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Abstract: The Sichuan–Tibet Railway (STR) is currently under construction and serves as an important
transportation route in western China. Identifying potential geohazards along the route is important
for project construction. However, research on the frozen soil of the Western Sichuan Plateau, and on
frozen soil identification using interferometric synthetic aperture radar (InSAR) is relatively negligible.
As a low-cost, all-weather spatial geodesy tool, InSAR is frequently used for geohazard identification.
We selected a study area located along the Litang section of the STR, starting from Litang County in
the east and extending 60 km to the west. The geological conditions along the line are complex, with
numerous fault zones and hidden danger points for landslide. To identify unstable slopes along the
line, distribute scatterer InSAR (DS-InSAR) was used to obtain surface displacement information from
2018 to 2021. Based on the displacement information obtained from the ascending and descending
orbit images from Sentinel-1, a spatial density clustering method identified 377 and 388 unstable
slopes in the study area, respectively, of these, 132 were consistent. The identified unstable slopes
were mostly located in areas with a relatively high altitude and moderate slope. The Luanshibao
landslide, which is a typical landslide in the study area, had notable signs of displacement, where the
displacement rate along the back edge of the landslide can reach 20 mm/a. An inversion method for
the seasonal frozen soil area distribution was proposed based on the periodic subsidence and uplift
model and time-series monitoring data; the calculated seasonal freeze–thaw amplitude exceeded
20 mm. Further analysis revealed a 2-month lag in the response of the freeze–thaw phenomenon to
the air temperature. This study demonstrated that DS-InSAR offers optimal surface displacement
data, which can provide an important basis to identify engineering geological hazards.

Keywords: Sichuan–Tibet Railway; DS-InSAR; spatial density clustering; periodic subsidence and
uplift model; unstable slope; seasonal frozen soil

1. Introduction

Landslides are a disaster phenomenon in which the geotechnical body on a slope slides
downward along the damaged penetrating surface, as well as slopes characterized by an
unstable state that may evolve into a landslide disaster [1]. The route of the Sichuan–Tibet
Railway (STR) is mostly located in mountain and valley areas, with complex geological
structures and strong neotectonic movement. A series of unstable slopes and high-altitude
frozen soil areas are formed under the coupling effect of internal and external dynamics [2,3].
Diverse types of geological hazards have increased the difficulty of STR construction and
operation [4,5]. Therefore, identifying the unstable slopes and seasonal frozen soil in
this region is of great significance, as well as investigating the development patterns
associated with unstable slopes and seasonal frozen soil. This will ensure the safety of
major engineering constructions, human life, and property in this region.
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With recent rapid progress in science and technology, especially the emergence of re-
mote sensing, wireless communication, and various sensing technologies, the identification,
monitoring, and early warning of geological hazards have become important tools for their
prevention and control [6]. Interferometric synthetic aperture radar (InSAR) is advanta-
geous owing to its all-weather and all-day operation, wide coverage, high spatial resolution,
non-contact, and low comprehensive costs [7,8]. InSAR provides continuous tracking and
observation of small ground deformation areas across a wide scale, such that it has the
unique ability to identify and continuously observe deformation areas [9,10]. For instance,
Shi et al. [11] used small baseline subset InSAR (SBAS-InSAR) to identify and analyze
geological hazards, such as unstable slopes, in the Litang to Batang region. Zhang et al. [12]
used InSAR to identify potential landslides in the Danba region of Sichuan Province and
analyzed the deformation characteristics of typical landslides. Zhang et al. [13] used the
stacking-InSAR technique to identify 72 potential landslides in the western Sichuan region.

Similarly, InSAR has been widely used for seasonal frozen soil displacement moni-
toring. For example, Liu et al. [14] used InSAR to obtain displacement information for the
north slope of a frozen soil area in Alaska; their results showed that 1–4 cm of subsidence
occurred in the area due to the melting of subsurface ice at the upper limit of frozen soil
from 1992–2000. Jia et al. [15] inferred the active layer thickness in the Qinghai–Tibet
Plateau based on InSAR results combined with a simplified deformation-active layer thick-
ness relationship model. Most studies on frozen soil areas in China have focused on the
Qinghai–Tibet Plateau and northeastern China, while relatively negligible research has
been conducted on the frozen soil of the Western Sichuan Plateau and even fewer studies on
frozen soil identification using InSAR [16,17]. The ground surface decreases in strength un-
der the action of freeze–thaw cycle, which is the main factor affecting the construction and
operation of STR. The snow melt infiltration increases the water content of the surface soil,
and the strength of the soil is further reduced because of freezing and thawing. The vertical
displacement of the surface is likely to exceed the allowable value of roadbed. Identification
and inversion of vertical displacement changes in seasonal frozen soil areas along the STR
can provide valuable information for construction and operation. The seasonal frozen
soil identification method used in this study is based on various frozen soil displacement
curves, without the need for factors such as temperature and soil type or physical and
empirical models of frozen soil, thus reducing the computational load and complexity of
identification. This identification method can be regarded as an unsupervised classification
method, where the final results are a true reflection of the displacement patterns of frozen
soil [18].

Time-series InSAR has developed rapidly since Ferretti et al. (2001) proposed persistent
scatterer InSAR (PS-InSAR). Berardino et al. (2002) proposed the SBAS-InSAR, which can
partially suppress the effect of temporal decorrelation, but the accuracy of deformation
monitoring is low [19]. Ferretti (2011) proposed the second-generation permanent scatterer
technique (SqueeSAR) [20]. Since then, research hotspots in the field of time-series InSAR
have gradually shifted to the analysis of distributed targets. Unlike the physical properties
of PS targets, DS refers to point targets where backscatter dominates without any scatterers
in the radar resolution cell. By combining PS and DS points for analysis, the DS-InSAR
method significantly improves the distribution density of monitoring points and has been
increasingly applied to the monitoring of unstable slopes and roads. The accuracy of the DS-
InSAR method is slightly lower than that of the PS-InSAR method, but the extracted point
density is greatly improved, which is helpful to obtain more detailed surface displacement
information.

The Litang section of STR is the subject area of this study. This area is one of the two
typical seasonal frozen soil distribution areas along the STR, the other being Xinduqiao.
In addition, Litang is a high-altitude area along the STR. The terrain in the study area
is dominated by mountains and basins, surface vegetation cover is sparse, and there are
mostly distributed scatterers on the SAR images. Therefore, we first carried out a terrain
visibility evaluation of the study area and then used DS-InSAR to process the ascending
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and descending Sentinel data to obtain displacement results from January 2018 to February
2021. A spatial density clustering algorithm and DEM were used to identify the locations
of unstable slopes, followed by a discussion of the factors affecting their distribution,
such as elevation, slope, and faults. The time-series displacement data were analyzed
in combination with the periodic subsidence and uplift model to obtain seasonal frozen
soil distribution results in the study area. This study can provide data support for the
construction and operation of STR, and expand the application of InSAR in the study of
seasonal frozen soil.

2. Materials and Methods
2.1. Study Area and Data

The STR is a high-speed railroad in China connecting Sichuan Province and Tibet,
running east–west from Chengdu City, Sichuan Province, to Lhasa City, Tibet. This railroad
is the second to penetrate Tibet and one of the main railroads in southwest China.

As shown in Figure 1, the study area is located in the west of Sichuan Province, China.
The length of the STR in the study area is 60 km. The topography of the study area is
mainly mountains and basins. The STR passes through the Maoyaba Basin. The study
area is situated at a minimum altitude of 3600 m and a maximum altitude of 5600 m, with
a relative height difference of 2000 m and slope distribution of 0–40◦. Rainfall is mainly
concentrated in June–September, with an annual precipitation of approximately 720 mm.
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Figure 1. Topographic factors in the study area: (a) elevation map and (b) slope map.

The Litang Fault passes through the study area, with a general north–west trend,
starting in northwest Yidun and extending southeastward through the Maoyaba Basin,
Litang, and finally ending near Shawan, Muli County, with a total length of approximately
385 km [21,22]. The fault shows a left-lateral strike-slip movement with a rate of about 4
mm/a. Several earthquakes have occurred along this fault, causing landslides and seismic
fissures. The seismogenic structures of the earthquakes were all closely related to the Litang
Fault, the movement of which directly affect topographic and geomorphological evolution,
thus affecting the security of the STR.

In this study, the 95-scene Sentinel-1A ascending orbit data and 92-scene Sentinel-1A
descending orbit data from 2018 to 2021 were used to estimate the line of sight displacement.
Figure 2 shows the data coverage. Table 1 lists the parameters of the Sentinel-1A data. The



Remote Sens. 2023, 15, 1317 4 of 18

DEM was used for terrain phase removal and geocoding. The SRTM1 30 m DEM was used
in this paper.
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Figure 2. Coverage of the Sentinel-1 data.

Table 1. Parameters for the Sentinel-1 image.

Satellite Direction Time Angle of
Incidence Resolution

Sentinel-1A Ascending 12 January 2018–25 February 2021 39.9◦ 5 m × 20 m
Sentinel-1A Descending 7 January 2018–20 February 2021 35.8◦ 5 m × 20 m

2.2. Methodology
2.2.1. DS-InSAR

The flow of the DS-InSAR method used in this study is as follows.
(1) Primary image selection. The temporal and spatial baselines of the SAR images

were calculated. The image with the centered baselines was selected as the primary image.
(2) Image registration. The secondary image was registered to the primary image. The

registration accuracy reached 0.001 pixel.
(3) Interferogram phase calculation. All of the registered images were interfered with

the primary image.
(4) Interferogram filtration.
(5) Remove the flat earth phase and terrain phase.
(6) Select PS and DS, mainly including homogenous filtering and phase optimization

estimation.
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(7) Joint analysis of PS and DS points. The time-series displacement phase of each
point was obtained by estimating the displacement from the differential interference phase.

(8) Calculation of the initial displacement. According to the radar wavelength, the
unwrapping phase was converted into displacement.

(9) Based on the initial displacement monitoring results, the linear model and DEM are
used to fit the atmospheric errors related to elevation. The final surface displacement data
are obtained by subtracting the atmospheric error from the initial displacement monitoring
results.

The DS-InSAR is different from the traditional InSAR method, in that it adds two
steps: homogeneous filtering and phase optimization [23,24]. These steps effectively
resolve the small number of coherent point selections and uneven spatial distribution of the
traditional time-series method. Distributed scatters usually appear as adjacent pixels with
uniform scattering characteristics and the same statistical distribution in SAR amplitude
images of the time-series [25]. Therefore, the distributed scatters are generally extracted
by first performing a spatially adaptive filtering of the interferometric phase and then
applying a statistical test to determine a statistically homogeneous point for each pixel.
The distributed scatterer echo signal is composed of the coherent superposition of sub-
scatterers in the pixel, which is susceptible to spatiotemporal coherence and has poor phase
stability [26]. Therefore, we must remove the noise phase based on the overall statistical
characteristics of the scattering characteristics in the distributed scatter pixel to achieve
phase optimization [27,28].

We used the Kolmogorov–Smirnov hypothesis testing method for the identification of
homogeneous points; the optimal phase was estimated by the phase triangulation method.
Figure 3 shows the DS-InSAR processing flow chart.
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2.2.2. Subsidence and Uplift Model of Seasonal Frozen Soil Areas

The active layer of the frozen soil area changes along with the seasons [29]. A difference
of 9% between the volume of water and ice causes the surface to freeze and swell or thaw,
which seriously endangers infrastructure in the frozen soil area [30–32]. Surface subsidence
in the frozen soil area consists of two main components: periodic subsidence and uplift
due to temperature changes and trend term subsidence. Periodic surface subsidence and
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uplift are mainly caused by periodic freezing and thawing of the active layer. In summer,
the ice in the active layer melts, followed by surface subsidence. In winter, the water
condenses back into ice, followed by uplift. Trend term subsidence is caused by the upward
and downward movement of the permafrost layer’s upper limit. We note that frozen soil
area subsidence does not always contain periodic and trend terms, but consists of one or
both. We examined seasonal frozen soil areas dominated by seasonal subsidence and uplift.
The pattern of change in the seasonal frozen soil area is equivalent to the amplitude of
subsidence, where uplift is essentially the same, such that the seasonal frozen soil area can
be identified based on this pattern.

In this study, a periodic subsidence and uplift model based on time variation was used
to model the time-series monitoring results and identify the seasonal frozen soil area in the
study area. The model assumes that the periodic subsidence and uplift of the frozen soil is
a sinusoidal function:

D =
DInSAR

cos θ
(1)

and
D = d0 + vt + A sin(2πt + ϕ) + ε (2)

where DInSAR is the original displacement observed by InSAR, θ is the incidence angle of
the satellite, D is the original subsidence and uplift, using vertical monitoring values, d0 is
the initial subsidence and uplift value, v is the trend subsidence rate, t is the time relative
to the initial moment, A is the annual amplitude of seasonal subsidence and uplift, ϕ is
related to the subsidence and uplift at the initial observation moment, and ε is the modeling
error.

If N periods of subsidence and uplift data are obtained during the entire monitoring
period, the corresponding subsidence and uplift model for the monitoring point at each
moment can be expressed in matrix form:

D = Xβ + E (3)

and

D =


D1
D2
...

DN

X =


1, t1, sin(2πt1), cos(2πt1)
1, t2, sin(2πt2), cos(2πt2)

...
1, tN , sin(2πtN), cos(2πtN)

β =


d0
ν

A cos ϕ
A sin ϕ

E =


ε1
ε2
...

εN

 (4)

The unknown parameters can be estimated from the least squares theory:

∧
β =

(
XTX

)−1
XT D (5)

2.2.3. Density Clustering Method

As density clustering methods find clusters of various shapes and sizes in noisy data,
they are applied in this study to identify unstable slopes. The density clustering algorithm
used in this paper involves three main parameters: maximum distance, displacement rate
threshold, and a minimum number of points. Based on the resolution of Sentinel-1A at 20 m,
the maximum distance was set to three-fold of the resolution, i.e., 60 m. The absolute value
of the displacement rate threshold was 10 mm/a and the minimum number of points in
the unstable area was set to 5. The specific process was as follows: (1) unstable points were
screened according to the absolute value of the displacement rate; (2) a Delaunay triangular
network was constructed by eliminating the edges larger than the maximum distance and
forming numerous isolated triangular network clusters; (3) a recursive method was used to
cluster the unstable points and generate a polygonal unstable area along the boundary; and
(4) the slope in the unstable area was calculated based on DEM data, followed by screening
the unstable slope [33].
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3. Results
3.1. Average Displacement Rates

The displacement monitoring of the study area was carried out using DS-InSAR.
As shown in Figure 4, the InSAR line-of-sight displacement results for the study area
are presented in the ascending and descending orbits, respectively, with positive values
representing the surface moving toward the satellite and negative values representing
motion away from the satellite. The DS-InSAR method was used to identify 7,790,905 and
7,038,613 PS and DS points from the ascending and descending orbit images, respectively,
with an average density of 3133/km2 and 2830/km2, which was significantly higher than
results obtained by the conventional PS-InSAR method, thus providing more detailed
displacement information. Points with an absolute value of the displacement rate greater
than 15 mm/a in this region were the points with notable displacement. The average
displacement rate map shows that the spatial distribution of displacement areas in the
study area is not uniform; they are mostly distributed in the high mountain valley area.
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3.2. Density Clustering Results

To accurately and efficiently obtain the unstable slopes in the study area, we adopted
the density clustering method to determine the distribution of unstable slopes with an
absolute value displacement rate of 10 mm/a as the threshold value. As shown in Figure 5,
the density clustering results in the ascending and descending orbits could effectively
separate the points with notable displacement from many monitoring points, while filtering
out the discrete noise points to significantly reduce the effort in identifying unstable slopes.

By combining the topographic visibility results of the ascending and descending orbits
in Figure 6, a total of 377 unstable slopes were identified for the ascending orbit and
388 unstable slopes for the descending orbit after excluding the geometric distortion areas
and flatland areas. A total of 132 slopes agreed with the results of both orbits, while many
slopes did not match, indicating that the ascending and descending orbits can complement
each other (Figure 7). These unstable slopes were also in good agreement with Shi et al. [11],
showing that the method used in this paper is reliable.
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To demonstrate the performance of DS-InSAR in unstable slope identification, Figure 8
compares the DS-InSAR monitoring results and optical images of two typical unstable
slopes. Figure 7 shows the locations of slopes A and B. In comparison, the displacement
boundaries monitored by DS-InSAR were in better agreement with the optically interpreted
boundaries, such as slope A. Meanwhile, DS-InSAR also observed displacement on some
slopes without notable displacement features, such as slope B. This indicates that DS-InSAR
can identify potential hidden landslides.

Based on the above unstable slope identification results, there are many unstable slopes
distributed along the STR. Therefore, the results of this study can provide an important
reference for future construction and operations.
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3.3. Analysis of Typical Landslide Temporal and Spatial Displacements

Figure 7 shows the location of the Luanshibao landslide, a large high-speed rock
landslide, located on the northern margin of Maoyaba Basin. The maximum horizontal
sliding distance is 3.83 km and the total landslide volume is 0.64× 108 to 0.94× 108 m3 [34].
The northwest section of the Litang fault passes through the middle of the landslide and
influences the movement of this landslide [35]. At the same time, glacial movement may
also lead to the destabilization of the landslide due to the high altitude in the area at the
location of the landslide. Based on Figure 9, there is a notable displacement phenomenon
at the back edge of the landslide. To examine the spatial displacement characteristics of
the landslide, the elevation and displacement rate profiles of the landslide were extracted
along the C1–C2 line (Figure 10). Based on the profile, the height difference of the landslide
is approximately 900 m. The displacement rate along the back edge of the landslide is
larger while the displacement rate of other areas is smaller, between 1 and 3 mm/year. This
indicates that the back edge of the landslide is active.
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To study the displacement characteristics of the Luanshibao landslide in more depth,
the displacement velocity field of the landslide’s back edge was calculated using the
ascending and descending orbit InSAR monitoring results and DEM. Figure 11 shows
the displacement velocity field at the rear edge of landslide. The results show that the
displacement rate is more than 25 mm/a, and the direction of displacement indicates that
the back edge is moving downward along the approximate slope. The bedrock of the slide
bed at the back edge of the landslide is mostly exposed, and loose debris flow accumulation
is formed on the middle and lower surface of the slope, which is nearly vertical in part.
The tension unloading effect is strong, and the freeze–thaw weathering results in obvious
displacement in the local area. The STR and National Highway 318 pass along the south
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side of the Luanshibao landslide, and relevant authorities should be aware of the threat
posed by the landslide.
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3.4. Seasonal Frozen Soil Areas

Soil is a three-phase system (soil grains, liquid water, and gas), while frozen soil is a
four-phase system (soil particles, liquid water, gas, and ice) [36]. Phase changes in water
during freeze–thaw cycles have a direct effect on ground surface displacement. In the
seasonal frozen soil area, as the temperature decreases, the volume of soil in the active layer
increases along with the crystallization of migrating and pore water into ice, which leads to
surface uplift. When the temperature rises, the ice melts into water and the volume of the
soil decreases, causing surface subsidence.

Figure 12 shows the amplitude of seasonal subsidence and uplift in the study area.
Areas with greater amplitude are more likely to be a seasonal frozen soil area. Figure 12
shows the seasonal frozen soil area with a maximum subsidence and uplift of more than
20 mm. The results show that the STR passes through the seasonal frozen soil area; the
large periodic surface subsidence and uplift require attention. Figure 13 shows the InSAR
monitoring results and temperature changes at the feature points in the seasonal frozen
soil area. The subsidence and uplift amplitude of the seasonal frozen soil were the same.
In spring and summer, as the temperature rises, the active layer melts from the top to the
bottom, resulting in ground surface subsidence, reaching a maximum amount of melting
and subsidence near August. In autumn and winter, as the temperature decreases, the active
layer freezes and expands, resulting in ground surface uplift, with maximum freezing and
expansion near February. Our analysis showed that the response of frozen soil subsidence
and uplift to atmospheric temperature had a lag of approximately two months owing to
the time required for atmospheric temperature transfer in the active layer. Figure 12 shows
that there are slopes affected by freeze–thaw. The seasonal freezing and thawing of frozen
soil reduces the shear strength of the soil; this effect causes the sliding or flowing of frozen
soil slopes [37]. The destabilization of frozen soil slopes hinders the construction and safe
operation of railroads in rift valleys. Therefore, the impact of seasonal frozen soil on the
STR should be a major focus in future construction and operation phases.
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4. Discussion
4.1. Unstable Slope Distribution Characteristics

To determine the main factors affecting the spatial distribution of unstable slopes in
the study area, elevation, slope, and fault zone were analyzed with their relationship to
the unstable slopes. Figure 14 shows the ratio of the number of unstable slopes to the
corresponding elevation area. The ratio gradually increases with an increase in elevation,
and the ratio reaches its maximum in the interval of 4800–5200 m and then decreases.
Therefore, elevation is a factor affecting the spatial distribution of unstable slopes. Figure 15
shows the ratio of the number of unstable slopes to the corresponding slope area. The
statistical analysis showed that most of the unstable slopes are distributed on slopes of
5–55◦. The reason for this phenomenon is that the low slope has no dynamic conditions
for the occurrence of movement while a high slope is not conducive to the accumulation
of materials. Additionally, the topographic slope affects rainfall and heat distribution and
thereby influences slope vegetation cover.
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Fault movement causes rock fragmentation and facilitates rainwater infiltration, which
induces landslides. Figure 16 shows the distribution of the number of unstable slopes and
their distance to faults: 0.22 per km2 at 1000 m, 0.27 per km2 at 1000–2000 m, 0.22 per km2

at 2000–3000 m, and 0.20 per km2 at more than 3000 m. The number of unstable slopes
tended to decrease slowly with an increase in the distance between the unstable slope and
fault. This finding is consistent with the theory that the fault has an influence on slope
displacement.
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4.2. Limitations of InSAR Method to Identify Seasonal Frozen Soil

Frozen soil displacement is highly complex; however, in some situations, frozen soil
and seasonal frozen soil displacement patterns are similar. The altitude and latitude of the
study area are relatively low, temperature is high, and soil is mostly seasonal frozen soil.
Therefore, the error in identifying seasonal frozen soil in this area using time-series InSAR
data is small. This method would produce significant errors if applied to the high-altitude
Qinghai–Tibet Plateau region.

InSAR monitors the physical phenomenon of surface displacement, which is affected
by many factors, such as fault movement and temperature. Additionally, InSAR monitoring
results as input data can easily be influenced by topographic and atmospheric errors,
resulting in inaccurate monitoring values. Therefore, topographic and atmospheric errors
should be removed as much as possible during data processing.

The method proposed in this paper identified frozen soil according to only displace-
ment monitoring data and the periodic model, without considering soil type and water
content. The subsidence and uplift of seasonal frozen soil reflect the phase change of water
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in the active layer. Soil type and moisture content are different in regions of different
latitudes, which would lead to fluctuations in displacement curves and differences in the
response time to atmospheric temperature changes. This study did not obtain the ground
temperature data of the study area. A displacement curve modeled according to the ground
temperature data may be more accurate.

5. Conclusions

In this study, we identified and analyzed the unstable slopes and seasonal frozen soils
along the Litang section of the Sichuan–Tibet Railway, and studied the characteristics of
typical landslides. The following conclusions are drawn:

(1) Sentinel-1 data covering the Litang section of the STR from January 2018 to Febru-
ary 2021 were processed using DS-InSAR to obtain information on surface displacement.
A spatial density clustering method based on the displacement rates and DEM data was
proposed to identify unstable slopes along the STR, which significantly reduced the identi-
fication workload.

(2) The ascending and descending orbit data identified 377 and 378 unstable slopes,
respectively. The distribution of unstable slopes had a high correlation with topography
and geological structures. The Luanshibao landslide, which is a typical landslide in the
study area, showed notable signs of displacement, with the displacement rate along the
back edge of the landslide reaching up to 20 mm/a.

(3) A seasonal frozen soil identification method was proposed based on time-series In-
SAR data and the periodic subsidence and uplift model. The distribution of seasonal frozen
soil zones in the study area was obtained and the seasonal displacement magnitude values
were inverted. Further analysis revealed that the response of frozen soil displacement
to the atmospheric temperature had a lag of approximately two months, during which
atmospheric temperature transfers to the active layer.

(4) The DS-InSAR method can obtain detailed ground surface displacement informa-
tion in mountainous areas and detect more unstable slopes. Higher point coverage and
accuracy render the identification of seasonal frozen soil areas more accurate.

In this study, engineering geological hazards, such as unstable slopes and seasonal
frozen soil areas, were identified accurately in the Litang section of the STR. These findings
provide important information for railroad construction.
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