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Abstract: Remote sensing object detection is a basic yet challenging task in remote sensing image
understanding. In contrast to horizontal objects, remote sensing objects are commonly densely packed
with arbitrary orientations and highly complex backgrounds. Existing object detection methods
lack an effective mechanism to exploit these characteristics and distinguish various targets. Unlike
mainstream approaches ignoring spatial interaction among targets, this paper proposes a shape-
adaptive repulsion constraint on point representation to capture geometric information of densely
distributed remote sensing objects with arbitrary orientations. Specifically, (1) we first introduce a
shape-adaptive center-ness quality assessment strategy to penalize the bounding boxes having a
large margin shift from the center point. Then, (2) we design a novel oriented repulsion regression
loss to distinguish densely packed targets: closer to the target and farther from surrounding objects.
Experimental results on four challenging datasets, including DOTA, HRSC2016, UCAS-AOD, and
WHU-RSONE-OBB, demonstrate the effectiveness of our proposed approach.

Keywords: remote sensing object detection; point representation; sample quality assessment; aerial
target recognition; center-ness quality

1. Introduction

With the improvement of imaging quality, remote sensing images have been applied in
many fields. As the basis of many remote sensing image applications, the quality of remote
sensing object detection directly affects the effect of downstream applications. Generally
speaking, object detection aims at identifying the categories of objects of interest and
locating their position and can be divided into horizontal object detection and oriented
object detection according to the expression of the bounding box. Since the seminal creative
work: R-CNN [1] and its successive improvements [2,3], horizontal object detection has
achieved significant progress. As a fundamental yet essential sub-task in object detection,
the development of oriented object detection has fallen behind horizontal object detection
since it requires a more sophisticated mechanism to locate objects precisely. Recently,
remote sensing object detection has drawn increasing attention. However, a significant
and recurrent problem is that remote sensing objects are often in multiple scales with
arbitrary orientations [4–6] and in densely packed distributions with complex background
contexts [7–9]. Based on the horizontal bounding box, oriented object detection utilizes an
angle parameter to position large aspect ratio objects and small remote sensing objects in
a crowded environment. Besides, oriented bounding boxes can minimize the error effect
caused by the non-maximum suppression compared with horizontal bounding boxes.

The mainstreamed-oriented object detection approaches typically take the perspective
that horizontal object detection is a special case for oriented object detection. Accordingly,
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most oriented object detectors are often inherited from the classical horizontal detectors
with an extra orientation parameter θ. As shown in Figure 1, oriented object detectors
utilize an extra parameter θ to describe the orientation information of the target object, in
other words, five parameters (x, y, w, h, θ). The oriented bounding box provides a more
precise localization of the objects. Especially for the large aspect ratio and small targets,
the angle parameter θ and center point (x, y) play a more significant role in the positioning
paradigm. Taking ship detection as an example, detecting a ship in Figure 1a using a
horizontal bounding box has an inferior performance compared with using an oriented
bounding box in Figure 1b as more than half the area of the horizontal bounding box does
not belong to the ship.
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(a) Horizontal bounding box

 𝑥, 𝑦,𝑤,ℎ,𝜃  

𝑤 

ℎ 

(𝑥,𝑦) 

𝜃 

(b) Oriented bounding box

Figure 1. Horizontal bounding box (a) versus oriented bounding box (b), taking ship detection
as an example. Point (x, y) denotes the coordinates of the center point of the target, while (w, h)
denotes the width and height of the bounding boxes, respectively. The oriented bounding box, in
particular, utilizes an extra parameter θ to represent the angle information making it better for locating
aerial targets.

Most approaches treat oriented object detection as a problem of oriented object local-
ization and the orientation regression-based methods [4,10,11] play the most important role
in the research area. Benefiting from [12–14], these methods have achieved gratifying per-
formance in research and application. However, the mechanism of angle-based regression
methods has congenital drawbacks, including loss discontinuity and regression inconsis-
tency [15–17]. These shortcomings are attributed to the periodicity of angular orientation
and the specification of the oriented bounding box. For example, a bounding box rotated
one degree clockwise or counterclockwise around the ground truth is equivalent under the
Intersection over Union (IoU) evaluation metric. The transformation of five parameters
(x, y, w, h, θ) and eight parameters (x1, y1, x2, y2, x3, y3, x4, y4) also contains discontinuity of
the loss problem caused by the order of the four points. The set {(xi, yi), i = 1, 2, 3, 4} de-
notes four corner points of an oriented bounding box, respectively. Besides, some two-stage
methods such as [4,9,18] design various complex modules to extract rotated features from
the Region of Interest (RoI) and increase the computational complexity of the detectors.

Besides the discontinuity and complexity problems, orientated object detection has
the challenge of precisely locating small and cluttered objects. This is especially true
for aerial images, which are vital in remote sensing applications. To address this issue,
SCRDet [9] proposed a pixel attention network and a channel attention network to suppress
the noise and highlight object features. DRN [19] proposed a feature selection module and
a dynamic refinement head to improve the receptive fields in accordance with the shapes
and orientations of small and cluttered objects. However, these mainstream methods ignore
spatial interaction among targets. While a vast majority of aerial images are taken from
the bird’s-view perspective, most targets are insufficiently covered by their surrounding
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targets. This fundamental feature of aerial targets is underutilized, and hence, spatial
relative information should be considered in detector regression procedures.

Another challenge for oriented object detection is the design of sample assessment. As
reported in [20–23], the selection, verification, and evaluation of samples can significantly
improve the detectors’ performance. ATSS [20] proved that the selection of positive and
negative samples can improve the performance of detectors and proposed an adaptive
sample assignment strategy. Chen et al. [21] discovered that joint inference with sample
verification has a promising improvement over its foundation [24]. Hou et al. [22] con-
sidered shape information and measured the quality of proposals. Li et al. [23] proposed
adaptive points assessment and assignment to improve the classification confidence and
localization score. As pointed out in [25], the center-ness information plays a significant
role in object localization. However, existing works do not have an effective measure of it.

As discussed above, the challenges associated with oriented object detection can be
summarized as follows:

• The discontinuity of loss and the regression inconsistency caused by the expression of
the oriented bounding box.

• The difficulty of locating small and cluttered objects precisely and the lack of spatial
interaction among targets.

• Effective selection, verification, and assessment of samples and proposals, especially
center-ness quality.

In this paper, we proposed repulsion and center-ness constraints based on RepPoints
to improve remote sensing object detection. Firstly, we explore the representation of
oriented objects in order to avoid the challenges caused by the oriented bounding box.
As determined in RepPoints [21,24], point sets have demonstrated great potential while
capturing vital semantic features produced by the multiple convolutional layers. In contrast
to the conventional convolutional neural networks, RepPoints can have a weighted and
wider reception field benefiting from [26]. To generate bounding boxes, a conversion
function is applied to transform points into rectangles. For example, the conversion
function MinAreaRect uses the oriented rectangle with minimum area to cover all the
points in the learned point set over a target object. Secondly, as RepPoints only regresses
the key points in the semantic feature maps but ignores measuring the quality of point
sets, it attains an inferior performance for images with densely packed distributions and
complex scenes. Therefore, we introduce the addition of a measuring strategy of center-
ness to filter noisy samples located away from the center points of bounding boxes based
on [23]. Thirdly, we design a novel loss function named oriented repulsion regression
loss to illustrate the spatial interaction among targets. Specifically, we make the predicted
bounding boxes closer to their corresponding ground truth boxes and farther from other
ground truth boxes and predicted boxes, inspired by [27]. The main contributions of this
paper are summarized as follows:

1. We utilize adaptive point sets to represent oriented bounding boxes to eliminate
discontinuity and inconsistency and to capture key points with substantial semantic
and geometric information.

2. We propose a center-ness constraint to measure the deviation of the point set to the
center point in the feature map aiming to filter low-quality proposals and improve
the localization accuracy.

3. We design a novel repulsion regression loss to effectively illustrate spatial information
among remote sensing objects: closer to the target and farther from surrounding
objects, especially helpful for small and cluttered objects.

In addition, to evaluate the effectiveness of our proposed method, we conducted a
series of experiments on four challenging datasets, DOTA [28], HRSC2016 [29], UCAS-
AOD [30], and WHU-RSONE-OBB [31], and obtained consistent and promising state-of-
the-art results.
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2. Related Work and Method

In this section, we first review the related studies of oriented object detection before
providing sufficient information to illustrate our proposed methods.

2.1. Related Work
2.1.1. Oriented Object Detection

For several years, the representation of bounding boxes in object detection has been
dominated by horizontal bounding boxes. With the increasing demand for object detection
with arbitrary orientations, such as text localization and remote sensing object position-
ing, oriented object detection has drawn more attention. Recent advances in oriented
object detection [4,9,16,32] are mainly derived from classical object detectors adapting
horizontal object detectors with oriented bounding boxes to satisfy multi-oriented object
detection. Generally, anchor-based oriented object detection can be divided into four
categories: (1) generating rotated proposal regions directly and classifying the class of se-
lected regions [4,10]; (2) regressing the angle parameter θ in a five parameter representation
(x, y, w, h, θ) directly or based on horizontal proposal regions [5,9,33–35]; (3) using shape
mask predicted by the mask branch to locate the object region [36]; and (4) transforming
regression of the angle parameter into classification problem to address the periodicity of
the angle and boundary discontinuity [16,17]. Although the anchor-based methods have
achieved promising results, there are still some limitations for anchor-based detectors, such
as various hyperparameters, complex post-processing, and overlapping calculation.

To further improve the efficiency of oriented object detection, some modifications have
been made to anchor-free detectors for horizontal object detection, including key point-
based methods [37,38], pixel-based methods [25], and point set-based methods [21,24].
Many superior methods have emerged verifying the effectiveness of the representation
mentioned above. For example, O2-Det [39] uses a pair of corresponding middle lines to
locate rotated objects. In terms of overlapping calculation and boundary discontinuity,
Yang et al. [40,41] transform the regression of the rotated bounding box to the Wasserstein
Distance or Kullback–Leibler Divergence of 2-D Gaussian distributions, which achieves
desirable results in oriented object detection.

2.1.2. Sample Assignment for Object Detection

Conventional object detection methods select positive and negative samples based on
the fixed IoU threshold, i.e., MaxIoU strategy, which adopts IoU values as the only match-
ing metric. Nevertheless, IoU-based assignment methods ignore the quality of training
samples caused by the noise in the surroundings [42]. Various excellent adaptive sample
assignment strategies have been proposed recently, which convert sample assignment into
an optimization problem to select high-quality training samples. ATSS [20] uses a dynamic
IoU threshold based on the statistical characteristic from the ground truth for the sample
selection. FreeAnchor [43] enables the network to autonomously learn which anchor to
match with the ground truth under the maximum likelihood principle. PPA [44] models
the anchor assignment as a probabilistic procedure and calculates the scores of all anchors
based on a probability distribution to determine the positive samples. DAL [45] defines a
matching degree and sensitive loss to measure the localization potential of anchors, which
enhances the correlation between classification and regression. SASM [22] utilizes the mean
and standard deviation of the objects to capture shape information and add loss weights to
each positive sample based on the quality.

In this paper, we divide the assignment into two phases: the initial stage and the
refinement stage. In the initial stage, we utilize an IoU-based sample assignment, while we
add a series of quality assessment strategies in the refinement stage, including center-ness
constraint to filter noisy samples that can significantly enhance the effectiveness of adaptive
points learning.
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2.2. Overview of the Proposed Method

To alleviate boundary discontinuity, we adopt the adaptive point set proposed by [24]
as a sophisticated representation of oriented bounding boxes instead of directly regressing
the five parameters (x, y, w, h, θ). As a fine-grained representation, a point set enables
the detectors to capture key points with substantial semantic information and geometric
structure, which helps locate small and densely packed objects with arbitrary orientations.
To converge from the ground truth boxes, a differentiable conversion function is applied
to get oriented bounding boxes from the representative points. In the backward process,
the coordinates are updated through the loss designed to adaptively cover an oriented
object. To improve the effectiveness of adaptive point sets, we suggest a center-ness quality
assessment strategy based on [23] for an additional constraint on the selected positive
samples, which can make adaptive points concentrate more on the object rather than the
background. To further address the issue of the localization of small and cluttered objects,
we design a repulsion constraint in the form of a loss function, which makes the proposal
bounding boxes closer to their ground truth boxes while farther from the other surrounding
ground truth or proposal boxes. The assignment of samples is divided into two phases.
In the initial stage, the detector selects positive samples according to the IoU values. To
improve the qualities of the selected samples, we design an assessment module to score each
sample, where the center-ness constraint score is calculated to filter low-quality samples
alongside the orientation, classification, and localization quality measurement strategies.
In the refinement stage, only high-quality samples selected by the assessment module are
used to calculate loss values. Figure 2 illustrates an overview of our proposed anchor-free
oriented object detector based on Reppoint.
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Figure 2. The pipeline of our proposed object detector. The proposed method is an anchor-free
detector based on Reppoint [24] with adaptive point sets as the representation of an oriented bounding
box, where a classical backbone with FPN [12] network is employed to encode multi-scale features.
Deformable Convolutional Network (DCN) is utilized to capture shape-aware features. To cope with
the harmony of the classification branch and the regression branch, the offset parameter is shared in
the DCN block.
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2.3. Deformable Convolutional Network

Traditional object detectors mainly use Convolutional Neural Networks (CNN) for
feature encoding. However, the fixed receptive field of CNN leads to the defect that CNN
can not capture information in the neighboring area. In the remote sensing images, objects
are often sharply variable shapes, e.g., square tennis court and slender ship. While the
defect appears to be more apparent, we alleviate it by adopting the Deformable Convolu-
tional Network (DCN) [26] both in the classification and regression branches to capture
shape-aware features of the objects. The process of DCN can be formulated as shown in
Equation (1).

y(p0) = ∑
pn∈R

w(pn) · x(po + pn + ∆pn), (1)

where w(·) denotes the filter weights,R = {(−1,−1), (−1, 0), · · · , (1, 0), (1, 1)} is receptive
field size and dilation taking a 3× 3 kernel with dilation 1 as an example. {∆pn|n =
1, · · · , N}, N = |R| is the offset set of each point in the receptive field, and is calculated as
shown in Equation (2).

∆pn = Conv(Fi)−R, i ∈ {1, · · · , 5}, (2)

where Fi denotes the i-th scale feature map, and R is the standard CNN receptive field.
The function Conv(·) denotes a series of CNN layers and the dimension of its output is
w× h× 18, where w and h are the width and height of Fi, respectively.

As shown in Figure 3, benefitting from the offset parameters, DCN gains the ability to
aggregate information from the wider neighboring areas. As the offsets and the convolu-
tional kernels are learned simultaneously during training, DCN can obtain dynamic and
adaptive features of objects and is more sensitive to the variable shapes. More importantly,
the inherent characteristic of DCN, i.e., learnable offset, perfectly fits the adaptive point set,
which provides a more accurate localization of the oriented objects.

Filter

(a) Standard CNN

FilterOffset

(b) DCN

Figure 3. Illustration of standard CNN in (a) and DCN in (b). DCN utilizes an additional offset
learned from the feature map to obtain a wider receptive field compared with CNN.

2.4. Center-Ness Constraint for Oriented Object Detection

Sample selection plays a critical role in the performance of detectors. Conventional
IoU-based sample selection strategies overlook the shape information of the selected sam-
ples, which introduces many noisy samples and deteriorates the unbalance of positive
and negative samples. In our proposed method, we divide the sample assignment into
two phases: the initial stage and the refinement stage. In the refinement stage, all selected
samples are assessed through our designed center-ness constraint alongside other strategies
proposed by [23]. The center-ness constraint is first suggested in FCOS [25], aiming to
remove redundant and meaningless proposal bounding boxes for horizontal object detec-
tion. Simply applying it in oriented object detection will introduce additional inconsistency
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between the distribution of the center-ness score and the oriented box. Concretely, the
horizontal center-ness quality can not fit the oriented bounding box, as shown in Figure 4a.
To modify this defect, we re-formulate the center-ness calculation process and make it
fit the oriented bounding box appropriately. A horizontal bounding box can be simply
expressed by (x, y, w, h), where (x, y), w, h denote the center point, width, and height of
the horizontal bounding box, respectively. The center-ness score can be directly calculated
by the offsets of the center point to the four edges.

𝑥 

𝑦 𝑂 

(a) Horizontal center-ness

𝑥 

𝑦 𝑂 

(b) Oriented center-ness

Figure 4. Heatmap of the horizontal and oriented center-ness. The distributions of horizontal and
oriented center-ness scores are indicated by the ellipses with a yellow dotted outline.

In our proposed method, we utilize a point set P with nine points to represent an
oriented bounding box, which is defined in Equation (3).

P = {(xi, yi)|i ∈ {1, · · · , 9}}, (3)

where each (xi, yi) in P is calculated by the corresponding offset ∆pn and point (x, y) in the
feature map projected to the original size of the input image. The process can be expressed
as shown in Equation (4).

(xi, yi) = (x, y) + ∆pi. (4)

To simplify the computation procedure, the point set P is converted into a rotated rect-
angle through the MinAeraRect(·) function to measure the center-ness quality. MinAreaRect
uses the oriented rectangle with minimum area to cover all the points in P . Equation (5)
demonstrates how this conversion is formulated.

(x1, y1, x2, y2, x3, y3, x4, y4) = MinAeraRect(P), (5)

where (x1, y1, x2, y2, x3, y3, x4, y4) denotes the four corner points of an oriented bound-
ing box.

Since the vanilla center-ness proposed by FCOS [25] is measured w.r.t the axis-aligned
edges, which can not be directly applied in oriented object detection, as shown in Figure 4,
we suggest a distance function in the form of the cross product between the feature map
point (x, y) and two adjacent corner points (c1

x, c1
y) and (c2

x, c2
y), as shown in Equation (6).

crossdist(c1
x, c1

y, c2
x, c2

y|x, y) =
v1 × v2

‖v1‖

=
|(c2

x − c1
x)(c1

y − y)− (c1
x − x)(c2

y − c1
y)|√

(c2
x − c1

x)
2 + (c2

y − c1
y)

2

(6)
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With this formula, we can obtain four distance values between the four corner points
(x1, y1, x2, y2, x3, y3, x4, y4), as defined in Equation (7), given an oriented bounding box and
feature map point (x, y).

a = crossdist(x1, y1, x2, y2|x, y)

b = crossdist(x2, y2, x3, y3|x, y)

c = crossdist(x3, y3, x4, y4|x, y)

d = crossdist(x4, y4, x1, y1|x, y)

(7)

The oriented center-ness quality is then calculated as shown in Equation (8).

Qcenterness =

(
min(a, c)
max(a, c)

· min(b, d)
max(b, d)

) 1
γ

, (8)

where γ is a hyper-parameter to control the sensitivity of the center-ness quality. As shown
in Figure 5, the oriented center-ness constraint measured by the function above sufficiently
evaluates the quality of an oriented bounding box. Qcenterness ranges from 0 to 1, depending
on whether the feature point is on the edges or at the center point, respectively. The
closer the feature point is to the center point of an oriented bounding box, the higher the
quality score. The goal of oriented center-ness is to remove redundant and low-quality
bounding boxes generated in the initial stage, which will reduce the computational cost in
the post-processing steps, e.g., NMS.

𝑥 

𝑦 𝑂 

 𝑥1,𝑦1  

 𝑥2,𝑦2  

 𝑥3,𝑦3  

 𝑥4,𝑦4  

 𝑥,𝑦  

𝑎 

𝑏 

𝑐 

𝑑 

Figure 5. Illustration of the oriented center-ness. The four blue dots, red dots, and green dots denote
the corner points of an oriented bounding box, the feature map point (x, y), and the center point of
the oriented bounding box, respectively.

Based on the quality measurement strategy Q, we re-assign the samples selected in
the initial stage according to the quality scores. Only the top k samples are selected for each
ground truth. To retrieve high-quality samples, a ratio σ is utilized to control the number
of samples. The value of k is calculated as shown in Equation (9).

k =

{
σ ∗ Nt, Nt ≥ 2
Nt, Nt < 2

(9)

where Nt denotes the number of proposals for each oriented object.

2.5. Repulsion Constraint for Oriented Object Detection

To address the issue of locating small and cluttered objects, we propose a repulsion
constraint to discriminate the densely distributed objects. As mentioned before, the vast
majority of aerial images are taken from the bird’s-view and small objects are mostly in
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crowded scenes such as a parking lot. To locate them precisely, we should consider the
spatial relative information, which means narrowing the gap between a proposal bounding
box and its corresponding ground truth box and being away from other surrounding
proposal and ground truth boxes. As illustrated in Figure 6, we utilize an IoU-based loss
function to realize the repulsion constraint. A perfect proposal bounding box should have
a maximum IoU to its ground truth while keeping IoUs within the surrounding ground
truth and proposal bounding boxes.

Target Ground Truth

Surrounding Ground Truth

Target Proposal

Surrounding Proposal

𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 1 - 𝐼𝑜𝑈          ,           +𝐼𝑜𝑈          ,           +𝐼𝑜𝑈          ,           

Figure 6. Visualization of repulsion constraint in the form of the loss function.

Inspired by [27], we divide the oriented repulsion loss into three components, defined
as shown in Equation (10).

Lrepulsion = Lattr + α ∗ Lrgt + β ∗ Lrp, (10)

where Lattr aims to narrow the gap between predicted boxes and ground truth boxes, while
Lrgt and Lrp are designed to minimize the intersection among the surrounding ground
truth and predicted boxes, respectively. Hyper-parameters α and β are used to balance the
loss weight.

In practice, there is an accommodation relationship among objects of different cate-
gories, e.g., aircraft and airports. For simplicity, we only consider the repulsion constraint
for the objects from the same category. Let P+ and G denote the sets of all positive samples
and all ground truth boxes, respectively.

Given a ground truth box G ∈ G, we assign the proposal containing the maximum
rotated IoU to it, denoted by PG

attr = argmaxP∈P+
rIoU(G, P). Then, Lattr can be calculated

as shown in Equation (11).

Lattr =
∑G∈G rIoU(G, PG

attr)

|G| , (11)

where rIoU(·) is used to calculate the IoU between the two oriented boxes.
Lrgt is designed to repel a predicted box from its neighboring ground truth box. Here,

we use intersection over ground truth: IoG(P, G) = area(P∩G)
area(G)

∈ (0, 1) to describe the
spatial relationship between a predicted box and its neighboring ground truth box. For
each G ∈ G, we define Lrgt as shown in Equation (12).

Lrgt =
∑P∈P+\PG

attr
Smoothln(IoG(P, G))

|P+|
, (12)

where Smoothln function is applied to adjust the sensitivity of Lrgt. Equation (13) provides
a definition of Smoothln.

Smoothln =

{
− ln(1− x), x ≤ σ
x−σ
1−σ − ln(1− σ), x > σ

(13)
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NMS is an essential post-processing step in most detectors to select or merge the
primary predicted bounding boxes. Especially for small and cluttered objects, NMS has a
significant effect on the detection results. To alleviate the detectors’ sensitivity to NMS, we
use an additional constraint Lrp to minimize the overlap of two predicted boxes Pi and Pj,
which are designated to different ground truth boxes. Equation (14) defines the definition
of Lrp.

Lrp =
∑i 6=j Smoothln

(
rIoU

(
Pi, Pj

))
∑i 6=j 1

[
rIoU

(
Pi, Pj

)
≥ 0

]
+ ε

, (14)

where 1(·) denotes the identity function and ε is introduced in case divided by 0.
Benefiting from the repulsion constraint, the loss Lrepulsion preserves the independence

among predicted boxes, while preventing them from shifting toward nearby ground truth
boxes, which makes the detector more robust to small and cluttered objects.

Eventually, the loss function of our proposed detector is formulated as shown in
Equation (15).

L = Lcls + λ1Lloc + λ2Lrepulsion, (15)

where Lcls denotes the object classification loss, Lloc denotes regression loss for object
localization, and Lrepulsion is repulsion constraint loss. In the experiment, we use focal
loss [13] for classification and GIoU loss [46] for oriented polygon regression.

3. Results

In this section, we first introduce four challenging datasets that we use to verify the
effectiveness of our proposed method, then describe the details of our experiment settings,
and finally illustrate our results on the datasets.

3.1. Datasets

DOTA [28] is one of the largest datasets for oriented object detection in aerial images;
it contains 15 categories: plane (PL), baseball diamond (BD), ground track field (GTF), small
vehicle (SV), large vehicle (LV), bridge (BR), tennis court (TC), storage tank (ST), ship (SH),
soccer ball field (SBF), harbor (HA), roundabout (RA), helicopter (HC), swimming pool
(SP), and basketball court (BC). Labeled objects are in a wide range of scales, shapes, and
orientations. DOTA contains 2806 images and 188,282 instances collected from different
sensors and platforms. Each images size ranges from 800 × 800 to 20,000 × 20,000 pixels.
The proportions of the training set, validation set, and testing set in DOTA are 1/2
(1411 images), 1/6 (458 images), and 1/3 (937 images), respectively. In our experiments,
both the training and validation sets are utilized to train the proposed detector and the
testing set without annotations for evaluation. All the images used for training were split
into patches of 1024 × 1024 pixels with a stride of 200 pixels. Data augmentation oper-
ations, including random resizing and flipping, were employed in the training stage to
avoid overfitting.

HRSC2016 [29] is a dataset for ship recognition that contains a large number of de-
formed strip and oriented ship objects collected from several famous harbors. The entire
dataset contains 1061 images with sizes ranging from 300 × 300 to 1500 × 900. For a fair
comparison, the training and validation sets (436 images and 181 images, 617 images in
total) are used for training, while the testing set (444 images) is used for evaluation. All
images are resized to 800 × 512 pixels for training and testing.

UCAS-AOD [30] is an aerial image dataset that labels airplanes and cars with oriented
bounding boxes. The dataset contains 1510 images with approximately 1280 × 659 pixels
(510 images for car detection and 1000 images for airplane detection). There are 14,596 in-
stances in total. The entire dataset is randomly divided into the training set, validation
set, and testing set with a ratio of 5:2:3, i.e., 755 images, 302 images, and 453 images,
respectively.
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WHU-RSONE-OBB [31] is a large-scale object detection dataset with oriented bound-
ing boxes that contains 5977 images ranging from 600 × 600 pixels to 1372 × 1024 pixels.
WHU-RSONE-OBB is a high spatial resolution remote sensing image dataset with spatial
resolution ranging from 0.5 m to 0.8 m. Objects are of three: airplanes, storage tanks, and
ships. Likewise, the training set (4781 images) and the validation set (598 images) were
employed for training while the testing set (598 images) was used for evaluation. All
images were resized to 1024 × 1024 pixels for both training and testing.

3.2. Implementation Details

We implement our proposed method based on MMRotate [47], an open-source toolbox
for rotated object detection based on PyTorch, and utilize ResNet-50 and ResNet-101 [48]
as the backbone with FPN [12]. The FPN block consists of P3 to P7 pyramid levels in the
experiments. The SGD optimizer was selected during training with an initial learning rate
of 0.008. The number of warming-up iterations was 500. At each decay step, the learning
rate was decreased by a factor of 0.1. The momentum and weight decay of SGD were set to
0.9 and 10−4, respectively. We trained the detector with 40 epochs, 120 epochs, 120 epochs,
and 40 epochs for DOTA, HRSC2016, UCAS-AOD, and WHU-RSONE-OBB, respectively.
In Equation (8), we set the sensitivity of center-ness to γ = 4. We set the balance weight
to α = 0.5 and β = 0.5 empirically in Equation (10). Meanwhile, the weights for Lloc and
Lrepulsion were set to λ1 = 1.0 and λ2 = 0.25 in Equation (15), respectively.

We conducted all the experiments on a server with 2 NVIDIA RTX 3090 GPUs with a
total batch size of four (two images per GPU) for training and a single NVIDIA RTX 3090
GPU for inference.

3.3. Comparisons with State-of-the-Art Methods

To verify the effectiveness of our proposed method, we conducted a series of experi-
ments on DOTA, HRSC, UCAS-AOD, and WHU-RSONE-OBB. We adopted mean average
precision (mAP) as the evaluation criteria for oriented object detection results, which can
be calculated as shown in Equation (16).

mAP =
1
n

n

∑
i

APi (16)

where APi denotes the value of the area under the precision–recall curve for the i-th class
and n is the number of categories in one dataset.

Results on DOTA. As shown in Table 1, we report all the experimental results on the
single-scale DOTA dataset to make fair comparisons with previous methods. The proposed
method based on RepPoints obtains 76.93% mAP and 76.79% mAP with the backbone
ResNet-50 and Resnet-101, respectively. It outperformed other methods with the same
backbones. Using the tiny version of Swin-Transformer [49] with FPN, we achieved the
best performance with 77.79% mAP. Notably, our results for the small vehicle (SV), which
is a typical class of small and cluttered objects, consistently achieved the best performances
under three different backbones, which demonstrates the effectiveness of our proposed
method for small and cluttered objects.

Results on HRSC2016. Ship detection is a vital application direction of remote sensing
images, where ships have large aspect ratios. Experiments on HRSC2016 have also verified
the superiority of our proposed method. As shown in Table 2, our proposed method
obtained 90.29% mAP, outperforming other methods listed in the table.
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Table 1. Comparisons with state-of-the-art methods on the DOTA dataset. All the reported results were performed on the single-scale DOTA. The results with red
color denote the best results in each column.

Type Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Si
ng

le
-s

ta
ge

RetinaNet-O [13] R-50 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43
DAL [45] R-101 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78

RSDet [15] R-152 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10
R3Det [34] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [5] R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R3Det-DCL [17] R-152 89.78 83.95 52.63 69.70 76.84 81.26 87.30 90.81 84.67 85.27 63.50 64.16 68.96 68.79 65.45 75.54

Tw
o-

st
ag

e

Faster RCNN [3] R-50 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05
CAD-Net [33] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

CenterMap [50] R-50 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
SCRDet [9] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
FAOD [18] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

RoI-Trans. [4] R-101 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61
MaskOBB [51] R-50 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86

Gliding Vertex [52] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
ReDet [32] ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

Oriented R-CNN [53] R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

A
nc

ho
r-

fr
ee

CenterNet-O [14] DLA-34 [14] 81.00 64.00 22.60 56.60 38.60 64.00 64.90 90.80 78.00 72.50 44.00 41.10 55.50 55.00 57.40 59.10
PIoU [54] DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

O2-DNet [39] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DRN [19] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
CFA [7] R-101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

Oriented RepPoints [23] R-101 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52
Ours R-50 88.39 84.00 54.68 73.58 80.89 80.38 87.60 90.90 85.33 86.93 64.48 69.85 74.72 72.32 59.98 76.93
Ours R-101 88.50 83.84 54.35 71.11 80.93 80.25 87.64 90.90 85.11 87.00 64.07 70.12 75.12 72.85 60.15 76.79
Ours Swin-T 88.90 84.13 55.24 75.68 81.84 82.98 87.75 90.90 86.12 86.45 64.17 69.10 76.90 73.47 63.25 77.79
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Table 2. Results on HRSC2016. The best result is bolded.

Methods Backbone mAP

RRD [55] VGG16 84.30
RoI-Trans. [4] R-101-FPN 86.20

R3Det-KLD [41] R-101-FPN 87.45
CenterNet-O [14] DLA-34 87.89

Gliding Vertex [52] R-101-FPN 88.20
RetinaNet-O [13] R-101-FPN 89.18

PIOU [54] DLA-34 89.20
R3Det [34] R-101-FPN 89.26

R3Det-DCL [17] R-101-FPN 89.46
FPN-CSL [16] R-101-FPN 89.62

DAL [45] R-101-FPN 89.77
Ours R-50-FPN 90.29

Results on UCAS-AOD. The UCAS-AOD dataset contains a mass of small and cluttered
objects, which is competent to evaluate the effectiveness of our proposed method. All
the experimental results are shown in Table 3 with our proposed method obtaining the
best performance with 90.11% mAP. Although YOLOv7 [56] performs better in airplane
detection, it lacks the ability to capture small and densely packed targets, such as cars, in
remote sensing images.

Table 3. Results on UCAS-AOD. The best result is bolded in each column.

Methods Car Airplane mAP

YOLOv3-O [57] 74.63 89.52 82.08
RetinaNet-O [13] 84.64 90.51 87.57
Faster RCNN [3] 86.87 89.86 88.36

RoI Trans. [4] 87.99 89.90 88.95
DAL [45] 89.25 90.49 89.87

YOLOv7-O [56] 83.35 96.53 89.94
Oriented RepPoints [23] 89.51 90.70 90.11

Ours 89.73 90.78 90.26

Results on WHU-RSONE-OBB. To further verify the effectiveness of the proposed
method, we conducted a series of experiments on the WHU-RSONE-OBB dataset. As
shown in Table 4, our proposed method achieved the best AP values for plane and ship
with 92.83% mAP.

Table 4. Result on WHU-RSONE-OBB. The best result is bolded in each column.

Methods Airplane Storage-Tank Ship mAP

Faster-RCNN [3] 94.86 56.34 76.38 75.86
CNN-SOSF [58] 95.21 74.61 75.20 81.67
YOLOv3-O [57] 97.76 87.09 78.65 87.84
CNN-AOOF [31] 98.57 88.31 79.20 88.69
YOLOv7-O [56] 98.65 95.69 79.02 91.12

Ours 99.57 90.54 88.38 92.83

Model size and efficiency. The parameter size and the inference speed are shown
in Table 5. Our proposed model requires additional memory to compute the repulsion
loss during the training stage. However, as center-ness and repulsion constraints are only
calculated in the training stage, the inference speed is not affected by these two constraints
during the inference stage.
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Table 5. Model size and efficiency. For a fair comparison, all the models utilized ResNet-50 as the
backbone with a single NVIDIA RTX 2080S GPU.

Method Backbone Param Inf Time (fps)

RetinaNet-O [13] R-50 36.42 M 17.2
S2A-Net [5] R-50 38.6 M 15.5

Gliding Vertex [52] R-50 41.14 M 16.4
RoI-Trans. [4] R-50 55.13 M 16.5

R3Det [34] R-50 41.9 M 12.4
Ours R-50 36.61M 16.8

3.4. Visualization of Results

To have an intuitive view of our proposed method, we selected some images from the
testing set of the DOTA dataset to show the promising performance, as shown in Figure 7.

PLPL BDBD BRBR GTFGTF SVSVPL BD BR GTF SV

LVLV SHSH TCTCHAHA SPSPLV SH TCHA SP

BCBC STST SBFSBF RARA HCHCBC ST SBF RA HC

Figure 7. Visualization of the example detection results on DOTA testing set.
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4. Discussion

In this section, we first demonstrate the superiority of the adaptive point set to rep-
resent the oriented bounding box. Secondly, we verify the effectiveness of our proposed
center-ness quality assessment and repulsion constraint through a series of ablation studies.
Thirdly, we explore the relationship among different categories via the confusion matrix
on the DOTA validation set. Then, we further discuss how center-ness and repulsion
constraints improve the distribution of localization scores. Finally, we discuss the limitation
of the methods and possible future improvements.

4.1. Superiority of Adaptive Point Set

To examine the superiority of the adaptive point set to represent oriented boxes, we
compare RepPoints with the anchor-based methods RoI-Trans [4] and R3Det [34] on the
HRSC2016 dataset. RoI-Trans proposes a transformation module to effectively mitigate the
misalignment between RoIs and targets, while R3Det utilizes a feature refinement module
to reconstruct features. As shown in Table 6, the adaptive point set obtained nearly one
percent enhancement with no bells and whistles, which displays its inherent superiority for
the representation of oriented boxes.

Table 6. Comparisons between anchor-based orientation regression methods and our adaptive-point-
set-based method. The best result is bolded.

Methods Backbone mAP

RoI-Trans. [4] R-101 86.20
R3Det [34] R-101 89.26

RepPoints(adaptive point set) R-50 90.02

4.2. Effectiveness of Center-Ness and Repulsion Constraints

To investigate the effectiveness of center-ness quality assessment and repulsion con-
straint, we compared them against the baseline method [23] without using them. Table 7
shows the experimental results.

Table 7. Performance evaluation on center-ness quality assessment and repulsion constraint. PL, SV,
and SH denote the categories of plane, small vehicle, and ship, respectively. All the experiments adopt
ResNet-50 with FPN as the backbone. ‘!’ and ‘#’ in the Center-ness and Repulsion columns denote
the results with or without the corresponding constraint, respectively. We adopted ConvexGIoULoss
for regression loss if the repulsion constraint is not applied. The best result is bolded in each column.

Center-ness Repulsion PL SV SH mAP ∆

# # 87.02 80.18 87.28 75.97 -
! # 88.30 80.78 87.51 76.05 0.08
# ! 88.66 80.73 87.54 76.31 0.34
! ! 88.39 80.88 87.60 76.93 0.96

Obviously, both center-ness and repulsion constraints improve the accuracy of the
detector, especially the repulsion constraint, which considers the spatial correlation infor-
mation and obtained a 0.34 mAP improvement compared with the baseline. Meanwhile,
APs of three classic small and cluttered objects, plane, small vehicle, and ship, obtained con-
sistent improvements. Although the center-ness constraint only has a slight improvement,
with the collaboration of the repulsion constraint, the detector obtained a promising im-
provement with 0.96 mAP. This is because the center-ness constraint enforces the adaptive
points to concentrate more on the center of objects, which is helpful to the localization tasks.
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4.3. Correlation between Localization and Classification

To further explore how our proposed center-ness and repulsion constraints improve
the quality of the proposals, we statistically analyze the correlation between the localization
scores (IoU) and classification confidence of the predicted boxes. The closer the center of
the distribution to the upper left corner is, the higher the quality of the predicted boxes
the detector generates. In application scenarios, all the predicted boxes are filtered during
the post-processing stage where NMS and IoU-thresholds are usually adopted. For a fair
comparison, we only selected predicted boxes with no less than the IoU value of 0.5. All
the experiments were conducted on the validation set of the DOTA dataset.

The experimental results are visualized in Figure 8. Obviously, the quality of the
predicted boxes generated by the detector is more stable under the application of our two
proposed constraints, compared to the baseline with no sample assessment strategy to filter
low-quality samples. Furthermore, the center of quality distribution tends to move towards
a higher degree under two constraints compared with simply applying one constraint.
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Figure 8. The correlation between the localization scores and classification confidence of predicted
oriented boxes under four conditions: no center-ness and no repulsion constraints, center-ness
constraint only, repulsion constraints only, and both center-ness and repulsion constraints. All the
experiments adopt ResNet-50 with FPN as the backbone. The baseline is Rotated RepPoints [24].
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4.4. Relationship among Categories

The confusion matrix is a standard format for expressing accuracy evaluation, which
can visualize the detection results and discover the relevant information among categories.
We provide the confusion matrix on the DOTA validation set to explore the detailed
classification accuracy.

As shown in Figure 9, the detector is inferior at distinguishing between ground
track and soccer ball fields, as they usually have similar shapes. Furthermore, in most
scenarios, a soccer ball field is located within a ground track field. Moreover, we noticed
that the detector mostly misidentifies the background targets as small and clustered targets
such as small vehicles, which is mainly influenced by the complex scene environment.
Meanwhile, the detector mostly misses objects such as ground track fields because they
usually have the same color as the environment, and the iconic features are occluded by
surrounding vegetation.
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Figure 9. Normalized confusion matrix of detection results on the DOTA validation set.

4.5. Failure Analysis

During the validation stage, we noticed some failure cases, as shown in Figure 10.
The yellow ellipses are the targets missed by the detector. Obviously, the detector missed
the ship full of containers and classified the containers on board as ships in the left image.
While in the right image, the detector missed the black car and truck covered by a gray
patch. In the first case, the container on the ship completely covers the texture features of
the ship, which is such an abstract situation. Although humans can make correct judgments
through prior knowledge, it is difficult to obtain the hidden global semantic information
for the detector. In the second case, similar colors with background and image noises
(the irregular patch) lead to the omission. As we adopt the adaptive point set for the
representation of oriented boxes, backgrounds with similar color and image noises may
lead to the absence of some key points of objects. In the future, we may explore the attention
mechanism similar to [59,60] for feature fusion to address this issue.
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Figure 10. Failure cases for ship detection and small vehicle. Failures are marked by yellow ellipses.

4.6. Limitations and Future Directions

As mentioned before, we have verified the effectiveness of our proposed method
through a series of carefully designed experiments on four challenging datasets. However,
there are still some unsolved issues in our proposed method.

Since the measurement and assessment of samples are only carried out during the
training process, it will not affect the speed of inference. Nevertheless, DCN requires more
parameters than conventional CNN to obtain an adaptive receptive field, which leads to
slower convergence of DCN during training.

In addition, there are usually hundreds or thousands of objects in one image under
crowded scenarios, which leads to a sharp rise in computation cost in repulsion loss,
especially computing rotated IoU values. In the experiments, we use a small trick to reduce
the computation cost, where we use horizontal IoU values to exclude ulterior targets. In
the future, we will try to exploit the Gaussian approximation methods proposed by [40,41]
to simplify the calculation of the rotation IoU.

Finally, we notice that objects of some categories have a dependency relationship with
each other, e.g., airplanes parking in airports and soccer ball fields inside ground track
fields. We can utilize the prior knowledge of relationships between classes to improve the
design of the repulsion loss.

5. Conclusions

In this work, we have presented an effective method for remote sensing object detection
utilizing the adaptive point set to represent rotated boxes, which is able to capture key
points with substantial semantic and geometric information. To improve the quality of
sample selection and assignment, we introduce the center-ness constraint to assess the
proposals and acquire high-quality samples. Furthermore, the repulsion constraint in
the form of a loss function is designed to enhance the robustness of detecting small and
clustered objects. Therefore, the extensive experiments on the four challenging datasets
demonstrate the effectiveness of our proposed method.
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