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Abstract: The Ku-band scatterometer called CSCAT onboard the Chinese–French Oceanography
Satellite (CFOSAT) is the first spaceborne rotating fan-beam scatterometer (RFSCAT). A new algorithm
for classification of Arctic sea ice types on CSCAT measurement data using a random forest classifier
is presented. The random forest classifier is trained on the National Snow and Ice Data Center
(NSIDC) weekly sea ice age and sea ice concentration product. Five feature parameters, including
the mean value of horizontal and vertical polarization backscatter coefficient, the standard deviation
of horizontal and vertical polarization backscatter coefficient and the copol ratio, are innovatively
extracted from orbital measurement for the first time to distinguish water, first-year ice (FYI) and
multi-year ice (MYI). The overall accuracy and kappa coefficient of sea ice type model are 93.35%
and 88.53%, respectively, and the precisions of water, FYI, and MYI are 99.67%, 86.60%, and 79.74%,
respectively. Multi-source datasets, including daily sea ice type from the EUMETSAT Ocean and Sea
Ice Satellite Application Facility (OSI SAF), NSIDC weekly sea ice age, multi-year ice concentration
(MYIC) provided by the University of Bremen, and SAR-based sea ice type released by Copernicus
Marine Environment Monitoring Service (CMEMS) have been used for comparison and validation.
It is shown that the most obvious difference in the distribution of sea ice types between the CSCAT
results and OSI SAF sea ice type are mainly concentrated in the marginal zones of FYI and MYI.
Furthermore, compared with OSI SAF sea ice type, the area of MYI derived from CSCAT is more
homogeneous with less noise, especially in the case of younger multiyear ice. In the East Greenland
region, CSCAT identifies more pixels as MYI with lower MYIC values, showing better accuracy in
the identification of areas with obvious mobility of MYI. In conclusion, this research verifies the
capability of CSCAT in monitoring Arctic sea ice classification, especially in the spatial homogeneity
and detectable duration of sea ice classification. Given the high accuracy and processing speed, the
random forest-based algorithm can offer good guidance for sea ice classification with FY-3E/RFSCAT,
i.e., a dual-frequency (Ku and C band) scatterometer called WindRAD.

Keywords: CFOSAT; CSCAT; scatterometer; sea ice classification; random forest classifier

1. Introduction

According to the length of time that sea ice exists, it is usually divided into young
ice, first-year ice (FYI) and multi-year ice (MYI). FYI refers to the sea ice that only exists in
winter within one year and completely melts in summer, while MYI refers to the sea ice
that has survived at least one summer melting period. Relevant studies have found [1] that
the decrease in Arctic sea ice thickness and volume is mainly caused by the reduction of
MYI, which further increases the sensitivity of Arctic sea ice to climate change [2] and has a
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far-reaching impact on climate and weather changes in the northern hemisphere [3]. There
are significant differences in the effects of radiation and air–sea exchange between different
ice surface types in different regions of the Arctic, thus affecting the Arctic atmospheric
circulation, especially the polar vortex. Therefore, the study of Arctic sea ice type and its
change laws is of great significance to accurately understand the evolution of polar sea ice
on the global climate system and ecosystem.

Microwave remote sensing has become the most effective means of sea ice monitoring
and ice condition assessment because of its advantages of all-weather detection [4,5]. As a
typical active microwave remote sensing payload, the scatterometer is most widely used
in the sea ice type monitoring. The scatterometer distinguishes FYI and MYI according
to the difference in their backscatter coefficients. The physical mechanism is that after
repeated melting and freezing, the salt within the MYI precipitates continuously, leaving
more bubbles in the ice layer. In contrast, the FYI generally has a higher salinity and
dielectric constant, and the penetration depth is smaller, resulting in MYI having stronger
volume scattering than FYI [4,6,7]. In addition, the surface of MYI is rougher than that
of FYI, resulting in stronger surface scattering of MYI than FYI. Based on the above two
characteristics, the backscattering coefficient of MYI is significantly higher than that of FYI
in winter.

Due to the differences in the scatterometer frequency and scanning mechanism, various
sea ice classification algorithms have been proposed in previous studies using scatterometer
measurements. Table 1 summarizes the spaceborne scatterometers and related studies on
sea ice classification from 1991 to early 2021.

Table 1. Summary of spaceborne scatterometers and related studies on sea ice classification from
1991 to early 2021.

Mission ERS-1/2 ADEOS-1 QuikSCAT METOP OceanSAT-II HY-2A CFOSAT

Scatterometer AMI NSCAT SeaWinds ASCAT OSCAT SCAT CSCAT

Date 1991.7–2000.3
1995.4–2011.5 1996.8–1997.6 1999.6–2009.11 2007.6-now 2009.10–2014.2 2011.8–2020.11 2018.10-now

Institute ESA JAXA and
NASA NASA ESA ISRO NSOAS NSOAS and

CNES

Frequency
(band)

5.3 GHz
(C)

13.995 GHz
(Ku)

13.4 GHz
(Ku)

5.3 GHz
(C)

13.515 GHz
(Ku)

13.255 GHz
(Ku)

13.256 GHz
(Ku)

Beam type Fixed
fan-beam

Fixed
fan-beam

Rotating
pencil-beam

Fixed
fan-beam

Rotating
pencil-beam

Rotating
pencil-beam

Rotating
fan-beam

polarization 3 VV 3 VV × 2
1 HH × 2

HH (inner)
VV (outer) 3 VV × 2 HH (inner)

VV (outer)
HH (inner)
VV (outer)

HH
VV

Incidence
angles 18–59◦ 17–60◦ 46◦, 54.4◦ 25–65◦ 49◦, 57◦ 41◦, 48◦ 28–51◦

Sea ice type
algorithm - K-means

Fixed
threshold
algorithm;
dynamic
threshold
algorithm;

ECICE;
K-means

Bayesian
classification

algorithm;
improved

ECICE;
K-means

Improved
dynamic
threshold
algorithm

Dynamic
threshold

algorithm; BP
Neural

network
classification

algorithm

K-means;
random forest
classification

algorithm; tree
augmented

naive Bayesian
sea ice

classification
algorithm

References [8–10] [9,11–13] [14–19] [20–22] [20,23] [24,25] [26–28]

Considering sea ice classification using a C-band scatterometer and the successive
damage to QuikSCAT/SeaWinds and OSCAT, Lindell and long [20] studied the C-band
ASCAT scatterometer data in order to continuously update the records of sea ice type
datasets. It was found that the discrimination of sea ice classification using the C-band
scatterometer is lower than that of Ku-band scatterometer in winter, and the backscatter
coefficient in C-band does not have the characteristics of bimodal distribution for different
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sea ice types. Therefore, a Bayesian classification method combining ASCAT scatterometer
and SSMIS 37 GHz brightness temperature data was proposed for sea ice classification.
In order to solve the problem that the FYI with high surface roughness in the marginal
ice zone is easily misjudged as MYI in C-band scatterometer measurements, a Bayesian
classification cost function and a marginal ice zone correction algorithm were proposed.
Compared with the ice chart results, the MYI retrieved by ASCAT/SSMIS is consistent with
a sea ice concentration of more than 50%.

Based on the ASCAT backscatter coefficient and AMSR-2 brightness temperature
data [21], the polar sea ice research team of Bremen University produced and released
daily MYI concentration (MYIC) products for winter in the years 2009–2018 by using
the improved Environment Canada ice concentration extractor algorithm (ECICE) (https:
//seaice.uni-bremen.de/, accessed on 20 Febuary 2023). Furthermore, OSI SAF (Ocean and
sea ice satellite application facility) adopted a Bayesian classification method to produce
and release daily Arctic sea ice classification products since 2005 by using ASCAT and
SSMIS/AMSR-2 data [22]. In addition to distinguishing FYI and MYI, the product also
classes sea ice as ambiguous based on a low predicted classification accuracy. Its disadvan-
tage is that the misclassification error easily accumulates, thus affecting the continuity and
stability of the subsequent results.

Regarding sea ice classification using Ku-band scatterometers, Kwok [14] proposed a
fixed threshold method to distinguish FYI from MYI by comparing the backscatter coeffi-
cient of QuikSCAT/SeaWinds with high-resolution RADARSAT image data. Swan and long
(SL method for short) [15], obtained the interannual dynamic threshold by analyzing and
fitting the statistical histogram of the daily backscatter coefficient of QuikSCAT/SeaWinds
from 2002 to 2009, from which Arctic sea ice classification datasets from 2002 to 2009 were
generated. The comparison with the ice chart provided by the Canadian ice service (CIS)
shows that the average error of sea ice classification from 2006 to 2008 is less than 6%,
which is an improvement on the fixed threshold classification result. The problem of the SL
method is that the interannual sea ice type difference is weakened to some extent due to
the fixed use of the interannual threshold. Lindell and Long [23] processed the backscatter
coefficients of QuikSCAT/SeaWinds from 1999 to 2009 and OceanSAT-II/OSCAT from 2009
to 2014 and generated Arctic sea ice classification datasets for 15 years from 1999 to 2014 by
adjusting the SL method in two aspects: the ice-water discrimination and dynamic thresh-
old calculation. In addition, for the cases when the high roughness FYI in the marginal
ice zone is misjudged as MYI, they proposed a method to remove the MYI noise using
an image expansion algorithm. The evaluation results show that in the marginal ice zone
with broken new ice and FYI (such as in the Barents Sea), the misclassification of FYI as
MYI is significantly reduced, and for the marginal ice zone with more MYI (such as in the
Greenland Sea), the correct MYI distribution information can be well retained.

Shokr and Agnew [16,17] proposed an ECICE algorithm that combines the QuikSCAT/
SeaWinds and AMSR-E measurements. The algorithm divides the sea ice types into new
ice, FYI, and MYI, providing the MYIC and a classification confidence level per pixel.
The comparison results with the ice chart show that the ECICE algorithm can effectively
improve the classification accuracy of water and MYI, but the MYI tends to be misclassified
as FYI and vice versa when warm air advection events occur in autumn and early spring.
Ye et al. improved the ECICE algorithm based on atmospheric temperature [18] and sea ice
drift data [29], generating a daily Arctic MYIC dataset for winter in the years 2003–2009.

Zhang et al. [19] constructed a K-means sea ice classification algorithm based on the
backscatter coefficient of the QuikSCAT/SeaWinds and ASCAT scatterometers, and the
brightness temperature data of the AMSR-E, SSMI/S and AMSR-2 radiometers, where
the resolution enhancement algorithm [30] was used to generate a daily Arctic sea ice
classification dataset with a spatial resolution of 4.45 km for winter in the years 2002–2017.
Compared with the interpretation results of high-resolution SAR images, the overall classi-
fication accuracy in Canadian Arctic Archipelago was better than 93%.

https://seaice.uni-bremen.de/
https://seaice.uni-bremen.de/
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The China–France oceanography satellite (CFOSAT) was launched on 29 October 2018,
carrying the first-ever spaceborne, Ku-band, rotating, fan-beam scatterometer (CSCAT).
The CSCAT combines the characteristics of the fixed fan-beam and rotating pencil-beam
scatterometers with various incidence and azimuth angle information. Zhang et al. [26] sys-
tematically compared differences between Ku-band scatterometers (including QuikSCAT/
SeaWinds and CSCAT) and C-band scatterometers (including ASCAT) in sea ice classifi-
cation for the first time. Their results show that the distinction between MYI and FYI is
more obvious in Ku-band scatterometers in winter. Furthermore, compared with the ice
chart and SAR image interpretation results, adding AMSR-2 microwave radiometer data
can further improve the accuracy of sea ice classification compared with the results using
scattering data alone. Xu et al. [28] constructed a tree augmented naive Bayesian sea ice
classification algorithm based on CSCAT data and AMSR-2 data, generating a daily Arctic
sea ice classification dataset for winter in the years 2019–2021. The comparison with the
ice chart and the operational sea ice type products released by OSI SAF shows that it has
higher classification accuracy for lower MYIC regions than that of OSI SAF.

It should be noted that in these two studies, the incidence angle normalization correc-
tion was used based on the orbital measurement for each day before feature extraction was
used for sea ice classification. This procedure can be time-consuming, but the effect of the
scatterometer incidence angle normalization on the improvement of sea ice classification
accuracy should be further studied in depth. In this study, a CSCAT sea ice classification
algorithm based on machine learning-aided classification methods is proposed. We innova-
tively extract effective but simpler feature parameters based on orbital rather than daily
measurement to distinguish water and two different sea ice types: FYI and MYI. This paper
is organized as follows. The datasets used in this article are described and preprocessed in
Section 2. Section 3 introduces the sea ice type classification algorithm in detail. The sea
ice classification results are presented and discussed in Sections 4 and 5, respectively. The
conclusions are finally addressed in Section 6.

2. Datasets
2.1. CFOSAT Scatterometer (CSCAT)

CFOSAT was launched on 29 October 2018. It carries the first-ever spaceborne Ku-
band rotating fan-beam scatterometer, that is, CSCAT [31,32]. The main goal of CSCAT
is to monitor ocean surface wind for improving numerical weather forecasts, with the
additional potential of monitoring sea ice parameters. CSCAT Level 2A data has two kinds
of wind vector cell configurations in the 1000 km swath with a sampling resolution of 25 km
and 12.5 km, respectively. In this study, CSCAT Level 2A 25 km global orbital datasets
from 1 January 2019 to 14 April 2022 were used for Arctic sea ice classification (available
at ftp://osdds-ftp.nsoas.org.cn, accessed on 20 Febuary 2023). The preprocessing of the
orbital data and related feature parameters extraction is specifically described in Section 3.

2.2. National Snow and Ice Data Center Sea Ice Concentration and Age Product

Similar to the previous studies mentioned in [27], the random forest classifier is used
to distinguish sea ice type because of its overall high accuracy and efficiency. As a kind
of supervised learning classifier, training datasets with labeled or a priori information
are necessary for training a random forest classification model. In this study, the sea ice
concentration [33] and sea ice age (SIA) products [34,35] released from National Oceanic
and Atmospheric Administration/National Snow and Ice Data Center (NOAA/NSIDC) are
used for distinguishing water, FYI and MYI (available at https://nsidc.org/data, accessed
on 20 Febuary 2023).

It should be noted that NOAA/NSIDC sea ice concentration is used as the training
data in this paper because it has the same spatial resolution of 25 km as the CSCAT data,
and the data has good continuity, which can ensure the stability of a priori information
acquisition of the algorithm used in this paper. Furthermore, the SIA product is derived
from passive and active microwave observations, as well as auxiliary data such as drifting

ftp://osdds-ftp.nsoas.org.cn
https://nsidc.org/data
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buoys. It is weekly-updated data with a spatial resolution of 12.5 km. In our study, the
nearest neighbor resampling method, which is suitable for representing the discrete data of
classification [28], was used to adjust the NSIDC SIA product with a resolution of 12.5 km
to a resolution of 25 km in order to match the CSCAT orbital data. Specifically, the pixel
value nearest to a pixel position in the image is taken as the new value of the pixel. The
advantages of this method are that it is simple and efficient, has a fast operation speed, and
does not change the original image grid value. For comparison, grid cells with ice age older
than one year are regarded as MYI.

2.3. OSI SAF Sea Ice Type and Drift Product

The sea ice type product provided by OSI SAF (available at https://osi-saf.eumetsat.
int/products, accessed on 20 Febuary 2023) is used as the main validation data source in
this study [36]. It is a multi-sensor daily-updated product derived from passive and active
microwave remote sensing data combined in a Bayesian approach with a spatial resolution
of 10 km. To differentiate between FYI and MYI in the northern hemisphere, the Bayesian
algorithm computation is trained against data from regions with “known ice type” of FYI
and MYI. In the latest version of the algorithm, the training data is continuously daily-
updated from the preceding 15 days. Since the Bayesian approach describes the probability
of occurrence of the most likely surface class, the probability itself can be an indicator of
statistical uncertainty of the classification. Therefore, except for FYI and MYI, the OSI SAF
sea ice type product also includes an ambiguous ice type classification for probabilities of
less than 75% or in the summer period. Furthermore, the OSI SAF low-resolution ice drift
product (OSI-405 series) is also used to analyze some case studies in Section 4.2.

2.4. IUP Multiyear Ice Concentration Product

The Arctic MYIC product provided by the University of Bremen, Institute of Envi-
ronmental Physics (IUP) is used as another validation data source (available at https//:
seaice.uni-bremen.de, accessed on 20 Febuary 2023). The ECICE algorithm is firstly used to
retrieve young ice, FYI, and multiyear ice concentration, respectively, where the microwave
radiometer data of the sensors AMSR-E or AMSR2 and scatterometer data from ASCAT are
used as inputs [16]. Then several correction schemes, including the so-called temperature
correction [18] and drift correction [29], are used to correct misclassification by melt and
refreezing and so forth, where surface temperature and sea ice motion or drift products are
used as inputs. It is noted that under melting conditions, the surface properties of those
three ice types become similar, resulting in the ECICE algorithm being available only from
autumn to spring [21].

2.5. Synthetic-Aperture Radar (SAR)-Based Sea Ice Type Products

In order to validate CSCAT sea ice classification results using SAR products from a
long-term perspective, the SAR-based sea ice type products provided by Copernicus Marine
Environment Monitoring Service (CMEMS) from 1 January 2021 to 31 December 2021
are used in this study (https://resources.marine.copernicus.eu/product-detail/SEAICE_
ARC_PHY_AUTO_L4_NRT_011_015/DATA-ACCESS, accessed on 20 Febuary 2023). This
high-resolution operational sea ice type is derived from Sentinel-1 SAR data using a
convolutional neural network (CNN) [37]. Validation shows that the overall accuracy
exceeds 90% and has proved to be more efficient in computing time and less sensitive
to noise in SAR data. In this algorithm, the prior information comes from reference ice
charts produced by human experts. The SAR-based sea ice type provides pixel-by-pixel
classification of SAR data into four different types, that is, water, young ice, FYI, and MYI.
The young ice and FYI are grouped as FYI in this study.

https://osi-saf.eumetsat.int/products
https://osi-saf.eumetsat.int/products
https//:seaice.uni-bremen.de
https//:seaice.uni-bremen.de
https://resources.marine.copernicus.eu/product-detail/SEAICE_ARC_PHY_AUTO_L4_NRT_011_015/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/SEAICE_ARC_PHY_AUTO_L4_NRT_011_015/DATA-ACCESS
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3. Methodology

Figure 1 gives the flowchart of sea ice classification based on the machine learning
approach with CSCAT measurement in this study. It can be seen that three main aspects
need to be considered and assessed carefully.
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(1) The selection of machine-learning-aided sea ice classification method.
(2) The determination of the prior knowledge for sea ice type and the optimization of the

prediction model, including its update frequency.
(3) The choice of feature parameters for sea ice classification based on the CSCAT or-

bital dataset.

As for the first aspect, five machine learning classifiers, including logistic regression,
naïve Bayes, random forest, gradient boosting, and support vector machine (SVM), have
been evaluated for sea ice distribution in a previous study [27]. It was concluded that the
random forest classifier is the best option for sea ice monitoring because of its high overall
accuracy. Following the sea ice monitoring study in [27], the random forest classifier is
also used in this study [38]. It is a supervised learning algorithm that is used for both
classification as well as regression. Figure 2 shows the structural schematic of the random
forest classifier used in this study. It is a bagging algorithm with the decision tree as an
estimator, the sample and feature parameters of which are randomly selected every time. A
single decision tree is sensitive to the noise of the training dataset, but the random forest
classifier can reduce the correlation between the trained multiple decision trees, effectively
reducing the overfitting problem. In addition, the importance of variables can be assessed,
and data scaling is not required in the random forest algorithm. The disadvantage of the
random forest classifier is that it needs more computational resources, and the construction
of the random forest is much harder and more time-consuming than the decision tree.
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As for the second aspect, to differentiate between first-year ice and MYI, different
training datasets have been used in previous studies [28,36]. For instance, in the OSI SAF
sea ice type procedure, specific regions are defined as MYI and FYI [36]. In this study, sea
ice concentration and SIA products released from NSIDC are used for prior information
definition. Specifically, water is defined as the area with a sea ice concentration of less than
40% and SIA less than 1 year, and FYI is defined as the pixel where the sea ice concentration
is higher than 40% and the SIA product is less than 1 year. MYI corresponds to pixels
with a sea ice concentration higher than 40% and SIA older than 1 year. The advantage
of applying 40% as the threshold is that most of marginal ice zone area can be excluded,
where the backscatter coefficient of first-year ice appears to be similar to that of multi-year
ice [19,20]. Furthermore, the training model is updated on the 1st and 15th of each month,
the assessment of which will be described later.

As for the third aspect, similar to [27], five feature parameters are defined based on
the CSCAT orbital backscatter coefficient datasets, that is, the mean value of horizontal and
vertical polarization backscatter (σhh and σvv), the standard deviations of horizontal and
vertical polarization measurements (∆σhh and ∆σvv), and the copol ratio (γ = σvv/σhh), the
equations of which are listed as below:

σhh =
1
N

N

∑
i=1

σhh,i(θi, φi), (1)

σvv =
1
N

N

∑
i=1

σvv,i(θi, φi), (2)
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∆σhh =

√√√√ 1
N

N

∑
i=1

[σhh,i(θi, φi)− σhh]
2, (3)

∆σvv =

√√√√ 1
N

N

∑
i=1

[σvv,i(θi, φi)− σvv]
2, (4)

γ = σvv/σhh, (5)

where N is the number of observations at the grid cell after stereographic projection,
σhh,i(θi, ϕi) and σvv,i(θi, ϕi) are the ith horizontal and vertical polarization backscatter,
respectively, and θi and ϕi are corresponding incidence and azimuth angles, respectively.

Figure 3 shows the spatial distribution and probability density distribution of these
five parameters for three surface classes (water, FYI, and MYI) based on collocated data from
1 April 2020 to 7 April 2020 in the whole Arctic region. It can be seen from
Figure 3(a1,a2,b1,b2) that the difference between σhh and σvv for MYI and FYI is quite
significant, where the MYI area is generally higher than the FYI and water area, proving
the feasibility of CSCAT orbital feature analysis for sea ice classification. Furthermore, as
shown in Figure 3(c1,c2,d1,d2,e1,e2), all of these three parameters, including ∆σvv, ∆σhh
and γ, can well distinguish water and ice, but cannot classify sea ice type very well. It
should be noted that as for the CSCAT orbital measurements, the diversity of incidence
angles and azimuth angles of measurements is much lower in the outer swath than in other
swath regions, and the values of ∆σvv and ∆σhh are much lower in the outer swath area. In
conclusion, the combination of these five parameters is expected to effectively distinguish
water and different sea ice type.

Figure 4 shows the statistical results of the sea ice type feature parameters based on
the random forest classification during the period from 1 January 2019 to 31 December 2020.
The red, blue, and black lines represent the mean values of the Gaussian distribution of
feature parameters derived from the water, FYI, and MYI, respectively. The corresponding
shaded part is the standard deviation of the Gaussian distribution. It can be seen that the
feature parameters have obvious differences except for June, July, August, and September
of each year. The corresponding date of the model update is represented by red solid dots
shown in Figure 4a, that is, the 1st and 15th of each month. Specifically, the model on the 1st
day of each month is used for sea ice classification from the 2nd to 15th day of the current
month, and the model on the 15th day of each month is used for sea ice classification
from the 16th day of the current month to the 1st day of the next month. This model
updating frequency setting can reasonably represent the difference in feature parameters.
Additionally, it can effectively reduce the impact of prior information fluctuations on the
results and ensure the stability of the results.
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Figure 3. Parameters derived from one day of CSCAT measurements in the Arctic on April 2020. (a1) σhh,
(b1) σvv, (c1) ∆σhh, (d1) ∆σvv and (e1) γ. Arctic images contain 448 × 304 pixels with a pixel resolution
of 25 km. The central white circular area represents no observations. Density plot for parameters
(a2) σhh, (b2) σvv, (c2) ∆σhh, (d2) ∆σvv, and (e2) γ for water (blue), FYI (green), and MYI (red).
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Figure 4. The mean values (solid lines) and standard deviations (shaded areas) of Arctic sea ice
distribution feature parameters from 1 January 2019 through 31 December 2019: (a) σhh, (b) σvv,
(c) ∆σhh, (d) ∆σvv and (e) γ. The red, blue, and black marked results represent water, FYI, and MYI,
respectively. The red solid points correspond to the updating time of the prediction model.

4. Results
4.1. Evaluation of Sea Ice Classification Model Precision

The sea ice type model based on the random forest classifier is quantitatively assessed
using a confusion matrix through a comparison with the NSIDC SIA product as reference
data. Table 2 defines the confusion matrix in this study, each column and row of which
represents a specific prediction and real category, respectively.

Table 2. Definition of sea ice type training model confusion matrix.

Prediction

Water FYI MYI

True

Water a b c

FYI d e f

MYI g h i

The accuracy (accuracy) is defined, as shown in Equation (6), to evaluate the model’s
overall performance. However, the number of samples between each category is often not
balanced for practical classification problems. If the imbalanced dataset is not adjusted,
the model tends to favor large categories and discard small categories. In this situation,
the accuracy can be high, but some categories are not recalled at all. Therefore, the Kappa
coefficient (kappa) is defined, as shown in Equation (7), to take sample number difference
into consideration. It can be seen that the more unbalanced the confusion matrix is, the
higher the PE (pe), and the lower the kappa value, which results in a low score for the
model with a strong bias.

accuracy =
a + e + i

a + b + c + d + e + f + g + h + i
, (6)

kappa =
accuracy − pe

1 − pe
, (7)
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pe =
(a + d + g)× (a + b + c) + (b + e + h)× (d + e + f ) + (c + f + i)× (g + h + i)

(a + b + c + d + e + f + g + h + i)2 , (8)

As for the specific category, precision and recall are used to evaluate each category’s
performance. Taking the type of water as example, TPwater is defined as the number of
actual water and predicted water values. FPwater is defined as the number of actual sea
ice values (FYI or MYI) predicted as water, and FNwater is defined as the number of actual
water values predicted as sea ice. Therefore, the precision and recall of water are defined as:

precisionwater =
TPwater

TPwater + FPwater
=

a
a + d + g

, (9)

recallwater =
TPwater

TPwater + FNwater
=

a
a + b + c

, (10)

where TPwater = a, FPwater = d + g, and FNwater = b + c, respectively.
Figure 5 shows the time series of the parameters described above to evaluate the

sea ice type training model in the Arctic from 1 January 2019 through 1 March 2020. The
precisions of water, FYI, and MYI are 99.67%, 86.60%, and 79.74%, respectively. The recalls
of water, FYI, and MYI are 99.77%, 84.78%, and 80.59%, respectively. Both precision and
recall illustrate that the classification model has the highest prediction accuracy for water,
followed by FYI and MYI. The average accuracy and the kappa coefficient are 93.35% and
88.53%, respectively. The reason why accuracy is much higher than the kappa coefficient is
that the sample number of water is much higher than that of sea ice. The overall accuracy
is thus more easily affected by water precision.
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In addition, the identification accuracy of FYI, as shown in Figure 5d, has obvious
seasonal characteristics, with a significant decrease from June to September of each year.
Combined with the results in Figure 4, it can be seen that the feature parameters of FYI and
MYI are almost the same and cannot be distinguished very well from June to September of
each year, resulting in a higher tendency to be misclassified. Correspondingly, the FYI is
easily misclassified as MYI at the end of the summer and during the whole autumn season,
as shown in Figure 6b. On the contrary, as shown in Figure 5e, the identification accuracy of
MYI from June to September of each year is higher than that in other months. This is likely
related to the prior information we use in this study. Generally, the NSIDC SIA product is
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more conservative in the identification of MYI, which means that more pixels are classified
as MYI, resulting in the MYI model error characteristics shown in Figure 6c.
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Figure 6. The error analysis of the Arctic sea ice type training models from 1 January 2019 through 1
March 2020: (a) water is misclassified as FYI (blue dotted line) and MYI (red dotted line), (b) FYI is
misclassified as water (blue dotted line) and MYI (red dotted line), and (c) MYI is misclassified as
water (blue dotted line) and FYI (red dotted line).

4.2. Comparison of Spatial Distribution of Sea Ice Type with Validation Products

In order to analyze the spatial characteristics of the Arctic sea ice in more detail, eight
subregions that are consistent with previous studies are defined, as shown in Figure 7 [26,39].
The eight subregions include the central Arctic (CA), Chukchi Sea/Beaufort Sea (CBS),
Laptev Sea/East Siberian Sea (LESS), Kara Sea/Barents Sea (KBS), East Greenland (EG),
Hudson Bay/Baffin Bay (HBS), Canadian Arctic Archipelago (CAA), and Bering Sea (BS).

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 7. Map of the eight subregions of the Arctic used in this study. 

Figure 8 shows the spatial distribution of sea ice type on selected dates from 2019 to 
2021. LESS, KBS, HBB, and BS are mainly FYI throughout the year. The MYI of CA, EG, 
and CAA has obvious seasonal changes. The MYI of CA is mainly reduced through sev-
eral routes, the most obvious of which is that the transpolar drift stream (TDS) causes MYI 
to flow into EG. On the two days of 15 May 2019 and 15 May 2020, the presence of MYI 
was seen in the Chuikui sea and the East Siberian Sea area. According to the analysis of 
the results of the previous and next days, and a comparison with other products, such as 
MYIC products, it was found that MYI from other regions had drifted into the region, and 
therefore, this was not a misclassification. The specific analysis is discussed later. 

 

Figure 7. Map of the eight subregions of the Arctic used in this study.

Figure 8 shows the spatial distribution of sea ice type on selected dates from 2019 to
2021. LESS, KBS, HBB, and BS are mainly FYI throughout the year. The MYI of CA, EG,
and CAA has obvious seasonal changes. The MYI of CA is mainly reduced through several
routes, the most obvious of which is that the transpolar drift stream (TDS) causes MYI
to flow into EG. On the two days of 15 May 2019 and 15 May 2020, the presence of MYI
was seen in the Chuikui sea and the East Siberian Sea area. According to the analysis of
the results of the previous and next days, and a comparison with other products, such as
MYIC products, it was found that MYI from other regions had drifted into the region, and
therefore, this was not a misclassification. The specific analysis is discussed later.
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The spatial distribution differences between the CSCAT results and the OSI SAF sea
ice type products on selected dates from 2019 to 2021 are shown in Figure 9. It can be seen
that the most obvious differences in the distribution of sea ice types between these two
results are mainly concentrated in the marginal zones of FYI and MYI, where some areas
identified as MYI by the CSCAT classification were classified as FYI by the OSI SAF sea ice
type product. A similar phenomenon can be seen in previous studies [26,28], and this may
be caused by the different responses of microwave signals of different frequencies to the
mixed pixel detection of FYI and MYI.

As shown in Figure 9d,e, a speckled line crossing over the north pole from Frans Josef
Land toward the Beaufort Sea can be seen in the OSI SAF sea ice type results on both 15
November 2019 and 15 December 2019. This misclassification is due to the insensitivity
of ASCAT backscatter on younger multiyear ice. Related upgrades for OSI SAF sea ice
type (Product-d) have dealt with strong disagreement in classifications from multi-sensor
measurement [40]. In contrast, the CSCAT results in this study have no similar problem,
and the area of MYI is more homogeneous with less noise, especially in the case of younger
multiyear ice, such as second-year ice.
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Figure 9. Distribution differences between the CSCAT results and the OSI SAF sea ice type products
on (a) 15 March 2019, (b) 15 April 2019, (c) 15 May 2019, (d) 15 November 2019, (e) December 15, 2019,
(f) 15 March 2020, (g) 15 April 2020, (h) 15 May 2020, (i) 15 November 2020, (j) 15 December 2020,
(k) 15 March 2021, (l) 15 April 2021, (m) 15 May 2021, (n) 15 November 2021, and (o) 15 December 2021.

In addition, cases that CSCAT classifies as MYI but OSI SAF classifies as FYI often
occur all year round in the EG region. To further analyze this situation, the results of SIA,
MYIC, CSCAT, and OSI SAF in this region are analyzed. Figure 10(a1–a3) provide three
weekly SIA spatial distributions, that is, from 12 November 2019 to 18 November 2019, from
12 February 2022 to 18 February 2020, and from 15 April 2020 to 21 April 2020, respectively.
Figure 10(b1–b3) show the results of the IUP MYIC spatial distribution on the three days
of 15 November 2019, 1 February 2020, and 15 April 2020, respectively. Corresponding to
these three days, Figure 10(c1–c3) show the spatial distributions of IUP MYIC marked by
CSCAT MYI pixels, and Figure 10(d1–d3) show the spatial distributions of the IUP MYIC
marked by OSI SAF MYI pixels. It can be seen that in the EG region, CSCAT identifies more
pixels as MYI with lower MYIC values, whereas FYI and MYI are identified by OSI SAF as
sea ice type and SIA, respectively. This indicates that CSCAT tends to identify the pixels
with lower MYIC as MYI compared with OSI SAF sea ice types, showing better accuracy in
the identification of areas with obvious mobility of MYI, such as in the EG.

It is shown in Figure 9h that the disagreement occurs in the Chuikui and East Siberian
Seas, where the MYI area identified by CSCAT was classified as FYI by the OSI SAF sea ice
types. Results for the OSI SAF sea ice drift and type products, IUP MYIC, and CSCAT, on 15
May 2020 were selected for further analysis. Figure 11a shows the OSI SAF LR drift product
from 13 May 2020 to 15 May 2020, and Figure 11b–d show the daily MYIC, CSCAT result
and OSI SAF sea ice type distribution on 15 May 2020, respectively. It can be seen from
Figure 11a,b that the MYI of the Beaufort Sea drifted towards the Chukchi Sea and East
Siberian Sea areas at a relatively high speed during this period, resulting in the relatively
dispersed spatial distribution of the MYI. This phenomenon is reflected in the results of the
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CSCAT and OSI SAF sea ice types, but the area identified as MYI by CSCAT is obviously
higher than that of the OSI SAF sea ice types, which is more consistent with the distribution
of MYIC.
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Figure 10. The spatial distribution of the NSIDC weekly SIA product (a1) from 12 November 2019
to 18 November 2019, (a2) from 12 February 2020 to 18 February 2020, and (a3) from 15 April 2020
to 21 April 2020. The spatial distribution of IUP daily MYIC on (b1) 15 November 2019, (b2) 14
February 2020, and (b3) 15 April 2020. The corresponding spatial distribution of IUP MYIC marked
as CSCAT MYI pixels and OSI SAF MYI pixels on three selected days are shown in (c1–c3), and
(d1–d3), respectively.
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5. Discussion
5.1. Comparison of Arctic FYI and MYI Extent with Validation Products

Figure 12a,b show the time series of FYI and MYI extent derived from the CSCAT and
OSI SAF sea ice type products, respectively, from 1 January 2019 to 14 April 2022. It should
be noted that the time period marked with a green-shaded area is classed by OSI SAF sea
ice type as ambiguous ice, for which no analysis is presented in Section 5.1. It can be seen
from Figure 12a that the FYI extent of CSCAT has an excellent consistency with that of OSI
SAF sea ice type, the root-mean-square-error (RMSE) and correlation coefficient of which
are 6.87 × 105 km2 and 0.989, respectively. Table 3 lists the statistics of the maximum and
minimum FYI extent and corresponding dates in each year during the analyzed period
derived from CSCAT and OSI SAF sea ice type products, respectively. It can be seen that
the maximum values of FYI from CSCAT and OSI SAF occur in March every year, and the
minimum values occur from the end of September to the beginning of October every year.
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Table 3. Statistics of the maximum and minimum of FYI extent and corresponding dates in each year
during the analyzed period derived from CSCAT and OSI SAF sea ice type product.

FYI Extent Maximum FYI Extent Minimum

Date Value
(Million km2) Date Value

(Million km2)

CSCAT

11 March 2019 11.6837 2 October 2019 1.6368
18 March 2020 11.2110 3 October 2020 0.4953
19 March 2021 11.515 4 October 2021 1.6061
5 March 2022 11.1344

OSI SAF

11 March 2019 11.001 4 October 2019 0.1243
3 March 2020 10.589 1 October 2020 0.3437

19 March 2021 10.462 30 September 2021 0.2067
6 March 2022 10.513

Furthermore, it can be seen from Figure 12a that the CSCAT FYI extent in October
2019 and October 2021 is significantly less than that of the OSI SAF sea ice type product,
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and corresponding to Figure 12b, the CSCAT MYI extent is much higher than that of OSI
SAF MYI in this time period. A comparison with the weekly SIA product is made to
further analyze this phenomenon, as shown in Figure 13. Specifically, Figure 13(a1–a3)
show the spatial distribution difference between the CSCAT results and the OSI SAF sea
ice type products on the first day of the end of OSI SAF ambiguous ice in 2019–2021, that
is, 4 October 2019, 1 October 2020, and 1 October 2021, respectively. The weekly SIA
corresponding to the three dates are shown in Figure 13(b1–b3), respectively. It can be
seen from Figure 13(a1,a3) that on the two days of 4 October 2019 and 1 October 2021, in
the CA area, the area determined as FYI by OSI SAF was identified as MYI by CSCAT.
During the two one-week periods from 1 October 2019 to 7 October 2019, and from 1
October 2021 to 7 October 2021, as shown in Figure 13(b1,b3), almost all the sea ice was
identified as MYI by the SIA product. This indicates that the OSI SAF sea ice type product
underestimates the extent of MYI in these cases, and compared with the OSI SAF sea ice
type product, CSCAT can better describe the distribution of sea ice type at the initial stage
of the freezing-up period.
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Figure 13. Spatial distribution differences between the CSCAT results and the OSI SAF sea ice type
products on (a1) 4 October 2019, (a2) 1 October 2020, and (a3) 1 October 2021. The spatial distribution
of the NSIDC weekly SIA product (b1) from 1 October 2019 to 7 October 2019, (b2) from 30 September
2020 to 6 October 2020, and (b3) from 1 October 2021 to 7 October 2021.

In regards to MYI extent, it can be seen from Figure 12b that the pattern of MYI extent
of CSCAT has a good consistency with that of the OSI SAF sea ice types, the RMSE and
correlation coefficient of which are 6.84 × 105 km2 and 0.792, respectively. Basically, the
CSCAT MYI extent is higher than that of OSI SAF sea ice types as a whole. It is known from
the validation report of OSI SAF sea ice types that the OSI SAF sea ice type product (OSI-
403-c) used for comparison in this study does not use the latest updated algorithm [40],
resulting in an underestimation of MYI extent to some degree. The most significant
difference between the latest algorithm and the current algorithm of OSI SAF sea ice type
is the prioritization of the passive microwave radiometer (PMW) classification in cases
where the PMW and ASCAT probabilities disagree completely in the final classification.
Since the ASCAT mean backscatter strongly captures the older part of the pack ice, and the
PMW brightness temperature channel combinations also capture the younger MYI, such
as second-year ice, this is better mapped by the PMW brightness temperature than the
pure ASCAT backscatter signal. Therefore, the updated algorithm can capture more of the
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younger MYI, so the difference between OSI SAF sea ice type using the latest algorithm
and CSCAT should be smaller. In addition, it can be seen from the analysis in Figure 10
that CSCAT marks the lower MYIC pixels as MYI pixels, which is one of the main reasons
why CSCAT MYI extent is higher than that of OSI SAF.

Similar to the analysis in OSI SAF sea ice type validation report [40], the MYI is
assumed not to have rapid changes in horizontal coverage, and therefore, the monitoring
of the temporal variation of the MYI extent can be used to assess sea ice type precision.
Figure 12c gives the monthly standard deviation (STD) of the daily differences from a
running mean of CSCAT and OSI SAF MYI extent, respectively. Overall, the MYI monthly
STD of the daily differences calculated from CSCAT and the OSI SAF sea ice type product
is less than 1 × 105 km2 in most of the analyzed period, indicating that the sea ice type
classification accuracy is reliable as a whole. However, in October 2019 and April 2020, the
deviation of CSCAT is relatively large, and in October 2020, the deviation of OSI SAF is
relatively large. The results of these three periods are analyzed in detail.

In October 2019, CSCAT MYI extent showed obvious fluctuation, reaching the highest
value on 31 October 2019. According to the analysis of the spatial distribution of sea ice
type on 25 October 2019, 31 October 2019 and 6 November 2019, as shown in Figure 14,
sea ice in the LESS area is misclassified as MYI by CSCAT, leading to the overestimation of
MYI. This also corresponds to the results in Figures 5 and 6, that is, on 15 October 2019, the
prediction model accuracy and recall of FYI are only 0.73 and 0.65, respectively, and the
probability of FYI misclassification as MYI is 0.26.
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Figure 14. The spatial distributions of NSIDC weekly SIA product (a1) from 22 October 2019 to 28
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2019, and (b3) 6 November 2019. The corresponding spatial distribution of CSCAT sea ice type on
(c1) 25 October 2019, (c2) 31 October 2019, and (c3) 6 November 2019.
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Warm air intrusion (WAI) occurred between 17 April 2020 and 22 April 2020, resulting
in the reduction of the observed MYI area [40]. On the one hand, this was due to the end of
the WAI, on the other hand, as shown in Figure 11, the sea ice drift increased the MYI area,
thus recovering the MYI area after the WAI.

In addition, MYI overestimation and fluctuation was observed in OSI SAF sea ice
types in October 2020. This due to the lack of training data for FYI for most of the month
in October. This caused a generation of dynamical PDFs that favored MYI more than was
realistic. The situation stabilized at the end of October because of the availability of training
data within the target regions.

5.2. Comparison of FYI and MYI Extent at Arctic Sub Regions with Validation Products

The monthly mean FYI and MYI extent derived from the CSCAT and OSI SAF sea
ice type products in eight subregions are shown in Figures 15 and 16, respectively. In the
CA region, as shown in Figure 15a, the FYI extent and change trend of CSCAT and OSI
SAF are very consistent with each other, both showing a continuous increasing trend from
October to May of the next year. Overall, the FYI extent derived from OSI SAF is larger
than that of CSCAT. CSCAT also provides results in the period when OSI SAF identified
ambiguous ice. It can be seen that the FYI extent reached the maximum in June and then
decreased to October. As for the MYI extent in the CA region, as shown in Figure 16a,
both the CSCAT results and OSI SAF sea ice type product show a continuous decreasing
trend from October to May of the next year, and the MYI extent derived from CSCAT is
larger than that of OSI SAF sea ice type. From June to August, there was almost no MYI
shown in the CSCAT results, but the MYI extent increased in September. Specifically, in
middle and late September of each year, CSCAT determined most of the sea ice as MYI,
and the prediction accuracy is quite high, as shown in Figures 5 and 6. This indicates that
the CSCAT results have a better representation even in the period when the OSI SAF sea
ice type is classed as ambiguous.
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In the CBS region, as shown in Figure 15b, good consistency between CSCAT results
and OSI SAF sea ice type can be seen in the time series of FYI extent. The FYI extent
increases continuously before December, and stabilizes from December to May of the next
year under the impact of the Beaufort Gyre. In Figure 16b, the MYI extent derived from
CSCAT is higher than that of OSI SAF sea ice type in this region. In the LESS region, as
shown in Figure 15c, the FYI extent in October of each year increases to November and
remains stable until May of the next year. During the period when OSI SAF identifies
ambiguous ice, the CSCAT FYI decreases continuously. As for the MYI extent shown in
Figure 16c, because of the inflow from other subregions, both OSI SAF and CSCAT showed
a significant increase in MYI extent in May 2019 and May 2020. The MYI extent increase in
October 2019 is related to CSCAT misclassification, as shown in Figure 14.

In the KBS region, as shown in Figure 15d, the trends in FYI from CSCAT and OSI
SAF are identical, continuously increasing from October to March of the next year. In the
period when sea ice is defined as ambiguous ice by OSI SAF, the FYI extent from CSCAT
has a continuous decreasing trend with the minimum extent in September. It can be seen
in Figure 16d that there is almost no MYI in the KBS region throughout the year, which is
consistent with previous studies. In the EG region, as shown in Figure 15e, the FYI extent
shows a gradually increasing trend from October to May of the next year. In the month of
OSI SAF ambiguous ice, the CSCAT FYI decreased continuously, reaching its lowest value
in September. As shown in Figure 16e, the MYI extent from CSCAT is much higher than
that of OSI SAF, which is consistent with the results in Figures 9 and 10. This indicates that
in such a highly dynamic ice regime, CSCAT tends to identify the areas with lower MYIC
as MYI.

In the HBB region, as shown in Figure 15f, the FYI extent shows a gradually increasing
trend from October to March of the next year. The MYI in this region should be rather limited,
and the MYI overestimation from CSCAT is due to the poor quality of CSCAT L2A, which
should be noted in further analysis. In the CAA region, as shown in Figures 15g and 16g,
both FYI and MYI maintain a stable extent from November to March of the next year.
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Obviously, the MYI extent from CSCAT is much higher than that from OSI SAF sea ice
type in the CAA region. Considering the data from the BS region, as shown in Figures
15h and 16h, FYI increases from October to February of the next year, and then decreases
continuously. During the OSI SAF ambiguous ice period, the FYI extent from CSCAT is
almost zero. Similar to the HBB region, the MYI in the BS region should be rather limited,
the MYI overestimation from CSCAT is due to the poor quality of CSCAT L2A, which should
be noted in further analysis.

5.3. Comparison with SAR-Based Sea Ice Type Products

In order to use high-resolution products to validate our results from a long-term
period, the SAR-based sea ice type products in Sentinel-1 SAR data using a convolutional
neural networks (CNN) algorithm released by CMEMS are used in this study. Figure 17
shows the time series of a three-day moving average MYI extent derived from SAR-based
sea ice type, CSCAT, and OSI SAF sea ice type over the region covered by SAR images
all-year round during 2021. The grey-shaded area represents the time period with an
ambiguous ice type classification from the OSI SAF sea ice type product. Good consistency
in the trend from these three results can be seen in Figure 17. The correlation coefficient
of SAR and the CSCAT result, and SAR and the OSI SAF are 0.74 and 0.73, respectively.
Additionally, the correlation coefficient for the CSCAT and OSI SAF results is up to 0.96.
The averaged MYI extents in the analyzed period derived from SAR, CSCAT, and OSI SAF
are 5.12 × 105, 4.69 × 105 and 2.89 × 105 km2, respectively. During the period from Day
26 to Day 140, the MYI extents derived from SAR are much higher than the other two
results, whereas in the Day 279–Day 318 period, the MYI extent from CSCAT is the largest
compared with the other two results. From Day 318 to the end of 2021, the MYI extents
from CSCAT have quite good consistency with those of SAR.

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 27 
 

 

next year. Obviously, the MYI extent from CSCAT is much higher than that from OSI SAF 
sea ice type in the CAA region. Considering the data from the BS region, as shown in 
Figures 15h and 16h, FYI increases from October to February of the next year, and then 
decreases continuously. During the OSI SAF ambiguous ice period, the FYI extent from 
CSCAT is almost zero. Similar to the HBB region, the MYI in the BS region should be 
rather limited, the MYI overestimation from CSCAT is due to the poor quality of CSCAT 
L2A, which should be noted in further analysis.  

5.3. Comparison with SAR-Based Sea Ice Type Products 
In order to use high-resolution products to validate our results from a long-term pe-

riod, the SAR-based sea ice type products in Sentinel-1 SAR data using a convolutional 
neural networks (CNN) algorithm released by CMEMS are used in this study. Figure 17 
shows the time series of a three-day moving average MYI extent derived from SAR-based 
sea ice type, CSCAT, and OSI SAF sea ice type over the region covered by SAR images all-
year round during 2021. The grey-shaded area represents the time period with an ambig-
uous ice type classification from the OSI SAF sea ice type product. Good consistency in 
the trend from these three results can be seen in Figure 17. The correlation coefficient of 
SAR and the CSCAT result, and SAR and the OSI SAF are 0.74 and 0.73, respectively. 
Additionally, the correlation coefficient for the CSCAT and OSI SAF results is up to 0.96. 
The averaged MYI extents in the analyzed period derived from SAR, CSCAT, and OSI 
SAF are 5.12 × 105, 4.69 × 105 and 2.89 × 105 km2, respectively. During the period from Day 
26 to Day 140, the MYI extents derived from SAR are much higher than the other two 
results, whereas in the Day 279–Day 318 period, the MYI extent from CSCAT is the largest 
compared with the other two results. From Day 318 to the end of 2021, the MYI extents 
from CSCAT have quite good consistency with those of SAR. 

 
Figure 17. Time series of 3-day moving average MYI extent derived from SAR-based sea ice type 
(blue line), CSCAT (red), and OSI SAF sea ice type (black) over the region covered by SAR images 
all year round in 2021. 

Figure 18 shows SAR-based sea ice type images superimposed with MYI edges of the 
CSCAT results and OSI SAF sea ice type product on 17 January 2021, 26 February 2021, 19 
October 2021, and 9 November 2021. Generally, the MYI edges derived from CSCAT are 
much more consistent with the SAR-based sea ice type distribution than that of the OSI 
SAF sea ice type product. Especially in the area of East Greenland, more area is classified 
as MYI by CSCAT in such a highly dynamic ice regime, which is consistent with the case 
in Figure 16e. 

Figure 17. Time series of 3-day moving average MYI extent derived from SAR-based sea ice type
(blue line), CSCAT (red), and OSI SAF sea ice type (black) over the region covered by SAR images all
year round in 2021.

Figure 18 shows SAR-based sea ice type images superimposed with MYI edges of the
CSCAT results and OSI SAF sea ice type product on 17 January 2021, 26 February 2021, 19
October 2021, and 9 November 2021. Generally, the MYI edges derived from CSCAT are
much more consistent with the SAR-based sea ice type distribution than that of the OSI
SAF sea ice type product. Especially in the area of East Greenland, more area is classified
as MYI by CSCAT in such a highly dynamic ice regime, which is consistent with the case in
Figure 16e.
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line) and OSI SAF sea ice type product (yellow line) on (a) 17 January 2021 (Day 17 of 2021), (b) 26
February 2021 (Day 57 of 2021), (c) 19 October 2021 (Day 292 of 2021), and (d) 24 November 2021
(Day 328 of 2021).

6. Conclusions

The main goal of CSCAT is to monitor ocean surface wind to improve numerical
weather forecasting, with the additional potential of monitoring sea ice parameters. In this
paper, a new algorithm for classification of Arctic sea ice types on CSCAT measurement
data using the random forest classifier is presented.

The random forest classifier is trained on NSIDC weekly SIA and SIC products, where
the prediction model is basically updated twice a month. Different from previous studies
where the incidence angle normalization correction was used based on daily measurement,
five feature parameters, including the mean value of horizontal and vertical polarization
backscatter (σhh and σvv), the standard deviations of horizontal and vertical polarization
measurements (∆σhh and ∆σvv), and the copol ratio (γ = σvv/σhh) are innovatively ex-
tracted from orbital measurement for the first time to distinguish water, FYI, and MYI.
The spatial distribution and probability density distribution of feature parameters indicate
that the differences between σhh and σvv for FYI and MYI are quite significant, where the
MYI area is generally higher than the FYI and water area. Furthermore, ∆σvv, ∆σhh and
γ can distinguish water and ice well, but cannot classify sea ice type very well, proving
the feasibility of CSCAT orbital feature analysis for sea ice classification. The sea ice type
model based on the random forest classifier is quantitatively assessed using a confusion
matrix through a comparison with the NSIDC weekly SIA product. During the period from
1 January 2019 through 1 March 2020, the averaged overall accuracy and kappa coefficient
are 93.35% and 88.53%, respectively, and the precisions of water, FYI, and MYI are 99.67%,
86.60%, and 79.74%, respectively.

The CSCAT sea ice classification in this study is compared against the sea ice type
product (OSI-403-c) from EUMETSAT OSI SAF, the NSIDC weekly SIA product, MYIC
from IUP, and the SAR-based sea ice type product from CMEMS. The spatial distribution
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differences between the CSCAT results and the OSI SAF sea ice type products on selected
dates from 2019 to 2021 indicate that the most obvious difference in the distribution of sea
ice types between these two results is mainly concentrated in the marginal zones of FYI
and MYI, where some areas identified as MYI by the CSCAT classification were classified
as FYI by the OSI SAF sea ice type product. This may be caused by the different response
of microwave signals with different frequencies to the mixed pixel detection of FYI and
MYI. Furthermore, compared with the OSI SAF sea ice type product (OSI-403-c), the area
of MYI derived from CSCAT is more homogeneous with less noise, especially for younger
multiyear ice such as second-year ice. In the EG region, CSCAT identifies more pixels as
MYI with lower MYIC values, showing better accuracy in the identification of areas with
obvious mobility of MYI.

The time series of FYI extent derived from the CSCAT and OSI SAF shows that the
FYI extent of CSCAT has an excellent consistency with that of OSI SAF sea ice type, the
RMSE and correlation coefficient of which are 6.87 × 105 km2 and 0.989, respectively. Case
studies on the first day of the end of OSI SAF ambiguous ice in 2019–2021 show that CSCAT
can better describe the distribution of sea ice type at the initial stage of the freezing-up
period. The time series of MYI extent derived from CSCAT and the OSI SAF sea ice type
product shows the patten of MYI extent of CSCAT has good consistency with that of OSI
SAF sea ice type, the RMSE and correlation coefficient of which are 6.84 × 105 km2 and
0.792, respectively. There are mainly two factors leading to CSCAT MYI extent being higher
than that of OSI SAF sea ice type as a whole. Firstly, CSCAT marks the lower MYIC pixels
as MYI pixels, and secondly, OSI SAF sea ice type (OSI-403-c) underestimates MYI due to
the insensitivity of ASCAT measurement to the younger ice type. The MYI monthly STD of
the daily differences calculated from CSCAT and OSI SAF sea ice type product is less than
1 × 105 km2 in most of the analyzed period, indicating that the sea ice type classification
accuracy is reliable as a whole. However, in October 2019 and April 2020, the deviation
of CSCAT is relatively large due to the overestimation of MYI in the LESS area and the
warm air intrusion effect, respectively. Furthermore, MYI overestimation and fluctuations
in October 2020 derived from OSI SAF sea ice type are mainly due to the lack of training
data for FYI for most of the month in October, which will be improved in the updated
product (OSI-403-d).

In order to analyze the spatial characteristics of the Arctic sea ice in more detail, eight
subregions are used in this study. The monthly mean FYI and MYI extent derived from
CSCAT and the OSI SAF sea ice type product in the eight subregions show that the MYI
extent derived from CSCAT is larger than that of OSI SAF sea ice type in the CA, CBS, EG,
and CAA regions. Regarding the HBB and BS regions, the MYI in the BS region is rather
limited, and the MYI overestimation from CSCAT is due to the poor quality of CSCAT
L2A, which should be analyzed in further study. The SAR-based sea ice type products
in Sentinel-1 SAR data were used to validate our results over a long-term period. The
comparison with SAR-based sea ice type product found that the correlation coefficient for
the SAR and CSCAT, and SAR and OSI SAF are 0.74 and 0.73, respectively. The averaged
MYI extents in the analyzed period derived from SAR, CSCAT and OSI SAF are 5.12 × 105,
4.69 × 105 and 2.89 × 105 km2, respectively. The MYI edges derived from CSCAT are much
more consistent with SAR-based sea ice type distribution than those of OSI SAF. Especially
in the area of East Greenland, which is a highly dynamic ice regime, more area is classified
as MYI by CSCAT.

In conclusion, this research verifies the capability of CSCAT in monitoring Arctic sea
ice classification, especially in the spatial homogeneity and detectable duration of sea ice.
Given the high accuracy and processing speed, the random forest-based algorithm can offer
good guidance for sea ice classification using FY-3E/RFSCAT, i.e., a dual-frequency (Ku
and C band) scatterometer called WindRAD. In future work, different machine learning
models, such as support vector machine, gradient boosting, and K-means unsupervised
learning algorithm and so forth, should also be evaluated for sea ice classification, which
will lead to further algorithm improvements.
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