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Abstract: In-situ infrared soil spectroscopy is prone to the effects of ambient factors, such as moisture,
shadows, or roughness, resulting in measurements of compromised quality, which is amplified
when multiple sensors are used for data collection. Aiming to provide accurate estimations of
common physicochemical soil properties, such as soil organic carbon (SOC), texture, pH, and calcium
carbonates based on in-situ reflectance captured by a set of low-cost spectrometers operating at the
shortwave infrared region, we developed an AI-based spectral transfer function that maps fields
to laboratory spectra. Three test sites in Cyprus, Lithuania, and Greece were used to evaluate the
proposed methodology, while the dataset was harmonized and augmented by GEO-Cradle regional
soil spectral library (SSL). The developed dataset was used to calibrate and validate machine learning
models, with the attained predictive performance shown to be promising for directly estimating soil
properties in-situ, even with sensors with reduced spectral range. Aiming to set a baseline scenario,
we completed the exact same modeling experiment under laboratory conditions and performed
a one-to-one comparison between field and laboratory modelling accuracy metrics. SOC and pH
presented an R2 of 0.43 and 0.32 when modeling the in-situ data compared to 0.63 and 0.41 of the
laboratory case, respectively, while clay demonstrated the highest accuracy with an R2 value of
0.87 in-situ and 0.90 in the laboratory. Calcium carbonates were also attempted to be modeled at
the studied spectral region, with the expected accuracy loss from the laboratory to the in-situ to be
observable (R2 = 0.89 for the laboratory and 0.67 for the in-situ) but the reduced dataset variability
combined with the calcium carbonate characteristics that are spectrally active in the region outside
the spectral range of the used in-situ sensor, induced low RPIQ values (less than 0.50), signifying the
importance of the suitable sensor selection.

Keywords: MEMS; Vis-NIR; harmonization; transfer learning; light-based technologies; soil health;
EU soil mission; onsite digital tools; exploratory modelling; carbon farming; VNIR; SWIR

1. Introduction

Over the last several years, the European Union has worked diligently towards farm-
ing modernization, with a key objective of mitigating soil degradation due to climate
change and poor farming practices. Farmers, aligning themselves with this trend, employ
contemporary approaches that simplify and optimize the farming procedure, and seek
cost-effective solutions for each stage of the farming chain, with a goal to significantly
reduce time and costs [1].
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Infrared spectroscopy is a branch of physics and specifically of wave optics that is
related to the study of the structure and composition, as well as the nature of the spectra of
matter and radiation, covering the visible (Vis), near infrared (NIR), and shortwave infrared
(SWIR) parts of the electromagnetic spectrum. It is the science that studies light as a function
of wavelength, as the result of reflections due to molecular oscillations. Soil spectra can
be used to determine various soil properties [2], such as the nature and content of organic
matter or soil organic carbon (SOC), as well as the calcium carbonate the soil is likely to
contain, soil moisture content, texture, soil acidity, and nutrient content. The properties
that can be determined via spectroscopy are dependent on the specific instrumentation
and measurement method used, since each part of the electromagnetic spectrum studied,
provides information for different soil parameters. Vis–NIR–SWIR regions can be used for
the qualitative and quantitative analysis of soils [3], and present significant advantages for
providing estimations immediately without the need for time-consuming pre-treatments
and chemical reagents [4].

In this context, soil spectroscopy has already been considered as an important sup-
port to traditional laboratory procedures that can facilitate the development of large soil
datasets, and due to their non-destructive nature can mitigate environmental impact, with
satisfactory measuring accuracy [5]. With the advent of photonics-based solutions, such as
micro-electro-mechanical systems (MEMS), soil monitoring can be performed on a much
finer time scale, quantifying the effect of applied practices on the soil ecosystem [6–8]. In
particular, soil spectroscopy leveraged with participatory sensing techniques can provide
a cost and time-effective solution for the accumulation of information related to critical
agro–environmental-related parameters, from parcel-level to large-scale areas. Despite the
progress in artificial intelligence (AI) algorithms and the development of novel sensing sys-
tems, the adoption of portable sensors is still not optimal, and, to our knowledge, there are
no prior attempts to retrieve valuable insight from the utilization of portable spectrometers
by different users under real field conditions.

With soil spectroscopy, high amounts of data, in terms of points or images, can be
processed with the use of models from which conclusions are drawn. Various statistical and
machine learning (ML) techniques, such as partial least-squares regression (PLSR), random
forests (RF), the Cubist algorithm, or support vector regression models (SVRs) have been
evaluated and proven to be effective in linking the shape of the spectral curve to a targeted
soil characteristic [9,10]. Conventional ML models, or with even higher accuracy, the newly
developed deep learning techniques radically transform the soil spectral regression by
better serving feature learning, and thus produce accurate estimations, even simultaneously
as multi-output models [11]. Furthermore, AI models have also been utilized in recent
studies [12] to develop transfer functions in order to predict the field from laboratory
spectral signatures in a way to match the two spectral datasets and eliminate the effects
of ambient factors in the field. Since AI can be a suitable modeling tool, especially for
cases where the number of explanatory variables substantially exceeds the number of
observations, statistical modeling is considered as a reliable scientific approach and has
been applied to various studies for spectra treatment. Ackerson et al. [13] employed an
external parameter orthogonalization algorithm to minimize the effect of soil moisture on
the in-situ spectra for clay content prediction, while the application of the same technique
along with piecewise direct standardization, direct standardization, and generalized least
squares weighting, were used by Yang et al. [14] to eliminate the external effect on the
spectra for SOC modelling purposes. The presented results are promising, but until
today, the studies that have been conducted are covering limited soil types and further
investigation is needed, as stated in [15], where a set of mathematical techniques for
eliminating the effects of moisture content from soil spectra signatures have been reviewed.

With initiatives, such as LUCAS, GEO-Cradle, or other open soil spectral libraries
(SSLs), soil can be studied as a data-driven approach [16,17] by identifying solid statistical
relationships between laboratory spectral signatures and soil parameters. Augmenting
regional SSLs through spiking is a common technique, but when it comes to merging in-situ
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and laboratory SSLs, especially without the application of any means of standardization,
burdens, such as the different usage protocols or the effects of environmental factors arise,
resulting in low model performance [18,19]. This further limits the exploitation of the
existing open SSLs from spectrometers that were designed to operate in situ, since most of
them have been developed under laboratory conditions. To overcome this obstacle, various
efforts have been made in the past to develop a universally accepted protocol for SSL
development. Currently, the “IEEE P4005 standards and protocols for soil spectroscopy”
is expected to support such an effort, as a result of joined forces from more than 100 soil
spectroscopy experts, but still, the cases of laboratory and in-situ soil spectroscopy are
accurately discriminated as two distinct set-ups.

Our main objective is to leverage in-situ soil spectroscopy with the elimination of the
ambient factors effect through the application of AI-based functions, linking the laboratory
with the field-collected data. More concretely, through the exploration of different ML
modeling techniques, we exploit existing high-quality and expensive SSLs to enhance the
predictive performance of low-cost in-situ sensors. To ensure that the quality of on-site
collected data is not compromised, we developed an AI-driven outlier detection mechanism
and adopted the spectral standardization methodology based on internal soil standard
(ISS) usage [20]. In the next sections, we provide a detailed description of our effort to
merge in-situ soil spectral signatures with existing laboratory SSLs, providing accurate
AI-based estimations of key physical and chemical soil properties, as these were tested with
data collected during three field excursions for soil sampling and data acquisition in areas
with different soil characteristics from different countries. The results of the two modeling
iterations (laboratory spectra and in-situ spectra) per soil property were compared to
evaluate the potential of the low-cost portable SWIR spectrometer to provide accurate
estimations of each soil property.

2. Materials and Methods
2.1. Overall Methodology

A set of 280 topsoil samples were collected by 20 soil surveyors, distributed in three
countries (Cyprus, Lithuania, and Greece), chemically analyzed in the laboratory, and
scanned in-situ with a portable low-cost SWIR spectrometer (Nirone S2.2 @1750–2150 nm,
Spectral Engines GmbH, Steinbach, Germany—Fabry-Perot interferometer with a spectral
resolution of 20 nm), and at the lab with an analytical benchtop spectrometer (PSR + 3500
@350–2500 nm, Spectral Evolution Inc., Lawrence, MA, USA—512 element silicon photo-
diode array (350–1000 nm) with a spectral resolution of 2.8 nm, two 256 element InGaAs
photodiode arrays: (970–1910 nm) with a spectral resolution of 8 nm and (1900–2500 nm)
with a spectral resolution of 6 nm). Prior to the field visit, a pre-calibrated SWIR spec-
trometer was delivered to each soil surveyor to perform the in-situ measurements. The
pre-calibration step using the ISS ensures the inter-standardization of the devices between
themselves, as well as with other SSLs. The SSL developed, meaning that the spectral mea-
surements combined with the chemical analysis were used to calibrate the ML regression
algorithms for the estimation of the targeted physical and chemical properties, with the
sensors’ bands representing the topsoil spectrum to be used as explanatory variables. To
increase the variability of both spectral and physicochemical measurements, we augmented
the compiled in-situ SSL with the existing open SSL of GEO-Cradle [21]. The GEO-Cradle
regional SSL contains Vis-NIR-SWIR spectra and physicochemical analyses from nine coun-
tries around the Balkans, eastern Mediterranean, and North Africa. For the purposes of our
work, only the Greek and Cypriot samples were used. Since this SSL consists exclusively of
laboratory spectra, we developed an AI-based transformation that maps the in-situ spectra
captured by the portable SWIR spectrometer, to the corresponding spectral domain of the
spectral signatures captured by the analytical benchtop spectrometer in the laboratory. This
technique’s objective was dual; at first to eliminate the effect of ambient factors on the
spectral response, and secondly to harmonize the in situ and laboratory datasets, after the
correction was applied to the spectrum through the application of ISS standardization. In
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the meantime, for each spectral measurement collected in-situ, a quality assessment was
performed with a developed classifier that was used as an outlier detection mechanism.
The resulting dataset was used to estimate the values of a set of physical and chemical soil
properties based on AI techniques. Figure 1 demonstrates an overview of the workflow
followed to produce the final estimation of the targeted soil properties.
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Figure 1. Methodological flow for the soil properties estimation based on in-situ spectral signatures.

2.2. Data Collection

An extended data collection excursion took place during the summer of 2021, in three
pilot regions of Cyprus, three in Lithuania, and one in Greece (Figure 2). Their total extent is
about 25 km2 and 280 points were distributed according to the conditional Latin hypercube
selection (cLHS) [22] algorithm which was applied as follows: A three-year-long Sentinel-2
time-series was shaped for each pilot area, containing pixels corresponding to cultivated
land that was bare [23] at the time of the image capture, i.e., no vegetation or other plant
materials are present. The followed approach is described by Castaldi et al. [24] and
according to whom the pixels of cloud-free images were masked based on spectral indices
of the normalized difference vegetation index (NDVI) at less than 0.25, the normalized burn
ratio 2 (NBR2) at less than 0.075, and B3 > B2 and B2 > B1 (where B represents the Sentinel-2
band). The Sentinel-2 multi-temporal values of each bare soil instance were converted to
a bare soil composite by calculating the median value of each pixel. The feature space of
the resulting dataset was expanded with ancillary information containing topographical
and physicochemical properties of open source datasets which are a NASA SRTM digital
elevation model [25] and ISRIC soil grids SOC content and soil texture [26]. Then, the cLHS
algorithm was applied to define the pixels corresponding to locations that will be used for
the field visits from where the topsoil spectra were collected with the use of the portable
spectrometer, while an amount of topsoil was collected for physical and chemical analyses.

2.3. Chemical Analyses

For the sampled soil, in addition to the spectral analyses, chemical analyses were per-
formed as well, and more concretely, 40 topsoil (0–20 cm) physical samples were collected
from each region, amounting to 280 samples, that were analyzed for the determination of
the following physical and chemical properties:

• Texture (Sand, Silt, and Clay—%);
• Soil organic carbon content (SOC—%);
• pH;
• Calcium carbonates (CaCO3—g/kg).
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Soil texture was determined using the Bouyoucos hydrometer method [27], the SOC
content was measured with the Walkley–Black method [28], and soil acidity was measured
as pH, the values of which were determined through the saturated paste extract method [29],
while the concentration of CaCO3 was measured with the use of a calcimeter.

2.4. Spectral Analyses
2.4.1. Spectral Measurements

The samples were transferred to the laboratory and were pretreated, meaning that they
were air-dried naturally and then passed through a 2 mm sieve. Then, they were placed
inside a completely opaque “dark box” with two 75 W tungsten lamps, and were measured
at laboratory conditions with the analytical benchtop spectrometer which operates at
the spectral region of 350 to 2500 nm. To ensure that the produced SSL is reusable and
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compatible with existing open SSLs, the measuring protocol proposed by Ben-Dor et al. [30]
was used, which is also in accordance with the protocol that the GEO-Cradle regional SSL
developed. More specifically, standardization was applied with the use of two ISSs, Wiley
Bay (WB) and Lucky Bay (LB), adopting the idea from Pimstein et al. [20], suggesting that
to minimize systematic deviations between laboratories, the notion of internal standards of
wet chemistry can be transferred to soils.

All samples were measured in-situ with the portable spectrometers, and the above-
described measuring scheme was employed to the extent possible, and more specifically,
before delivering the spectrometers to the operators, the ISSs were measured with each
device, and the correction factors were calculated, aiming to reduce between-device mea-
suring deviations. The topsoil reflectance was measured by directly placing the sensor
facing the ground. Prior to measuring, stones, roots, litter, or other non-soil materials
were removed. The devices used were Spectral Engines Nirone S2.2, which were modified
according to the suggestions and insights provided by Karyotis et al. [31], since this study
demonstrated that the capacity of the sensor to reliably capture soil spectral signatures
can be significantly increased if the field of view is adjusted accordingly. To ensure the
proper operation under field conditions (e.g., waterproof, dust resistant, etc.), we adjusted
the sensing device by creating an extension component using 3D printing technology and
attached it to the self-sensor as shown in Figure 3.
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2.4.2. Outlier Detection

The in-situ spectra measurements were collected by the different operators bearing
different devices and under different environmental conditions. To ensure that the collected
data were of high quality, even though explicit equipment usage instructions were given to
each user, we developed an AI classifier for the outlier detection. With this tool, we aimed
to verify that each spectral signature was collected properly, meaning that the equipment
was used according to the predefined usage protocol, and no hardware failure occurred.
Furthermore, a photo was captured from each exact scanned location, which, along with
the corresponding Exif metadata, was checked before accepting any spectral signature
as valid.

To achieve this, we identified that for soil spectroscopy, measurements with an outlying
behavior were all non-soil materials that a user might try to scan, or measurements that
were taken without conforming to the usage protocol. To this end, a collection of about
200 spectral signatures from non-soil objects was created (Figure 4) and merged with
soil measurements captured with the portable spectrometer, and various supervised and
unsupervised classifiers were evaluated for their potential to separate soils from non-soils.
A set of classifiers, including the K-nearest neighbors classifier, support vector machines,
Gaussian process classifier, decision tree, and random forest, were evaluated using accuracy,
precision, and recall as evaluation metrics, and as a result, the selected classifier was the
ensemble method based on the abovementioned algorithms, that was used for testing each
spectral signature before any particular analysis or modeling was performed. A recent
review by Ganaie et al. (2022) [32] summarizes the techniques for ensemble learning that
combine several individual models to obtain a better predictive performance.
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2.4.3. Ambient Factors Effect Elimination

Soil moisture, shadows, the existence of rocks, or other non-soil materials, such as
vegetation residues or any kind of litter affect the soil’s spectral signature. To eliminate
the effect of these factors, a second AI-based component was developed, which can be
considered as a signal denoising function applied to the in-situ spectrum, exploiting the
spectral relationships between the spectra from the lab and in-situ. This mechanism can be
briefly described as a one-dimensional convolutional neural network (CNN) that targets
the elimination of the effects passed to the spectral signature shape and height by ambient
factors (such as moisture or shadows). The function maps the array of spectra collected
in-situ (exploratory variables) to the array of spectra captured in laboratory conditions
(response variables). We randomly split the dataset at a 70–30 ratio and the network’s
hyperparameters were tuned after a grid search, and the best combination was selected
based on the optimal value of RMSE, calculated over the two categories of spectra. More
concretely, different activation functions were tested, including relu, sigmoid, softplus,
softsign, hyperbolic tangent, selu, and elu, along with different batch and kernel sizes
ranging from 3 to 5 and from 13 to 17, respectively. The resulting SSL containing the
transformations of the in-situ spectra to the laboratory spectra can be merged with any
historical SSL (such as GEO-Cradle that was used in our experiment) given that it was
measured according to the same protocol as the one we used for our laboratory analysis.
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2.5. Modeling Soil Properties

The effects of soil characteristics on specific spectral domains can be represented as
a vector composed of thousands of reflectance measurements. More specifically, local
extrema of the spectral signature correspond to the fundamental frequencies and overtones
of the soil components, which are caused by the increase of their molecules’ kinetic energy
that absorb the transmitted electromagnetic radiation. To quantify each soil characteristic,
a linkage with the shape of the spectral signature must be established. Machine learning
regression algorithms were proven to be reliable solutions for this mission, and if fine-
tuned and trained over a dataset representing well the variability of the soil properties to
be modeled, high estimation accuracy can be achieved. For our case, we tested the random
forest [33] regression algorithm, the Cubist algorithm [34,35], and the SVR algorithm [36],
as provided by the scikit-learn Python library and the Cubist R wrapper.

To highlight the important parts of the spectrum, a set of pretreatment techniques
were applied for the scatter correction and spectral derivation functions, which was mainly
the calculation of absorbance spectra as the decimal logarithm of inverted reflectance. Fur-
thermore, the Savitzky–Golay [37] smoothing and differentiation filter was applied to the
initial spectral curve and their first or second-order derivatives, fitting a third polynomial
with the least squares technique to a window length of 101 for the laboratory spectra and
25 for the field spectra, respectively, expressed in nanometers, to a set of point observations,
thus reducing the noise through data smoothing, but also keeping the spectral tendency
without inducing any distortions. A detailed overview of those spectral pre-treatments
may be found in [38].

We evaluated the three mentioned algorithms and all possible combinations of spectral
preprocessing for each soil property and selected the modeling scenario that produced
the optimal values of standard performance metrics. Prior to proceeding to any model
fitting, a representative subset equal to 30% of the observations was selected and left
out through the Kennard–Stone algorithm based on in-situ spectral similarities [39], and
was used as an independent set for assessing the accuracy of every developed model,
which was quantified with standard model assessment metrics, such as the coefficient
of determination (R2), the root mean square error (RMSE), and the ratio performance
of the interquartile range (RPIQ). For the same train-test split, the same spectral pre-
processing and modelling procedure was applied to the laboratory spectra, which serve
as an estimation performance upper boundary due to the analytical nature of the spectral
signature capture in laboratory conditions.

3. Results and Discussion
3.1. Chemical Results

A large range of variability was captured over the set of monitored parameters, and
in particular over the soil texture, since the soils were sampled from different places with
different soil properties. As shown in Figure 5, the three groups of soils can be easily
distinguished. Here, soils originating from Cyprus and Lithuania are predominantly
Leptosols and Regosols [40,41], with medium to high clay content. The samples originated
from Cyprus are labeled according to the United States Department of Agriculture (USDA)
classification system as clay loam, silty clay loam, or silty loam, and the ones from Lithuania
are mainly classified as sandy clay loam, loam, or clay loam. Greek soils are mostly Fluvisols
and Entisols [42], and are classified mainly as loamy and sandy loamy, based on the soil
texture, which mostly lies to the fact that the GEO-Cradle soil samples, which are the
majority of the dataset instances, are distributed mainly around the Nestos river estuaries,
a sandy area with low clay content.
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Figure 5. Soil sample’s textural classification according to the USDA.

The descriptive statistics of the soil data are presented in Table 1. The average pH
value (7.87) is slightly higher than expected for croplands, which typically ranges from 5.5
to 7.5 [43], and this can be explained due to the alkaline soils of one of the pilot areas in
Cyprus (around Lefkara, the Larnaka region), and the combination of high concentrations of
CaCO3, high clay fraction, and low SOC content [44], the pH value in this region exceeds 8.4.
Added to that, Lithuanian soils from the test sites were either neutral or marginally alkaline.
Furthermore, GEO-Cradle does not provide pH measurements for Greek soils, thus the high
pH values for the Cypriot soil affect the calculated average value of the SSL. SOC presents
a low average value of 0.98%, and when combined with the high clay content that prevails
in most parts of the studied regions, it signifies a high SOC sequestration potential that
is not currently achieved [45–47]. As for the correlations (Figure 6), positive correlations
have been calculated as Pearson’s coefficient between clay and all other properties, with
the strongest observed between the pH and CaCO3. SOC is not directly correlated with pH
or CaCO3, while carbonates and acidity are positively and strongly correlated.

3.2. Spectral Measurements

ISS measurements from different devices demonstrated a low variance in the cap-
tured reflectance, as shown in Figure 7a, and in combination with the absence of strong
absorption bands, hence no artifacts were introduced to the spectral signature to be cor-
rected, proving the suitability of the selected materials as soil standards. This technique
was considered necessary since 20 different devices were used for the accumulation of
in-situ spectral measurements, but it must be noted that operator-related systematic effects
were not eliminated, since the ISSs were measured at the laboratory. The application of
the standardization decreased the spectral differences between the reflectance captured
with the handheld and the benchtop (reference) spectrometers by an order of magnitude.
As differences were measured in terms of RMSE, the unstandardized error compared to
the reference values ranged from 11% to 18% while the error that corresponded to the
standardized reflectance measurements was reduced significantly, ranging from 1% to 4%
for the different spectral ranges (Figure 7b).
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Table 1. Descriptive statistics of the chemical analyses for the augmented dataset, GEO-Cradle, and
the collected samples.

Soil Attribute Sand (%) Clay (%) Silt (%) pH CaCO3 (g/kg) SOC (%)

Augmented dataset (GEO-Cradle and collected samples)

Min 9 1.5 6 5.95 0 0
1st quartile 31 11 26 7.67 0 0.63

Median 45 18 31 7.95 10 0.91
Mean 45.87 22.24 31.89 7.87 91.32 0.98

3rd quartile 59 32 39 8.09 80 1.32
Max 89 57 62 10.07 815 3.8

Standard
Deviation 17.85 13.48 10.04 0.43 165.18 0.59

Collected samples

Min 12 10 13 7.04 3.00 0.70
1st quartile 24 28.25 26 7.70 12.00 0.95

Median 32 35 29 7.95 36.50 1.29
Mean 34.68 34.87 30.46 7.86 142.46 1.35

3rd quartile 45 43 34 8.07 280.00 1.59
Max 75 57 48 8.27 590.00 3.80

Standard
Deviation 14.43 10.12 7.12 0.28 168.16 0.49

GEO-Cradle

Min 9 1.50 6 5.95 0.00 0.00
1st quartile 43 9 24 7.46 0.00 0.47

Median 54 13 33 7.97 2.00 0.70
Mean 53.66 13.47 32.89 7.91 55.98 0.74

3rd quartile 63.80 17 41 8.35 20.00 0.99
Max 89 48 62 10.07 815.00 3.66

Standard
Deviation 15.74 7.02 11.54 0.72 153.44 0.54
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Spectral measurements from the collected soil samples present high spectral variability,
including soils covering both low and high albedo, compiling a diverse spectral dataset.
This diversity can be depicted both from the laboratory and in-situ spectral curves, as
shown in Figure 8. Furthermore, it can be highlighted that the in-situ measurements
have lower reflectance than the laboratory measurements. This mainly has to do with the
existence of soil moisture, shadows, roughness, or other factors, the effect of which were
eliminated with the soil pretreatment applied before the laboratory spectral measurements.
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3.3. Outlier Detection

Standard classifying accuracy metrics (precision, accuracy, and recall) were used to
assess each classifier that was developed for the detection of the spectral signatures with
outlying behavior. The ensemble method combining all of the classifiers outperformed
each other’s modeling attempt, providing an accuracy of 94.48%, a precision of 95.28%, and
a recall score of 97.58%. As shown in the corresponding confusion matrix of Table 2, only
nine instances were erroneously classified (six false positives and three false negatives),
while the classification outcomes from the ensemble method are presented in Figure 9.
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Table 2. Confusion matrix of ensemble method for identifying measurements with outlying behavior.

Actual Value

True False

Predicted value
True 33 6
False 3 121
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Figure 9. Ensemble method classifier for the outlier detection predictions. Dimension reduced with a
principal components analysis (PC1 and PC2).

As many field surveyors were engaged in the field campaign, a few instances of device
misuse or malfunction were detected by the outlier detection mechanism, resulting in the
need for measurement repetition. This signifies the necessity for real-time inspection and
conformity mechanisms when it comes to field campaigns that are carried out by medium to
large-sized groups, and further enables users with no prior explicit experience to participate
in such crowdsourcing missions and vastly increase the scale of studied regions.

3.4. Ambient Factors Effect Elimination

A dense grid search approach was followed for hyperparameter tuning of the CNN-
based spectral transfer function from in-situ to the laboratory. The median RMSE presents an
increasing trend when the batch size increases for any given activation function (Figure 10a),
whereas activation function selection influences the interquartile range of estimated RMSE,
resulting in deviations with high variability from reference values for different batch size
combinations. Furthermore, kernels of different sizes affect the RMSE (Figure 10b), and thus
the kernel and batch sizes of 15 and 5, respectively, and the scaled exponential linear unit as
activation function was selected, resulting in the development of a CNN architecture that will
minimize the spectral distance between the in situ and laboratory reference spectral curves.

The correction shown in Figure 11 has a considerable effect on minimizing the differ-
ences between the laboratory and in situ spectral signatures. This effect is mostly present
around the high absorption band of 1920 nm, with the smallest effect visible at the two lim-
its of the handheld spectrometer’s spectral range due to the lack of numerous surrounding
bands. The resulting spectral signatures created a regional SSL, which could subsequently
be extended through spiking local samples from open SSLs that have been developed with
the same measuring protocol, such as GEO-Cradle.
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3.5. Modeling Assessment

We split the dataset with the Kennard–Stone algorithm to a 70-30 ratio, aiming to
achieve a representative train-test split. This can be verified through Figure 12, where
the groupings of each region per soil property provide similar distributions (probability
density estimations) in the sense that both the train and the test subset present high
frequencies at similar positions of the property values. As previously discussed, the high
pH values observed in Cyprus are mainly a result of high CaCO3 values, leading to different
distributions of pH and CaCO3 between Cyprus and the other two cases of Greece and
Lithuania, and more specifically to great differences in high values and the value range of
these two properties.

Clay content was estimated with a very high accuracy, with the metric values present-
ing a slight decrease when the modeling field data (R2 = 0.87, RMSE = 4.13%, RPIQ = 3.86)
were compared to the laboratory data (R2 = 0.90, RMSE = 3.66%, RPIQ = 4.03). The best
fitting model for the laboratory case was the Cubist algorithm after applying SNV normal-
ization to the reflectance spectra, while for the in-situ case, the SVR algorithm was chosen
with the Savitzky–Golay (1st order derivative) filtering. Many clay minerals show intense
absorption in the SWIR region, resulting from vibrations of hydroxyl groups and water
molecules [48], and thus sensors operating at SWIR are suitable for their detection and their
content determination.
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For the estimation of the SOC content, the fitted models were based on the random
forest regression which was applied to scatter the corrected reflectance spectra with the
Savitzky–Golay (1st order derivative) and normalized with SNV. Here, the metrics value
decrease from the lab (R2 = 0.63, RMSE = 0.37%, RPIQ = 1.81) to the field (R2 = 0.43,
RMSE = 0.36%, RPIQ = 1.48) is significant since the bands correlated with SOC are fewer in
the spectral range covered by the Nirone S2.2 sensor. The important spectral bands for the
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SOC content estimation are mostly located around the visible range (400–700 nm), with two
bands (1752 nm and 2056 nm) falling inside the in-situ sensor’s spectral region, according
to Stenberg et al. [49].

The results of the pH and calcium carbonates do not allow for drawing safe conclusions
since the laboratory modeling unveiled correlations between the spectrum and the targeted
property (R2 = 0.41 for pH and R2 = 0.89 for CaCO3), but the induced bias was high.
From Figure 13, we can observe that the trend was identified with in-situ modelling,
corresponding to low and high reference values, respectively (with R2 = 0.32 for pH and
R2 = 0.67 for CaCO3), but with a relatively high bias and a few outliers observed for both
soil parameters. Other studies claim that the pH and CaCO3 can be efficiently modeled by
Vis-NIR-SWIR spectra [42,50], but for our case, it is very likely that high values of RMSE
produced by our modeling are mostly related to special characteristics of the dataset used.
The experiment mostly contains soil samples with a neutral pH, except for one region with
very high concentrations of CaCO3 that leads to soil alkalinity, thus the distribution of the
pH and CaCO3 declines from the normal or exponential distribution and presents a fat tail
to the high values. Overtones of fundamental absorbance bands of CaCO3 can be found
within the spectral range of field spectrometers, as the 7th (at 2012 nm), 6th (at 1909 nm),
and 4th (at 1796 nm) overtones of 710 cm−1, 873 cm−1, and 1392 cm−1, respectively [51],
justifying the identified correlations of the collected spectrum with the carbonates, and
thus, the cross-correlations with the pH. Performance metrics are presented in Table 3.
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Table 3. Accuracy metrics for the best fitting model per property and experimental set-up.

Set-Up Selected Model Property R2 RMSE RPIQ

Laboratory

Cubist Clay 0.90 3.66% 4.03
RF SOC 0.63 0.29% 1.81

SVR pH 0.41 0.22 1.91
Cubist CaCO3 0.89 30.63 (g/kg) 0.46

In-situ

SVR Clay 0.87 4.13% 3.86
RF SOC 0.43 0.36% 1.48
RF pH 0.32 0.25 1.87

Cubist CaCO3 0.67 54.08 (g/kg) 0.18

As expected, accuracy loss was observed in the modelling in-situ spectra compared
to the pretreated laboratory analysis, and that is mostly related to (i) the limited spectral
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range of the in-situ sensor compared to the analytical instrument used in the laboratory,
and (ii) the effect of ambient factors, which was partially eliminated. We demonstrated
that the clay content estimation from the in-situ spectra is feasible with values of R2 = 0.87
and RPIQ = 3.86, and our findings are in accordance with Rossel et al. [52] where strong
correlations of Vis-NIR spectra were found both in the laboratory and in-situ conditions.
According to Ji et.al. [53], the SOC can be accurately estimated based on the in-situ Vis-
NIR spectra with R2 greater than 0.75 signifying the importance of NIR region at less
than 1750 nm, which was not covered in the presented work. Compared to other studies
that report a value loss of the R2 metric from 0.66 to 0.39 in modeling the SOC from the
laboratory to the in-situ [54], our results slightly outperformed this experiment which is
mostly explained by the attempt to minimize the effect of ambient factors, in combination
with the SOC variability that our dataset captured. A MEMS based system (Neospectra
Scanner @ 1350–2500 nm) was also assessed at a recent work [7] for its predictive capacity of
the same set of soil properties as our study, but only in laboratory conditions, demonstrating
that MEMS can be used effectively to substitute expensive laboratory equipment, while
in Shen et al. [8], the MEMS sensor used in the present work was also evaluated and
successfully used for the estimation of a wider set of soil properties and health indicators
at laboratory conditions. The estimation of the pH on site was slightly outperformed from
the laboratory, with an observable decrease in R2 value of 0.9 and a very small increase in
the RMSE value of 0.03 and a small loss in RPIQ of 0.04. The accuracy metrics achieved are
in accordance with the previous work [55], where an RMSE of 0.23 and RPIQ of 2.01 are
reported for modeling the in-situ NIR spectra.

The results of the modeling attempt of CaCO3 are weaker compared to the aforemen-
tioned soil properties and to research efforts [56] that outperform the one presented in this
paper. This is mostly attributed to the dataset characteristics, that although it contains soils
from different regions and types, the special characteristics of alkaline Lefkara-Cyprus soils
have a strongly asymmetrical distribution, since the other samples have very low CaCO3
values. This distribution’s particularity can be considered as a “real world’s” attribute
rather than a special case, since the same can be observed also in the pan-European soil
survey of LUCAS where the CaCO3 distribution was positively skewed, creating a long tail
to the right part of the curve corresponding to the higher values [16].

In general, our methodology achieved comparable modeling results between the labo-
ratory and in-situ, with the latter slightly underperforming the former, and this agrees with
the previous study by Priori et al. [7], where a standard full Vis-NIR-SWIR spectrometer
was compared with a portable MEMS sensor, covering the range from 1350–2500 nm, and
attaining a better predictive performance for all soil features. Moreover, the RPIQ values
of clay, SOC, and pH present a relative value loss of less than 19% (which corresponds
to the value loss of the SOC modelling), in exchange of a significantly decreased number
of explanatory variables, which in our case are the spectral bands captured from each
sensor (reducing the 2150 bands of the analytical spectrometer used at the laboratory to the
400 bands of the MEMS sensor used in-situ). The results presented can also be attributed to
the application of the AI-based technique that was applied for the ambient factor removal,
for which the selected kernel size effectively captured the intercorrelations of the consecu-
tive bands, enabling the model to preserve the interclass distance of the spectra. Different
modeling architectures, in terms of algorithms (such as auto-encoders) or used metrics
as loss-functions (such as the Mahalanobis distance) can be tested to further enhance the
elimination of the effects applied to the spectrum during in-situ measuring.

4. Conclusions

The presented work provides insight into the potential to estimate various soil proper-
ties based on the accurate measurement of in-situ topsoil reflectance with the use of low-cost
sensors capturing very few spectral bands, narrow spectral ranges, or with low spectral
resolution. We demonstrated the far-reaching opportunities using effective light-based
technologies for the in-situ analysis and AI to quantify four physio-chemical properties in
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soils. Our work paves the way for a new wave of promising research to tackle unprece-
dented challenges in onsite and near-real time estimation of soil parameters. Deep learning
models were employed to bridge the gap between laboratory and in-situ spectroscopy, and
as a result past efforts of developing SSLs based on laboratory measurements can now be
further exploited to support the calibration and validation of ML models that accurately
assess topsoil properties. Still, the importance of developing a globally approved sensing
protocol is emphasized.

We performed a one-to-one comparison between the laboratory and in situ spec-
tral signatures with measurements obtained with a full range, high-resolution, analytical
spectroradiometer (Spectral Evolution, PSR + 3500) and a narrow-ranged handheld spec-
trometer (Spectral Engines, Nirone S2.2). The applied transformation induced a correction
to the spectra acquired in situ that resulted in a significant spectral difference drop, which
can be reflected as a reduction of the mean absolute error from 20% to 2.5%, which was
calculated over an independent set. This technique minimizes the effects of ambient factors
on the spectral signatures and helps the development of a new dataset of “transformed”
spectra, which can be used to extract useful information about the soil’s characteristics.

The use of spectrometers with a limited spectral range compared to analytical devices
mainly used in laboratories can provide accurate estimations of soil properties, such as clay,
SOC, or pH, that attain an RPIQ > 1.4 in all cases, while CaCO3 needs to be further explored.
Furthermore, the comparison of modeling results between the benchtop spectrometer and
the handheld device showed a small decrease in accuracy when using the latter, which
signifies that the tested soil properties can be accurately estimated with the selection of the
appropriate device, in terms of spectral range. As the proposed architecture is modular,
it may be tailored to various environmental observations or soil spectrometers, and as a
result to radically reform environmental monitoring methodologies.
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