.27 mm, F2.8

Field of View 180◦

Shutter Time 1/5 s to 1/32,000 s

Image properties 1920 × 1920 JPEG, 96 DPI, 24 bit color depth

The source data we used in our study was the Dataset of All-sky Imagery over the
Ocean (DASIO) [13], which we collected in marine expeditions starting from 2014 using the
equipment we presented above. The regions covered in these missions include the Indian and
Atlantic oceans, Mediterranean sea, and Arctic ocean. In this dataset, the exhaustive set of
cloud types is present. DASIO contains over 1,500,000 images of the sky-dome over the ocean,
accompanied by downward SW radiation flux measurements. SW solar flux was averaged
over 10 s intervals, and the all-sky images were registered every 20 s. The viewing angle of
the Kipp&Zonen CNR-1 sensors was 180° in both vertical planes. The viewing angle of the
cloud-camera was similar. Photos taken from the fisheye cloud-camera had a high enough
resolution to resolve fine cloud structural details (1920 × 1920 px). The white balance and
brightness of photos was adjusted automatically for the most comfortable visual experience.
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In our study, we employed a subset of DASIO. The size of the training subset was more
than 1,000,000, and the size of the test subset was more than 350,000 images (see Table 2).
In other words, the ratio of the volumes of test and training subsets is 1:3. A particular
sampling strategy was involved when we split the dataset into training and testing subsets.
Since the period of image acquisition is 20 s, the visual scene of the sky-dome does not
change substantially between subsequent images. Thus, two subsequent all-sky images are
strongly correlated. In this case, subsequent images may be considered identical with small
perturbations. Since training and testing subsets should not include identical examples, one
needs to sample subsequent images in such a way that it prevents images from falling into
training and test sets on a systematic basis. The issue of strongly correlated examples being
massively included into training and testing subsets may arise in the case of random per-
image sampling. In order to avoid this issue, we applied temporal block-folded sampling.
To be precise, we applied random sampling using hours of observations instead of objects
(images) themselves.

Table 2. Quantitative summary of the dataset in our study.

Indicator Value

Train subset size 1,041,734

Test subset size 350,859

Total size of the dataset 1,392,593

SW flux mean 271.0 W/m2

SW flux std 273.0 W/m2

SW flux minimum value 5.0 W/m2

SW flux 25% percentile 59.0 W/m2

SW flux 50% percentile 162.4 W/m2

SW flux 75% percentile 411.0 W/m2

SW flux maximum value 1458.7 W/m2

In the ML approach, one also needs to split the dataset into training and testing subsets
in a way that would preserve the statistical characteristics in both of them. In the case of
the sampling strategy we exploited in our study, our training and testing subsets have the
same statistical characteristics. In order to demonstrate this, we present the distributions of
target value (SW flux) in Figure 2b for both training and testing subsets. One may clearly
see that the distributions are close to each other.
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Figure 2. (a) Effective distribution of target values (SW radiation flux) in the train subset as a
result of ITF re-weighting. One may clearly see that re-weighted frequencies of various ranges
are close to each other (bars have almost the same height); thus, one may consider the dataset
balanced. (b) Distribution of target value (SW radiation flux) in training and test subsets without ITF
re-weighting. One may clearly see that the distributions are close.

In Figure 3, we present the map of the missions that were included in the DASIO
subset we employed in this study. One may observe that the tracks of the missions are not
continuous, since we limited the set of examples based on local sun elevation; that is, we
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excluded the examples of the DASIO dataset with a sun elevation lower than 5◦. Thus,
during the nighttime, there were no data. In Table 3, we also provide a brief summary of
the research missions contributing to the DASIO subset used in this study.

Table 3. Scientific missions resulting in the DASIO collection of all-sky imagery over the ocean with
the corresponding expert records of meteorological parameters.

Mission Departure Destination Route No. of Examples
Name Train/Test Subset

AI45 17 Septmeber 2014 25 Septmeber 2014 Northern Atlantic 10,050/
Reykjavik, Iceland Rotterdam, The Netherlands 2757

AI49 12 June 2015 2 July 2015 Northern Atlantic 49,124 /
Gdansk, Poland Halifax, NS, Canada 16,457

AI-52 30 Septmeber 2016 3 November 2016 Atlantic ocean 158,908/
Gdansk, Ushuaia, 57,622
Poland Argentina

ABP-42 21 January 2017 25 March 2017 Indian ocean, Red sea, 178,354/
Singapore Kaliningrad, Mediterranean sea, 58,025

Russia Atlantic ocean

AMK-70 5 October 2017 13 October 2017 Northern Atlantic, 20,384/
Arkhangelsk, Kaliningrad, Arctic ocean 7322
Russia Russia

AMK-71 24 June 2018 13 August 2018 Northern Atlantic, 220,782/
Kaliningrad, Arkhangelsk, Arctic ocean 73,228
Russia Russia

AMK-79 2 December 2019 5 January 2020 Atlantic ocean 51,921/
Kaliningrad, Montevideo, Arctic ocean 15,876
Russia Uruguay

AI-58 26 July 2021 6 Septmeber 2021 Northern Atlantic, 352,211/
Kaliningrad, Kaliningrad, Arctic ocean 119,572
Russia Russia

Figure 3. The map of marine missions contributing to the subset of the DASIO collection used in this
study. The points represent the positions of a ship each hour during the corresponding expedition.
The tracks are discontinuous due to the sampling strategy of our study: the images were not taken
during the nighttime (when the sun’s altitude is lower than 5◦).
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Figure 1c also demonstrates a mask we applied to each photo, which filters out visual
objects that are not related to the subject of our study. In addition, when training our ML
models, we used only the data acquired during daylight hours. In particular, we subset the
images taken when the sun altitude exceeded 5◦, and the radiation flux exceeded 5 W/m2.

We state the problem as follows: for each observation of the whole sky registered in an
all-sky image, one needs to approximate the value of the short-wave radiation flux, which
is supervised in the form of CNR-1 measurements. In terms of the machine learning (ML)
approach, it is a regression task with the scalar target value. We used mean squared error as
a loss function for the ML models exploited in this study. We also characterized the quality
of the solutions using a mean absolute error (MAE) measure.

Inverse Target-Frequency (ITF) Re-Weighting of Training Subset

In target value distribution (see Figure 4), one may notice a strong predominance of
data points with low SW flux. Thus, the dataset is strongly imbalanced w.r.t. target value.
This kind of issue may cause reduced approximation quality [42,43]. In our study, we chose
to exploit the approach of weighting the data space (following the terminology of [43]).
In order to improve the approximation skills of our models, we balanced the training
dataset using inverse-frequency re-weighting. We named it inverse target frequency (ITF)
re-weighting. To be precise, we made the weights wi of individual examples of the training
dataset inversely proportional to the frequency of target values:

wi =
di · Np

Np

∑
i=1

di

∼ di,

where i enumerates inter-percentile intervals from 0-th to 99-th; di are the inter-percentile
intervals of empiric target value distribution, and Np = 100 is a number of inter-percentile
intervals. Here, the less the target frequency, the greater the inter-percentile interval di;
thus, the greater the weights wi of the examples. In order to illustrate the approach we
propose, we present percentile-wise vertical lines in Figure 4, so one may notice uneven
inter-percentile distances in the cumulative distribution function figure.
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Figure 4. Dataset target (SW radiation flux) distribution (histogram) and approximated cumulative
density function (right panel). One may clearly see the imbalance of the dataset w.r.t. target value.
We present the percentiles in the CDF figure using vertical red lines in order to demonstrate the
inter-percentile distances.

In addition to the ITF re-weighting, we also propose the scheme for controlling the
re-weighting strength using the α coefficient:

w′i = (wi − 1) · α + 1.

Here, one may notice that the closer the α gets to 1, the stronger the re-weighting
which is applied. In the case where α = 0, there is no re-weighting, meaning w′i = 1. Given
the form of the weights wi and w′i , one may notice that their expected value is exactly 1.0.
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Coefficient α is a hyperparameter of our re-weighting scheme, which is optimized during
the hyperparameter optimization stage.

In order to demonstrate the effect of ITF re-weighting, we present the resulting his-
togram in Figure 2a. In this histogram, we show the frequencies for inter-percentile ranges
of target value (SW flux) scaled in accordance with the ITF re-weighting scheme. One
may notice that the bars of the histogram have uneven widths. This is expected behavior,
since we demonstrate the resulting distribution for the set of inter-percentile intervals that
are uneven (see Figure 4b). One may clearly see that the effective frequencies of various
inter-percentile ranges are close to each other. Thus, one may consider the dataset balanced
w.r.t. target value.

3. Methods
3.1. Feature Engineering

An arbitrary optical digital image may be considered an array of size W × H × C,
where W and H are its width and height in pixels, and C is the channel number, C = 3 for
a regular RGB image. Here, RGB stands for red, green and blue components of the color of
a pixel in the RGB color model [44]. When composing the feature space for an image, we
collected various statistics of each color channel (R,G,B) excluding masked pixels. A mask
is the black-and-white binary picture obscuring constructions of a ship visible in an all-sky
image. These constructions are irrelevant in our problem. One may observe an example of
a mask (black part of the image) in Figure 1c. Here, we enlist the statistics we collect for
each color channel of all-sky images as real-valued features of feature space:

• Maximum and minimum values;
• Sample mean;
• Sample variance;
• Sample skewness;
• Sample kurtosis;
• Sample estimates of the following percentiles: p1, p5, p10, p15, p20, ..., p90, p95, p99

(21 in total). Here, pd stands for a sample estimate of the percentile of level d.

There are various color models [44], including one that is particularly useful in cloud
detection when using optical imagery, which is a HSV color model. Here, H, S, and V
stand for Hue, Saturation, and Value. The latter is strongly correlated with brightness
and intensity calculated in other color models. Since these characteristics of pixels are
useful in cloud detection, segmentation, and classification problems [32,45], we decided
to include the same statistics (see the list above) of HSV channels into feature space as
well. Additionally, since downward SW radiation flux is strongly dependent on the sun
altitude [9], we included this feature into feature space.

Using the statistics types listed above (27 in total including 21 percentiles) computed
for all of the six color channels (R,G,B,H,S,V), as well as sun elevation, we engineered
a 163-dimensional real-valued feature space for all-sky images in our study. The feature
engineering step was only performed when we employed classic machine learning models
(see Section 3.2).

3.2. Machine Learning Methods

In our study, we used two approaches: the classic approach, and the so-called end-to-
end approach with the convolutional neural network employed.

3.2.1. Classic Models

Within the classic approach, we examined the following ML models: multilinear
regression and non-parametric ensemble models, that is, Random Forests (RF) [46] and
Gradient Boosting (GB) [47–49]. Training and inference of the “classical” ML models in our
study was performed using scikit-learn [50] implementations of these models.
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3.2.2. Convolutional Neural Network

Within the end-to-end approach, we did not compute any of the expert-designed
features described in Section 3.1. In contrast, we applied a convolutional neural network
(CNN) [51] directly to the images.

Prior to the processing of an image by our CNN, we preprocessed the image. First, we
resized the image to 512 × 512 px size using the “nearest neighbor” aggregation method.
Then, we applied strong alterations of average brightness. We altered the brightness in order
to encourage the CNN to learn the dependency of SW flux on the cloud spatial structure,
rather than average brightness, average blue saturation, or other simple statistics of the
image. We also added spatially correlated Gaussian noise to each image in order to prevent
CNN from learning the dependency of SW flux on channels’ simple aggregated statistics
(e.g., mean, variance). These augmentations are also meant to increase the generalization
ability of our CNN. Within this end-to-end neural networks-based approach, we used the
feature of sun altitude, as well as in the case of classic machine learning models.

The structure of the CNN exploited in our study is shown in Figure 5. As one may
see in this figure, the input example is an all-sky RGB image resized to the resolution of
512 × 512 px. In order to speed up the training process and improve the quality of the
approximation, we employed the transfer learning approach [52]. That is, a pre-trained
version of ResNet50 [53] network was used, which was pre-trained on the ImageNet [54]
dataset. The output of the ResNet50 convolutional sub-network is a 2048-dimensional
vector. We concatenated the sun altitude to this vector; thus, the resulting vector is 2049-
dimensional. This 2049-dimensional vector is then processed by a fully connected sub-
network. The structure of this sub-network is presented in Figure 5. The output of this
subnet is a real scalar value approximating SW flux.

When training our CNN, we used the Adam stochastic optimization algorithm [55].
Training and inference of our CNN was implemented with a Python programming lan-
guage [56] using Pytorch [57], OpenCV [58] for Python, and other high-level computational
libraries for Python.

Figure 5. Architecture of a CNN we exploited in our study. Here, with numbers, we present the
shapes of input data or activation maps.

In both the ensemble models (RF and GB) we exploited in our study, there are hyper-
parameters besides the α re-weighting coefficient we presented above. Among them are the
ensemble members in RF and GB, the maximum depth of the trees of the ensemble, and so
forth. The CNN is also characterized by a number of hyperparameters: its depth, the width of
fully connected layers in fully connected subnets, the hyperparameters of the Adam optimiza-
tion procedure, and also the magnitude of data augmentation transformations. We employed
the Optuna framework [59] for hyperparameter optimization (HPO). During the HPO stage,
the quality of each model initialized with a sampled hyperparameter set is assessed within
the K-fold cross-validation (CV) approach with K = 5. Due to strongly correlated examples
(all-sky images) that are close in temporal domain, we ensured the independence of training
and validation CV subsets using a Group K-fold cross-validation approach where groups are
hourly subsets of all-sky images. In the case of RF and GB models, we assessed the mean
RMSE measure, as well as its uncertainty within the Group K-fold CV approach.
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4. Results

In this section, we present the results of our study. To assess the quality of our models,
we used the root mean square error (RMSE) measure. In order to estimate the uncertainty
of the quality measures, we trained and evaluated each model several times (typically, 5–7)
and estimated the confidence interval of 95% significance levels, assuming the RMSE is a
normally distributed random variable. Additionally, the visual representation of the results
is given in the form of value mapping diagrams (Figure 6), where the correspondence
between approximated and measured flux values is presented in the form of point density.
In Figure 7, we present the error histograms for the models involved in our study.

In Figures 6 and 8, one may see that the models generally underestimate high fluxes
and overestimate low fluxes. It is also clear that the multilinear model approximates the
flux worse than other models, which is supported by the RMSE measures in Table 4 and
quantile–quantile plots in Figure 8. The results of CNN are the best among others in terms
of formal RMSE measures, as well as approximated-to-measured value-mapping diagrams.
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Multilinear regression RF, plain weights RF, ITF re-weighted

GBR, plain weights GBR, ITF re-weighted CNN, plain weights

Figure 6. Value mapping diagrams for: (a) Multilinear Regression as a baseline; (b) Random Forests
without ITF re-weighting; (c) Random Forests using ITF re-weighting of train subset; (d) Gradient
Boosting for Regression without ITF re-weighting; (e) Gradient Boosting for Regression using ITF
re-weighting of train subset; (f) convolutional neural network (no re-weighting). Here, density
colormaps are logarithmic for presentation purposes. Each diagram has been provided with a
diagonal dashed line representing an ideal model approximating SW flux without any errors.
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Figure 7. Error histograms for: (a) Multilinear Regression as a baseline; (b) Random Forests without
ITF re-weighting; (c) Random Forests using ITF re-weighting of the train subset; (d) Gradient Boosting
for Regression without ITF re-weighting; (e) Gradient Boosting for Regression using ITF re-weighting
of train subset; (f) convolutional neural network (no re-weighting).
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Figure 8. quantile–quantile plots for: (a) Multilinear Regression as a baseline; (b) Random Forests
without ITF re-weighting; (c) Random Forests using ITF re-weighting of train subset; (d) Gradient
Boosting for Regression without ITF re-weighting; (e) Gradient Boosting for Regression using ITF
re-weighting of the train subset; (f) convolutional neural network (no re-weighting). Each diagram
has been provided with a diagonal dashed line representing an ideal model mapping the distributions
without any errors.
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In our study, we built and trained four ML models to approximate the downward
shortwave radiation flux. We found that the quality of the CNN, which was built within the
end-to-end approach, is the best compared to other ML models. As we mentioned in Section 1,
there are no previously published papers demonstrating any methods for approximating
downward SW flux using all-sky imagery. Thus, the only approaches we may compare with
are the ones that propose estimating downward SW flux using complementary data (e.g.,
geoposition, date and time, properties of clouds) also known as parameterizations. In this
study, we compared the quality of our models with existing SW radiation parameterizations
known from the literature [9,10] and existing algorithms based on machine learning for
estimating downward SW flux using remote sensing (MODIS) imagery [3]. In Table 4, we
presented the quality of our models assessed after the hyperparameter optimization. We also
provided RMSE estimates of the parametrizations [9,10] and an ML-based algorithm applied
on MODIS imagery [3] as a reference. One may observe that parameterization errors strongly
depend on the amount of cloudiness: the higher the total cloud cover (TCC), the higher a
parameterization error. We have provided the error range in brackets for parameterizations
known from the literature.

In Figure 7, we also demonstrate error distributions for each of the ML models of our
study. In the CNN error distribution (Figure 7d), one may see that the neural network is
prone to underestimate the SW flux slightly. Additionally, it is clear that error distribution
tails are pretty heavy for both the RF and GB models, and are light for CNN. These features
of error distribution for our models are also in agreement with the variance of errors that
have been presented in Table 4 in the form of RMSE (taking into account that the errors are
zero-centered; thus, RMSE is the square root of variance in this case).

Table 4. Quality metrics of ML models exploited in this study, parameterizations of SW radiation
known from the literature [9,10], and an algorithm based on machine learning for estimating down-
ward SW flux using remote sensing (MODIS) imagery [3]. Best model along with its quality metric
are highlighted using bold font.

Model/Study RMSE, W/m2

Multilinear Regression (baseline) 84± 22

Random Forests, plain weights 57.68± 18.7

Random Forests, ITF re-weighted 57.66± 18.5

Gradient Boosting, plain weights 56.43± 20.3

Gradient Boosting, ITF re-weighted 56.43± 20.1

CNN 39.2

Dobson–Smith parameterization [10] 78.2 (38–116)

LVOAMKI parameterization [9] 61.9 (26–115)

ML algorithms on remote sensing data (MODIS) [3] 51.73–54.04

5. Discussion

One may observe that the ITF re-weighting did not make any difference in terms of
the RMSE quality measure. Neither Random Forests, nor Gradient Boosting for Regression
models demonstrated any performance improvement due to ITF re-weighting. It is a com-
mon belief in the machine learning community that in order to improve the performance
of a ML model in a problem characterized by a strongly imbalanced dataset, one needs
to re-weight it, bringing the distribution of target variables close to uniform distribution.
Alternatively, one needs to apply a sampling strategy that has an equivalent effect in the
case of mini-batch training, such as when training artificial neural networks. In this study,
we applied proper re-weighting that brings the effective distribution of downward SW flux
to a uniform distribution. We present here the results of machine learning models with
ITF re-weighting applied in order to demonstrate a perfect case of a strongly imbalanced
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dataset where a proper hyperparameter-optimized re-weighting does not improve ML
models’ performance.

One may also note that the models we present demonstrate some issues. Multilinear
regression is a fast model; however, it has the worst quality. RF and GBR demonstrate
comparable quality and are relatively fast in their inference times. At the same time, one
may note non-smooth error distribution in diagrams in Figure 6b–e. We suppose that the
regular drops in point density may be explained by the decision-tree-based nature of these
two ensemble models. One may also notice the outliers in these diagrams that may be of
interest in forthcoming studies. In this study, we did not filter the outliers comprehensively;
thus, there may be irrelevant examples in the dataset that represent photographs of birds,
operators cleaning the glass dome of SAILCOP cameras, and so forth.

There are limitations to the approach we used in our study for approximating down-
ward SW flux from all-sky RGB optical imagery. We found that our CNN is capable of
approximating SW flux by relying on the spatial structure of clouds present in an all-sky
image. We even encouraged our CNN to learn this link by applying heavy image aug-
mentations described in Section 3.2. However, in the presence of fog or haze, it is most
probable that most clouds will be present in a corresponding all-sky image; thus, the
method exploiting our CNN may deliver SW flux estimates with certain errors. The degree
of uncertainty imposed by particular meteorological conditions, including the presence of
fog, haze, and strong aerosol pollution, is to be assessed in forthcoming studies.

6. Conclusions

In this study, we presented an approach for the approximation of short-wave solar
radiation flux over the ocean from all-sky optical imagery using state-of-the-art machine
learning algorithms, including multilinear regression, Random Forest, Gradient Boosting,
and Convolutional Neural Networks. We trained our models using the data of the DASIO
dataset [13]. We assessed the quality of our models in terms of root mean squared error
(RMSE), approximated versus measured flux diagrams, error histograms, and quantile–
quantile plots. The results allowed us to conclude that one may estimate downward SW
radiation flux directly from all-sky imagery, taking some well-known uncertainty into
account. We also demonstrate that our CNN trained with strong data augmentations
is capable of estimating downward SW radiation flux, mostly based on clouds’ visible
structure. At the same time, the CNN has shown to be superior in terms of flux RMSE
compared to other ML models in our study.

Our method of flux estimation may be especially useful in the tasks of low-cost
monitoring of downward SW flux. From a practical point of view, one may use an all-sky
imager instead of high-grade radiometer in order to assess the radiative regimen of a
region using a low-cost, all-sky camera. In our study, we demonstrated that a low-cost
optical package accompanied by a trained ML algorithm may provide SW flux estimates of
reasonable quality. These estimates may be useful for planning the positions of solar power
plants, predicting the power plants generation, and so forth.

In our study, we demonstrated that the SW flux may be estimated by a ML model with
a reasonable quality using all-sky imagery and sun elevation only. At the same time, there
are a number of studies presenting the methods for retrieving various cloud properties
from all-sky images [13,14,16,25,37–39]. Thus, one may use these methods for assessing the
properties of clouds and downward SW radiation based on an all-sky image, and hence,
train an ML model linking the properties of clouds to SW radiation flux. One may also
assess the same cloud properties from atmospheric models. Thus, there is a way to use an
ML model to estimate downward SW flux based on modeled atmospheric data containing
characteristics of clouds. This method of estimating SW flux in an atmospheric model may
significantly reduce the computational load of its radiation subroutine.

Our results suggest that there are outliers in the DASIO dataset that may be filtered
in forthcoming studies. The results also suggest that hyperparameter optimization of our
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CNN and ensemble models may help in discovering better configurations, including proper
dataset re-weighting, as well as more suitable CNN architecture.

In further studies, we plan to improve the approach of resampling and re-weighting.
We also plan to approximate downward long-wave solar radiation flux using an approach
similar to the one presented in this paper. Additionally, modern statistical models of the
machine learning class provide an opportunity for short-term forecasting of fluxes, which
may be useful in forecasting the generation of solar power plants.
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