remote sensing

Article

Ecological Risk Assessment and Prediction Based on Scale
Optimization—A Case Study of Nanning, a Landscape Garden

City in China

Jianjun Chen

and Xiaowen Han 12

check for
updates

Citation: Chen, J.; Yang, Y.; Feng, Z.;
Huang, R.; Zhou, G.; You, H.; Han, X.
Ecological Risk Assessment and
Prediction Based on Scale
Optimization—A Case Study of
Nanning, a Landscape Garden City
in China. Remote Sens. 2023, 15, 1304.
https://doi.org/10.3390/1rs15051304

Academic Editors: Weiqgi Zhou and

Jeroen Meersmans

Received: 9 December 2022
Revised: 21 February 2023
Accepted: 23 February 2023
Published: 26 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Yanping Yang !, Zihao Feng 1, Renjie Huang !, Guoqing Zhou "

2(), Haotian You 12

College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology,
Guilin 541004, China

*  Correspondence: chenjj@glut.edu.cn

Abstract: Analysis and prediction of urban ecological risk are crucial means for resolving the di-
chotomy between ecological preservation and economic development, thereby enhancing regional
ecological security and fostering sustainable development. This study uses Nanning, a Chinese land-
scape garden city, as an example. Based on spatial granularity and extent perspectives, using 30 m
land use data, the optimal scale for an ecological risk assessment (ERA) and prediction is confirmed.
This study also explores the patterns of spatial and temporal changes in ecological risk in Nanning
on the optimal scale. At the same time, the Patch-generating Land Use Simulation model is used to
predict Nanning’s ecological risk in 2036 under two scenarios and to propose ecological conservation
recommendations in light of the study results. The study results show that: a spatial granularity of
120 m and a spatial extent of 7 km are the best scales for ERA and prediction in Nanning. Although
the spatial distribution of ecological risk levels is obviously different, the overall ecological risk is
relatively low, and under the scenario of ecological protection in 2036, the area of high ecological
risk in Nanning is small. The results can provide theoretical support for ERA and the prediction of
landscape cities and ecological civilization construction.
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1. Introduction

A large number of ecological and environmental problems have emerged, including
reduced forest coverage rate [1], degraded ecosystems [2], increased soil erosion [3], and
loss of biodiversity [4], following rapid economic and social development, urbanization,
the increasingly prominent contradiction between man and land, and the forced change of
the structure and pattern of many ecological lands [5]. Human beings have brought about
many negative ecological and environmental impacts while promoting socio-economic
development [6]. On the other hand, nowadays, human power has been regarded as the
primary source of power to improve environmental systems and can be used to reduce
ecological risks, improve regional natural environments, and adjust the internal structure of
ecosystems with urban planning [7], energy conservation and emission reduction [8], and
carbon peaking and neutrality [9]. Thus, in order to manage urban ecological risk, plan for
and restore the environment, and encourage the sustainable development of cities, people,
and nature, it is indispensable to model and predict the changes in ecological risks under
various scenarios and analyze the evolution characteristics of ecological risks in rapidly
developing cities.

Landscape ERA, an extension of landscape ecology, is a method for monitoring and
evaluating the negative impacts of human activities and the natural environment on
ecosystem structure and function [10,11]. The landscape ecological risk values determine
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the influence of landscape spatial patterns on ecological risk processes and functions, with
typical spatial heterogeneity and scale effects [12,13]. The scale effect is a fundamental
feature of spatial heterogeneity, and the degree of heterogeneity and dynamic processes of
landscape patterns differ significantly at various scales [14], with different ecological risk
evaluation results. Therefore, a suitable research scale is a prerequisite for ERA and can
improve its accuracy and reliability.

At present, remote sensing data is the primary data source for environmental monitor-
ing [15] and management [16], ecosystem protection [17], landscape patterns [18], and so
on. In particular, the scale effect of ecological risk is closely related to the selection of remote
sensing data. Scale effects are usually divided into spatial granularity and extent, and the
appropriate scale for different study areas is not universal [19,20]. For the appropriate
spatial granularity selection, current research has focused on the response of the landscape
pattern index to its changes [21,22], the selection of granularity analysis methods, and
the construction of models [23,24]. The landscape pattern index has been widely used in
landscape-scale spatial analysis because it is highly condensed with information related
to the landscape pattern and can better describe the structural composition and spatial
configuration of different landscape elements [23]. In the analysis of the spatial granularity
effect of landscape pattern indices, scholars usually adopt the resampling method [25]
to analyze the scale effect of the study area and use the area loss evaluation [26] and the
inflection point identification methods of the landscape pattern response curve [27] to
determine the suitable granularity of the study area landscape. Although current studies
have explored the effects of suitable spatial grain size on landscape pattern changes from a
landscape pattern perspective, the impact of scale effects on landscape ecological risk has
been ignored.

There are two methods for assessing landscape ecological risk, which are based on risk
sources and sinks [28] and landscape patterns [29]. The method based on landscape patterns
usually evaluates the ecological risk of the area directly from the perspective of the spatial
pattern [30], involving the rational selection of ERA units and the direct reflection of spatial
extent in the landscape ERA. Depending on the evaluation area and the study’s purpose,
assessment units can be delineated according to natural geographical units or artificially
divided, mainly by directly taking watersheds [31], administrative districts [32], and nature
reserves [33] as the ERA units, thus ensuring the structure’s integrity and natural elements
processes but, to a certain extent, ignoring spatial heterogeneity. The artificial division
method mainly uses the risk cell or grid as the evaluation unit of ecological risk [34]. Risk
cells are the smallest units in the evaluation, and too small of a division extent will destroy
or even change the internal structure’s integrity and the landscape’s function. At the same
time, too large of a division scale will lead to a loss in information about the landscape
patches and will not fully or accurately reflect the actual situation inside the landscape.
Therefore, a suitable spatial extent is a basis for dividing risky plots into those that can
genuinely and effectively carry out an ERA.

ERA aims to carry out risk prevention and ecological protection based on its results.
Simulating ecological risks under different scenarios is beneficial for comparing and study-
ing the effectiveness of different protection measures. The simulation and prediction of
ecological risk are usually based on land use (LU). At present, the primary land use simula-
tion models are the Markov [35], the CA [36], the CLUE-S [37], and the Patch-generating
Land Use Simulation (PLUS) models [38]. Among these models, the Markov model is
widely used but has limitations in simulating spatial changes in LU. The CA model has
mighty spatial computing powers, but its different conversion rules will lead to different
LU simulation results. The PLUS model can respond to the drivers of LU change and their
contribution rates and has better LU simulation accuracy. It has been widely used in LU
simulation [33], carbon stock prediction [39], ecosystem service value models [40], etc.

Nanning is the political and economic center of Guangxi, China, and is known as
the “Green City of China”, one of the first “National Ecological Garden Cities” in China,
and a “Beautiful Mountain City” for three consecutive years. The urbanization rate in
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Nanning was estimated at 68.91% in 2020, so coordinating economic development with
ecological protection and optimizing the spatial pattern of cities and towns is both the
focus of and difficulty for Nanning’s future sustainable development. Currently, there is
little research focused on evaluating and understanding the ecological risks in Nanning
and the simulation of future scenarios. There is an urgent need to analyze and predict
the phenomenon of changes in ecological risks in the region and to propose appropriate
ecological protection strategies. Using LU data, this study determines the optimal scale
for ERA based on the granularity response curve of the landscape pattern index and the
relevant results of the semi-variance function of ecological risk in the landscape. This
study uses the ERA model to analyze the spatial and temporal variation characteristics
of ecological risk in Nanning at the optimal scale and then simulated and predicted the
changes in LU patterns and ecological risks for the year 2036. Our study explored the
scale effects of ecological risks from the perspectives of spatial granularity and spatial
amplitude, which improved the single perspective of previous studies on scale effects and
improved the accuracy of ERA to a certain extent. At the same time, based on the research
results, suggestions for the ecological protection of Nanning are put forward to ensure the
rational planning and layout of landscape garden cities under the rapid development of
cities and towns.

2. Materials and Methods
2.1. Study Area

Nanning is located in the central south of the Guangxi Zhuang Autonomous Region
of China, at 107°45'-108°51'E, 22°13’-23°32'N. As of 2021, Nanning has seven districts
(Qingxiu, Xingning, Jiangnan, Xixiangtang, Liangqging, Yongning, and Wuming), four
counties (Bingyang, Shanglin, Longan, and Masan), and one county-level city (Hengzhou),
with a total area of 22,112 km?. It is the core city of the Beibu Gulf Economic Zone in
Guangxi, with Guangdong, Hong Kong, Macao, and Qiong to the east, the Indian Peninsula
to the west, Southeast Asia to the west, and the Great Southwest to the back [41] (Figure 1).
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Figure 1. Elevation of Nanning.

There are five main types of landforms in Nanning: flat land, low mountains, rocky
hills, hills, and terraces, of which flat land is the largest, accounting for 57.78% of the city’s
area. Located south of the Tropic of Cancer, Nanning has a subtropical monsoon climate
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with abundant rainfall and sunshine with an average annual temperature of 21.6 °C and
rainfall of 1304.2 mm [42]. The city has a well-developed river system and abundant water
resources, with the main rivers belonging to the Xijiang River System of the Pearl River
Basin, the largest river in Guangxi. Nanning is rich in flora and fauna, with 21 existing
natural reserves, and is a pivotal city connecting the economic spheres of South China
and Southwest China, as well as a regional international city in China facing the ASEAN
countries. By the end of 2020, the city had a registered population of 7,912,800 and an
urban population of 4,093,200 with a gross domestic product (GDP) of RMB 472,634 million,
mainly in the tertiary and secondary industries.

2.2. Data Source and Pre-Processing
2.2.1. Remote Sensing Product Data

The LU data used in this study were obtained from the Center for Resources and
Environmental Sciences and Data of the Chinese Academy of Sciences (https:/ /www.resdc.cn/
(accessed on 14 January 2021)). The data were produced by the Chinese Academy of
Sciences and other institutions based on the Landsat remote sensing image data of the
United States using artificial visual interpretation. According to the land resources and
their utilization attributes, the land was divided into six types of LU, namely arable land,
woodland, grassland, water, construction land, and unused land, with a spatial resolution
of 30 m. According to the research needs, this study selected the LU data of 2000, 2010,
and 2018 and trimmed the vector boundary of Nanning in ArcGIS to obtain the LU data of
Nanning in the third phase (Figure 2).

Land use of 2010 Land use of 2018

T s KM .
0 20 40 80 120

- Waters ‘:I Construction land

Figure 2. LU of Nanning in different years.

- Unused land

Meteorological data were obtained from the European center for medium-range
weather forecasts (ECMWF) reanalysis data of the third generation ERA—Interim daily/
levtype = SFC (https://apps.ecmwf.int/ (accessed on 16 December 2020)), with a spa-
tial resolution of 0.5°. ERA-Interim uses mind-variational analysis, improved humid-
ity analysis, and error correction of satellite data to improve the quality of the reanal-
ysis data. The GLASS FVC dataset was downloaded from Beijing Normal University
(http:/ /glass-product.bnu.edu.cn/ (accessed on 27 December 2021)). FVC data were ob-
tained by training a generalized regression neural network model using high-precision
Landsat TM/ETM+ data and MODIS data. The spatial resolution is 500 m, and the tem-
poral resolution is 8d. The digital elevation model (DEM) data were obtained from China
Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 7 March 2021)), with a
spatial resolution of 30 m. The DEM data were spliced, clipped, and reprojected, and the
elevation and slope were selected to discuss their influence on LU change.
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2.2.2. Other Data

Data on leaf area index, gross domestic product (GDP), and population density
were obtained from the Resources and Environmental Sciences and Data Center, Chi-
nese Academy of Sciences, with the spatial resolution of 8 km, 1 km, and 1 km, respectively.
The road data were obtained from the China Geographic Information Resources Directory
Service System (https:/ /www.webmap.cn/ (accessed on 14 January 2021)), and the railway
and expressway data were selected according to the research needs.

2.3. Research Methodology

This study explores the scale implications of ecological risk from the spatial granularity
and extent perspectives using three phases of LU data from 2000, 2010, and 2018 in Nanning,
China, and determines the optimal scale for an ERA in Nanning. To this end, the LU transfer
matrix and ERA model were used to analyze the characteristics of spatial and temporal
changes in LU and ecological risk in Nanning under the optimal scale. Additionally,
the PLUS model was used to simulate the ecological risk in Nanning during the year
2036 under two scenarios of natural development and ecological preservation given ten
socioeconomic and human land-use factors. The results were combined to provide a
reference for ecological risk avoidance and ecological restoration in Nanning. Figure 3
provides a flowchart illustrating the particular research methods and content of the study.
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Figure 3. The framework of this research.

2.3.1. Scale Conversion

In landscape ecology, the spatial scale is typically divided into spatial granularity
and extent [43]. Spatial granularity refers to a feature’s length, area, or volume and is
represented by the smallest identifiable unit in the landscape. Based on the findings of
previous studies [44], this study set the granularity range between 30 and 180 m, resampled
30 m LU data at 30 m intervals using ArcGIS, calculated each landscape pattern index using
Fragstats 4.1, and plotted the response of each landscape pattern index under six different
granularity levels from 2000 to 2018. The optimal landscape grain size in Nanning was
determined using the inflection points and relaxation intervals in the response curve.

Spatial extent refers to the area of the study region. Previous studies have demon-
strated that when the grid size is 2 to 5 times the average patch area, the integrity of patches
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and spatial differentiation in the ecological risks can be maintained [45]. Therefore, in
this study, ArcGIS was used to create a fishing grid tool to generate seven types of square
grid ERA cells of different sizes: 4 km x 4 km, 5 km X 5km, 6 km x 6 km, 7 km x 7 km,
8km x 8 km, 9 km x 9 km, and 10 km x 10 km. The ecological risk index value of each
cell grid was determined using Fragstats4.1 software, and the ERA model is regarded
as the ecological risk value of each grid cell center. The results fitting the ecological risk
semi-variance function under different extents in Nanning from 2000 to 2018 were analyzed
to determine the best scale for the ERA and prediction.

2.3.2. Landscape Pattern Index Selection

In order to comprehensively reflect the characteristics of landscape patterns, scholars
typically select a number of landscape pattern indices from the following four aspects:
area, form, distribution, and diversity. Based on previous studies [46], seventeen landscape
pattern indices were selected in this study. Among them, the area edge indices include
the total area (TA), largest patch index (LPI), edge density (ED), and mean patch area
(AREA_MN). The shape indices include the mean shape index (SHAPE_MN), mean fractal
dimension index (FRAC_MN). The dispersion indices include the number of patches (NP),
patch density (PD), landscape division index (DIVISION), splitting index (SPLIT), contagion
(CONTAG), interspersion juxtaposition index (IJI), aggregation index (Al), landscape shape
index (LSI), and patch cohesion index (COHESION). The diversity indices include the
Shannon’s diversity index (SHDI) and Shannon’s evenness index (SHEI).

The coefficient of variation C, is used to measure the sensitivity of each landscape
pattern index to changes in grain size, and the appropriate landscape pattern index can be
selected for the analysis of optimum grain size according to the sensitivity degree [47]. The
calculation formula is as follows:

n
Y (x; — %) x 100% 1)
j=1

In the formula, C, is the coefficient of variation; xj is the landscape index value at j
granularity; ¥ is the average value of the landscape index at different granularities; and
n is the number of granularity grades. According to its size, the variation coefficient is
divided into five grades: insensitive, low sensitivity, medium sensitivity, high sensitivity,
and extremely high sensitivity. The assignment interval is insensitive (<1%), low sensitivity
(1~4%), medium sensitive (4~7%), highly sensitive (7~10%), and extremely sensitive (>10%).
To avoid duplication and invalidity in the selection of landscape pattern indices, the ones
insensitive to spatial grain size changes were not involved in the grain size change analysis.

2.3.3. Semi-Variance Functions

The semi-variance function in geostatistics is a function that exposes the variance value
of data points and the separation between them, and it is mostly used to explain and detect
the spatial structure of patterns as well as for spatially local optimum interpolation [48].
To determine the optimal extent and model for kriging interpolation, based on the results
fitting the semi-variance function to different gridded ERA cells, the calculation formula is
as follows:

Z
=

)
700 = sy X 120 = Z(xi-+ )2 @

Il
_

1

In the formula, y(h) is the semi-variance function; / is the spatial distance between
samples; Z(x;) and Z(x; + h) are the values of the variables at positions xi and x; + h,
respectively,i=1,2, ..., N(h); and N(h) is the total number of samples when the spatial
distance is h. When h = 0 and «y(h) = C0, CO is called the block gold value, indicating
the ecological risk is the spatial heterogeneity generated by random factors; CO + C is
the abutment value, indicating the overall spatial heterogeneity of the autocorrelated
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part of the ecological risk; A0 is called the variation range, that is, the sampling distance
corresponding to the first time the semi-variance function reaches a stable value, indicating
the autocorrelated range of the ecological risk.

GS + 9.0 software was used to calculate the block gold values, variance, residuals,
and complex correlation coefficients of the semi-variance functions of ecological risks in
Nanning for three periods under different extents in 2000, 2010, and 2018, and to analyze
the spatial heterogeneity in ecological risks under different extents. Lastly, we use the
results to decide which scale will be most effective in Nanning for evaluating ecological
risk.

2.3.4. LU Change

The LU transfer matrix represents the quantitative relationship between the LU-type
conversion in two different periods in the form of a matrix [49]. The calculation formula is
as follows:

S11 S12 ... S
S S ... S

Sp= 7o )
Snl Sn2 oo Sun

where §;; represents the amount from the initial type i to the final type j, and i and j represent
the LU types at the initial and final stages of the study, respectively. n represents the total
number of LU types.

2.3.5. ERA Models

To establish the link between ecological risk and landscape structure, the landscape
disturbance index (E;) and the landscape vulnerability index (F;) were selected in this study
to construct a comprehensive Ecological Risk Index (ERI) model for Nanning. The ERI was
calculated using the following formula:

N
S .
ERI, = ZS—]Z\/EZ' x F @)
i

where ERIy, represents the ERI of the k-th risk plot; S; represents the area of the k-th risk
plot of the i-th landscape type; Sk denotes the total area of the k-th risk plot; E; indicates
the landscape disturbance index for the i-th landscape type; and F; denotes the landscape
vulnerability index for the i-th landscape type. The calculation formulas and ecological
significance of E; and F; are derived from previous studies [49].

According to the ecological risk calculation results, it can be seen that the ecological
risk values of Nanning from 2000 to 2018 ranged from 9.19 to 13.09. To further analyze
the spatial and temporal variation characteristics of ecological risk in Nanning, the natural
breakpoint method was implemented in ArcGIS to classify the landscape ecological risk of
the study area into five levels: low-risk (<10.23), medium-low-risk (10.23~10.75), medium-
risk (10.75~11.27), medium-high-risk (11.27~11.88), and high-risk (>11.88). Meanwhile,
areas with reducing ecological risk levels were set as improvement areas, areas with
unchanged ecological risk levels as stable areas, and areas with increasing ecological risk
levels as deterioration areas.

2.3.6. The PLUS Model

The PLUS model is a meta-cellular automata CA model that combines the land ex-
pansion analysis strategy (LEAS) and the multi-class random patch seed (CARS) model,
reflecting the driving factors of LU change and their contribution rates with good LU
simulation accuracy [38].
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(1) Selection of driving factors for LU

LU change results from a combination of natural and socio-economic factors. Based on
the current ecological situation and data acquisition in Nanning, ten factors were selected
in both natural and socio-economic aspects: slope, elevation, precipitation, temperature,
FVC, population density, leaf area index, GDP, distance from highways, and distance from
railways.

(2) Neighborhood parameter settings

The neighborhood weight parameter is an important indicator reflecting the expansion
intensity of different LU types. The parameter ranges from 0 to 1, and the closer it is to
1, the greater the expansion intensity of the LU type. In this study, the neighborhood
parameters of arable land, woodland, grassland, waters, construction land, and unused
land are assigned values of 0.7, 0.4, 0.3, 0.2, 0.2, 0.9, and 0.2.

(8) Scenario setting

Regional LU changes are different under various scenarios, and simulating the future
LU of Nanning under different scenarios provides different reference perspectives for
decision-makers to plan the national land space. In this study, according to the LU change
characteristics of Nanning and previous studies [50], two scenarios, namely the natural
development scenario (NDS) and the ecological protection scenario (EPS), were set to
simulate and forecast the LU of Nanning in 2036. Among them, the NDS refers to the
transfer cost matrix based on the LU transfer matrix and transfer probability of Nanning
from 2000 to 2018, and the EPS refers to the restriction of the transfer of high-quality LU.
The transfer cost matrix corresponding to each scenario is as follows (Table 1), where
0 means no transfer is allowed and 1 means transfer is allowed.

(4) Model accuracy verification

To ensure the accuracy of the simulation results, the Kappa coefficient and overall
accuracy were used to test the simulation results. In this study, the 2018 LU data were
obtained with simulation using the 2000 LU data. By comparing the 2018 LU simulation
data with the actual data, it was found that the Kappa coefficient was 0.82, and the overall
accuracy was 85.41%.

Table 1. Simulation cost matrix of each scenario.

NDS EPS
2018-2036
T2 T3 T4 T5 Té6 T1 T2 T3 T4 T5 Té6
T1 1 1 1 1 1 0 1 1 1 0 1 0
T2 1 1 1 0 1 0 0 1 1 0 0 0
T3 1 1 1 1 1 0 0 1 1 0 0 0
T4 1 1 1 1 1 1 0 0 1 1 0 0
T5 1 1 0 0 1 0 1 0 1 0 1 0
T6 0 0 0 1 0 1 1 1 1 1 1 1

Note: T1, T2, T3, T4, T5, and T6 represent arable land, woodland, grassland, waters, construction land, and
unused land, respectively.

3. Results and Analysis
3.1. Optimal Scale Analysis of Ecological Risk
3.1.1. Optimal Granularity Analysis of Landscape Pattern Index

The sensitivity of each landscape pattern index to spatial granularity change remained
broadly consistent from 2000 to 2018 (Figure 4). The SPLIT index was susceptible to
spatial granularity change, with the SHAPE_MN and CONTAG indices as high-sensitivity
indicators, the LPI, ED, LSI, and Al indices as medium-sensitivity indicators, and the four
landscape pattern indices NP, PD, AREA_MN, and FRAC_MN have low sensitivity to
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spatial granularity changes. The coefficient of variation values of TA, IJI, COHESION,
DIVISION, SHDI, and SHEI indices are all less than 1%.

127 2000 ~
2010 ™
2018

10

Coefficient of variation/%
N
1
]
|
]
1

.........”T"‘"'T”|_|T|_|||

! !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Landscape pattern index

Figure 4. Variation coefficient of the landscape pattern index in response to spatial granularity. Note:
1-17 represent LPI, ED, AREA_MN, SHAPE_MN, FRAC_MN, NP, PD, SPLIT, CONTAG, Al LSI, TA,
IJI, COHESION, DIVISION, SHDI, and SHEI, respectively.

The response of different landscape pattern indices to the spatial granularity change
was different in the same period (Figure 5). Among them, the grain size response curves of
ED, SHAPE_MN, FRAC_MN, CONTAG, Al, and LSI showed no obvious inflection point
and gradually decreased with the increase of spatial granularity. The responses of the NP
and PD indices to the changes in spatial granularity were the same, with a slight increase
in the 30-60 m particle size interval, a sharp increase in the 60-120 m particle size interval,
a gentle change in the 120-150 m particle size interval without noticeable fluctuation, and
a downward trend in the 150-180 m particle size interval. The AREA_MN index has no
apparent fluctuation in the 120-150 m particle size interval, but the response to the spatial
particle size change in other intervals is completely opposite to the NP index and PD index
trends. Therefore, 120 m was selected as the best landscape granularity in Nanning using a
comprehensive analysis of the landscape pattern index’s inflection points and relaxation
intervals.

3.1.2. Analysis of the Optimal Extent of Ecological Risk

The fitting model parameters of the ecological risk semi-variogram in different years
from 2000 to 2018 showed the same trend with the increase in extent, but the response of
the fitting model parameters of the semi-variogram in the same year to the spatial extent
was different (Table 2). When the extent is 4-7 km, C0 shows a decreasing trend. When the
extent is 7-10 km, CO shows fluctuations described as rising first, then falling, then rising
again, and C0 reaches a minimum value at 9 km. CO + C decreases gradually when the
extent is 4-7 km. When the extent is 7-10 km, CO + C increases slightly without noticeable
fluctuation. When the extent is changed from 4 to 7 km, C/(C0 + C) shows a gradually
increasing trend, and when it goes from 7 to 10 km, C/(C0 + C) shows a decreasing trend
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first, followed by an increasing and then a decreasing trend again. C/(CO0 + C) reaches a
maximum value at 9 km. When the spatial extent is 7 km, RSS is the smallest, and R? is the
largest. Therefore, 7 km is selected as the best scale for ERA and prediction.
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Figure 5. Granularity effect of the landscape pattern index.

Table 2. Fitting model parameters of the ecological risk semi-variogram under different extents.

Spatial Extent/km Year Co Co+C C/(C0 + Q) A/m RSS R?
2000 0.652 2.098 0.689 31,900 0.0250 0.975
4 2010 0.709 2.084 0.660 32,900 0.0557 0.944
2018 0.690 1.974 0.650 31,400 0.0466 0.943
2000 0.399 1.881 0.788 32,300 0.0431 0.965
5 2010 0.437 1.85 0.764 32,600 0.106 0.919

2018 0.431 1.767 0.756 31,400 0.0921 0.918
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Table 2. Cont.

Spatial Extent/km Year Co Co+C C/(C0 + Q) A/m RSS R?
2000 0.3 1.600 0.813 32,100 0.0189 0.976
6 2010 0.204 1.631 0.875 27,800 0.0474 0.958
2018 0.294 1.455 0.798 31,100 0.0245 0.96
2000 0.208 1.447 0.856 33,500 0.0560 0.976
7 2010 0.165 1.352 0.878 32,700 0.0331 0.959
2018 0.172 1.277 0.865 31,800 0.0199 0.959
2000 0.291 1.481 0.804 39,000 0.0245 0.969
8 2010 0.349 1.477 0.764 40,900 0.0682 0.927
2018 0.331 1.382 0.76 39,300 0.065 0.916
2000 0.123 1.477 0.917 36,400 0.0333 0.962
9 2010 0.177 1.487 0.881 36,700 0.0538 0.908
2018 0.192 1.379 0.861 36,200 0.0429 0.938
2000 0.218 1.504 0.855 35,000 0.0667 0.85
10 2010 0.323 1.517 0.787 36,600 0.1170 0.753
2018 0.290 1.400 0.793 35,200 0.0972 0.745

3.2. Analysis of Temporal and Spatial Variation Characteristics of LU and Ecological Risk at the
Optimal Scale

3.2.1. Analysis of Temporal and Spatial Changes in LU

The area size of each LU type in Nanning was woodland > arable land > grassland
> construction land > waters > unused land (Table 3). The woodland and arable land
area accounted for 52.80% and 34.00% of the total area, respectively, and the construction
land area was about 973.31 km2. From 2000 to 2018, the area of arable land and unused
land decreased first and then increased, while the area of woodland, grassland, and water
continued to decrease, and the area of construction land increased significantly. Among
them, the area of construction land and unused land increased by 336.33 km? and 1.44 km?,
respectively, while the area of arable land, woodland, grassland, and waters decreased by
206.32 km?, 51.39 km?, 48.67 km?, and 30.79 km?, respectively.

Table 3. Areas of LU types in Nanning from 2000 to 2018 (km?).

Land-Use Types 2000 2010 2018
Arable land 7592.08 7547.30 7385.76
Woodland 11,663.80 11,663.63 11,612.40
Grassland 1350.19 1322.44 1301.52
Waters 648.20 621.06 617.41
Construction Land 827.60 928.40 1163.92
Unused land 2.29 1.93 3.73

From 2000 to 2018, the area converted by different LU types reached 630.22 km?
(Table 4). The area of arable land transferred out was the largest, reaching 318.48 km? and
accounting for 50.54% of the total area transferred, mainly converted to construction land
and woodland. Secondly, the transferred area of woodland was more extensive reaching
155.07 km2. The transfer area of construction land was the largest, reaching 359.04 km?,
which was mainly converted from arable land and woodland.
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Table 4. Transfer matrix of LU types in Nanning from 2000 to 2018 (km?).
2018
2000 .
Arable Land Woodland Grassland Waters Construction Land Unused Land Sum
Arable land 7273.60 59.27 9.09 10.12 239.85 0.16 7592.08
Woodland 54.66 11,508.72 21.12 7.75 71.52 0.01 11,663.80
Grassland 7.57 32.52 1268.57 1.56 39.97 0 1350.19
Waters 33.49 7.00 2.10 596.26 7.69 1.66 648.20
Construction Land 16.21 4.54 0.62 1.34 804.89 0 827.60
Unused land 0 0 0.39 0 1.911 2.29
Sum 7385.54 11,612.04 1301.50 617.41 1163.92 3.73 22,084.16

3.2.2. Ecological Risk Change

From 2000 to 2018, the ecological risks in Nanning were mainly low-medium, medium-
high, and medium, accounting for 24.35%, 22.77%, and 22.04% of the total area of ecological
risks in Nanning, respectively. The low-risk and high-risk areas were relatively small
(Figure 6). From 2000 to 2010, the area of each grade of ecological risk changed slightly,
but in 2018, each grade of ecological risk changed significantly. The area variation trend of
different ecological risk levels was different. The low-risk, low-medium-risk, and medium-
risk areas all showed an increasing trend, while the medium-high-risk and high-risk areas
decreased. Among them, the medium-risk area increased the most, reaching 683.856 km?,
while the area of high-risk decreased the most, reaching 839.95 km?.
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Figure 6. Area map of the ecological risk level in Nanning. Note: 1, 2, 3, 4, and 5 represent low-risk,
low-medium-risk, medium-risk, medium-high-risk, and high-risk, respectively.

From 2000 to 2018, Nanning'’s overall ecological risk level was not high, but there were
significant differences in the spatial distribution of each level of ecological risk (Figure 7).
The spatial distribution of each ecological risk level was centered in the high-risk areas
and expanded to the low-risk ones according to the ecological risk level. The high-risk
areas are mainly distributed in central Wuming, northern Binyang, central Hengzhou,
and northern Yongning. The low-risk areas are mainly distributed in Mashan, the west
of Longan, and the junction of Xingning, Qingxiu, and Binyang counties in the middle
of Nanning. The high-risk and medium-high-risk areas showed a significant decreasing
trend, mainly distributed in the Xixiangtang, Jiangnan, Liangqing, and Yongning areas in
the southwest of Nanning.



Remote Sens. 2023, 15, 1304

13 of 21

80

- Low-medium-risk - Medium-risk CI Medium-high-risk

B ik
Figure 7. Spatial distribution of ecological risk levels in Nanning.

3.2.3. Distribution of Ecological Risk Land Types

The area distribution of different LU types in each level of ecological risk was different
in Nanning (Figure 8). The arable land was mainly distributed in the medium-high-risk and
high-risk areas. Compared with 2010, in 2018, the arable land area in the medium-high-risk
and high-risk areas decreased by 65.84 km? and 478.25 km?, respectively, while the arable
land area in other ecological risk levels showed an increasing trend. The overall ecological
risk in woodland and grassland is low, and the proportion of woodland and grassland
areas distributed in high-risk areas is small. In 2000, the water area was mainly distributed
in the high-risk area, while in 2018, it was mainly distributed in the medium-high-risk area.
In 2018, the main distribution area of construction land decreased from medium-high-risk
in 2000 to medium-risk. Compared with 2010, in 2018, the unused land area in the high-risk
areas increased by 0.66 km?. In general, the high-risk water region area increased while the
area of other LU types in the high-risk regions decreased continuously.
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Figure 8. Distribution of ecological risks by land-use types. Note: 1, 2, 3, 4, and 5 represent low-risk,
low-medium-risk, medium-risk, medium-high-risk, and high-risk, respectively. The corresponding
year of ecological risk for each land use type is 2000, 2010, and 2018 from left to right.

3.3. Ecological Risk Simulation and Prediction
3.3.1. Ecological Risk Prediction in Different Scenarios

Compared with 2018, the ecological risks under the two scenarios in Nanning in
the year 2036 were still dominated by low-medium and medium risks, but the areas of
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ecological risks at each level were different (Table 5). Compared with 2018, the medium-
high-risk region areas decreased by 486.13 km? in 2036 under the NDS, while the other
region areas increased, and the low-risk and high-risk region areas increased significantly
by 293.57 km? and 114.58 km?, respectively. In 2036, the ecological risk of Nanning
was improved under the EPS. The medium-high and the high-risk region areas showed
a decreasing trend, reducing to 430.47 km?, while the low, low-medium, and medium
risk region areas increased. In 2036, the ecological risk of Nanning under the EPS was
significantly lower than that under the NDS, and the area of the medium-high risk and
high-risk regions decreased by 58.92 km?.

Table 5. Comparison of ecological risk level area under different scenarios (km?).

Year Scenario Low-Risk Low-Medium-Risk Medium-Risk ~ Medium-High-Risk High Risk
2018 3841.10 5670.81 5249.15 4689.27 2600.53
NDS 4134.67 5680.27 5316.57 4203.14 2715.11
2|
036 EPS 4049.74 5786.77 5353.92 4297.75 2561.57
NDS 293.57 9.46 67.42 —486.13 114.58
2018-2036
EPS 208.64 115.96 104.77 —391.52 —38.95

The spatial distribution pattern of overall ecological risks in 2036 was roughly similar
to that in 2018 under the two scenarios (Figure 9). Compared with the ecological risk in
2018, under the NDS, the high-risk region area in central Wuming and north Yongning
decreased in 2036, while the high-risk region area in Hengzhou showed an increasing trend.
Under the EPS, the high-risk region areas in central Wuming, north Yongning, and north
Jiangnan decreased. When comparing the ecological hazards under the two scenarios for
Nanning in 2036, the ecological risk under the NDS peaked at 13.11, while the ecological
risk under the EPS peaked at 13.05. Under the NDS, the area of the high-risk regions was
much larger than it was under the EPS.

Natural development Ecological protection

’

) v
\:l Low- risk - Low-medium-risk - Medium-risk |:]Medilm1-high-risk - High-risk

Figure 9. The ecological risk prediction for Nanning in 2036.

3.3.2. Spatial Changes in Ecological Risks under Different Scenarios

From 2018 to 2036, the changes in the ecological risk level in the two scenarios in Nanning
were basically the same in general location, but the area changes differed (Figure 10). Under
the two scenarios, the ecological risk level improvement areas were mainly distributed
at the junction of Xixiangtang, Jiangnan, Liangqing, Yongning, Qingxiu, and Xingning
districts. In contrast, the ecological risk level deterioration areas were scattered to the north
and south of Nanning. Among them, the area of ecological risk grade improvement under
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the NDS and EPS were 1832.85 km? and 1524.15 km?, respectively. In comparison, the
area of ecological risk grade deterioration under the NDS and EPS were 1253.36 km? and
533.7936 km?, respectively.

Natural development Ecological protection

-:-:_KM
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Figure 10. Changes in ecological risk in Nanning under different scenarios from 2018 to 2036.

4. Discussion
4.1. Analysis of the Impact of Scale Effect on Ecological Risk

Scale has always been the focus and difficulty of researching geography, ecology, and
related disciplines. Scale effects run through many research fields, such as landscape pat-
terns and processes, ecosystem structure and function, and topographic characteristics [51].
Different disciplines have different understandings of the scale concept and content. Land-
scape ecological risk research divides scale into spatial granularity and extent, considering
its typical spatial heterogeneity and scale dependence. Current research focuses on the
granularity of the landscape pattern index response and less on the two aspects of spatial
granularity and extent to determine the best measure of landscape ecological risk. Thus,
this research uses the granularity of the response curve to determine the best landscape
pattern index granularity, based on the fitting results of ecological risk area semi-variance
functions, to choose the best spatial extent and to determine the best measure of ERA in
Nanning.

The sensitivity of different landscape pattern indices to changes in spatial granularity
in different regions varies. According to the coefficient of variation of landscape pattern
indices to grain size changes in Nanning, the SPLIT, SHAPE_MN, and CONTAG indices
have high sensitivity to the changes in spatial grain size, which is due to the changes
in data raster cells caused by the changes in spatial scale. The shape and aggregation
degree in the plaque changes significantly. With the spatial granularity change, the internal
structure of the landscape and its pattern index change accordingly [52]. The increase
in spatial granularity changes the complexity of landscape patch boundaries, leading to
the aggregation of some patches and the gradual merging of small patches with other
patches, resulting in the reduction in the number and aggregation of patch boundaries and
the simplification of patch shape [53]. Different landscape pattern indices have different
responses to spatial grain size changes, so it is very difficult to find an optimal spatial grain
size conforming to all indexes. In practical application, we balance the sensitivity of each
index to spatial grain size to determine the optimal spatial grain size. Based on the turning
point and gentle interval of each landscape pattern index grain size response curve, 120 m
is identified as the inflection point of most landscape pattern response curves and is in
the moderate interval. Therefore, this study believes 120 m is the best landscape spatial
granularity in Nanning.

The appropriate spatial extent can directly reflect the changed law of regional land-
scape patterns and improve the accuracy and scientific validity of ERA. Comprehensively
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considering the turning and extreme points of the parameters in the semi-variogram fitting
model of ecological risks in Nanning city under different amplitudes, it can be seen that
when the space range is 7 km, C0, and CO + C is a significant turning point and 7 km is
the minimum. This shows that 7 km is a random part of the minimum point of spatial
heterogeneity, and the ecological risk of variations in the amplitude are stable. At the same
time, the fitting accuracy of the ecological risk semi-variogram in Nanning was highest
when the spatial amplitude was 7 km, so this study believed that 7 km was the best spatial
extent in Nanning.

4.2. Analysis of Temporal and Spatial Changes in Ecological Risk

As a typical landscape garden city in China, Nanning is rich in mountains, forests,
fields, lakes, and grass resources, but the rapid development of urban construction has led
to many ecological contradictions and problems. There are pronounced regional differences
in the results of the ERA in Nanning, which is due to the obvious differences in natural
conditions and human activities in different regions. Different natural environments
determine human activities, and human activities, in turn, change the regional natural
environment. The woodland area of Nanning is wide, concentrated in the northern and
marginal areas of the city, where the temperature is suitable, the precipitation is abundant,
the vegetation coverage is high, and the ecological risk is relatively low. The seven districts
under the jurisdiction of Nanning have high temperatures, low precipitation, and flat
terrain. The area has a large population, a high GDP, and frequent human activities, and
the construction land is distributed chiefly here, so the ecological risk is relatively high.
Water resources in Hangzhou and Binyang are widely distributed, but the water quality is
poor, the pollution problem is serious, and the scattered distribution of construction land
in this area leads to a higher ecological risk.

The change in LU and human activities influences spatial and temporal changes in
ecological risk. From 2000 to 2018, the ERA of Nanning was significantly improved, and the
area of high-risk and medium-high-risk areas decreased significantly, totaling 1272.72 km?,
mainly distributed in the seven districts under the jurisdiction of Nanning, which was
related to the change of construction land in this region. From 2000 to 2018, the construction
land expanded significantly, reaching 336.33 km?, and its fragmentation and separation
indexes decreased significantly (Table 6), indicating that the continuous and contiguous
development of construction land enhanced the degree of aggregation, increased internal
stability, and gradually reduced ecological risk. In recent years, Nanning has carried out
a series of ecological construction and ecological restoration work, such as remediation
of black and smelly water, soil pollution prevention and control, and rural environment
treatment, which have achieved remarkable results and improved the ecological risk of
Nanning to a certain extent.

Table 6. Landscape pattern indices for different land-use types.

Type Year NP C; DO; S; E; F;
2000 5584 0.0074 0.2945 0.0731 0.0852 0.1905
Arable land 2010 5629 0.0075 0.2971 0.0739 0.0853 0.1905
2018 5764 0.0078 0.2946 0.0764 0.0857 0.1905
2000 3436 0.0029 0.3647 0.0373 0.0856 0.0952
Woodland 2010 3424 0.0029 0.3642 0.0373 0.0855 0.0952
2018 3400 0.0029 0.3623 0.0373 0.0851 0.0952
2000 3161 0.0234 0.1216 0.3094 0.1288 0.1429
Grassland 2010 3212 0.0243 0.1212 0.3184 0.1319 0.1429
2018 3216 0.0247 0.1203 0.3238 0.1335 0.1429
2000 2372 0.0366 0.0872 0.5583 0.2032 0.2381
Waters 2010 2428 0.0391 0.0872 0.5895 0.2138 0.2381
2018 2389 0.0387 0.0864 0.5882 0.2131 0.2381
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Table 6. Cont.

Type Year NP Ci DO,- Si Ei Fi
2000 4712 0.0569 0.1280 0.6163 0.2390 0.0476
Construction Land 2010 4706 0.0507 0.1299 0.5490 0.2160 0.0476
2018 4774 0.0410 0.1357 0.4411 0.1800 0.0476
2000 3 0.0131 0.0004 5.6210 1.6929 0.2857
Unused land 2010 5 0.0259 0.0004 8.6106 2.5962 0.2857
2018 8 0.0215 0.0008 5.6351 1.7014 0.2857

Note: NP denotes the number of patches; C; represents the landscape fragmentation index; DO; indicates the
landscape dominance index; S; denotes the landscape separateness index; E; stands for the landscape disturbance
index; and F; denotes the landscape vulnerability index. The calculation formula of each landscape pattern index
and its ecological significance can be found in [49].

4.3. Ecological Risk Prediction and Control

The rapid development of urbanization significantly affects the spatial distribution
of regional land, and different LU types convert into each other, resulting in changes in
ecological risks. In 2036, the spatial distribution and changing trends in ecological risks
in Nanning differed under various scenarios. Compared with the ecological risks in 2018,
the area of high-risk regions increased under the NDS, while the area of high-risk regions
decreased under the EPS, indicating that the EPS was more conducive to reducing the
ecological risks in Nanning. It is worth noting that in 2036, the NDS of Nanning’s ecological
risk level improvement and deterioration is greater than the ecological protection area. This
is because the NDS follows the law of LU change and does not impose artificial control
factors and various LU type transformations, so the areas of improvement and deterioration
fluctuate considerably.

Based on the current situation of the ecological environment of Nanning, combined
with the ERA and the prediction results, and given the high-risk and medium-high-risk
areas, we suggest strictly limiting the expansion of urban construction land disorder,
focusing on the improvement of black and odorous water bodies and ecological restoration
in the Youjiang, Yongjiang, Yujiang and other river basins, establishing a cultivated land
protection system, and vigorously promoting land consolidation and high-standard basic
farmland construction. For medium-risk areas, we suggest rationally developing and
constructing the unused land, reducing the degree of fragmentation and separation of
unused land, increasing forest and grass coverage, and strengthening the stability of
ecosystem structure and function. For the low-risk and low-medium-risk areas, we suggest
continuing to conserve forest resources such as Qingxiu Mountain and Daming Mountain
and building an ecological barrier in the northern region of Nanning. In general, ecological
risk aversion and ecological environment governance in Nanning should be controlled
according to the regional characteristics. In addition, we suggest delineating the ecological
protection red line and reasonably planning urban space, agricultural space, and ecological
space.

4.4. Study Shortcomings and Recommended Process Improvements

Due to the complex dynamic characteristics and spatial heterogeneity in ecological
processes, any scale will be affected by the interaction of social, economic, or decision-
making factors at other scales, so there are often many uncertainties in the scale of ecological
risks [54]. In the ERA, the division of risk plots reduces the scale effect to a certain extent,
but the risk plots segment the spatial continuity of the original natural landscape. Therefore,
future research can explore the spatial and temporal variation characteristics of ecological
risks at multiple scales. Secondly, when the PLUS model was used in this study to simulate
and predict ecological risks, no restricted conversion areas were added due to the data
acquisition situation. Therefore, in subsequent studies, natural reserves, scenic spots, and
restricted development zones in Nanning should be set aside as restricted conversion areas.
At the same time, in the simulation and prediction of future ecological risks, only the
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multi-scale effects of LU were taken into account without considering the scale effects of
other driving factors, which will inevitably affect the results of ecological risk prediction.
Therefore, future studies must take into account the uncertainties introduced by the drivers
of varying scales when interpreting the research results. In addition, the current research
on ecological risk optimization and management is relatively weak, and a scientific and
mature framework system has not yet been formed.

5. Conclusions

Based on 30 m LU data, this study selected the best scale of ERA in Nanning from
the perspective of spatial granularity and extent. It utilized the LU transfer matrix and
ERA model to analyze the spatio-temporal variation characteristics of LU and ecological
risk in Nanning under the best scale. At the same time, the PLUS model was used to
simulate and predict the ecological risks of Nanning in 2036 under multiple scenarios and
put forward ecological protection opinions, providing a reference for evaluating, avoiding,
and predicting ecological risks in landscape garden cities. The conclusions are as follows:

(1) SPLIT, SHAPE_MN, and CONTAG indices were sensitive to spatial granularity
changes. The spatial granularity of 120 m was the inflection point of each land-
scape pattern’s grain size response curve. When the spatial extent was 7 km, the
semi-variance function fitting model of landscape ecological risk had the best effect.
Therefore, the spatial granularity of 120 m and the spatial extent of 7 km make the
best scale for ERA in Nanning.

(2) From 2000 to 2018, the area of construction land in Nanning increased significantly,
mainly from arable land and woodland. The high-risk areas were mainly distributed
on unused land, construction land, and waters. From 2000 to 2018, the ecological risk
of Nanning was improved, and the improvement areas were mainly concentrated in
the seven districts under the jurisdiction of Nanning.

(38) The temporal and spatial variation characteristics of ecological risk in Nanning under
different scenarios in 2036 are different. The overall ecological risk in the EPS was
lower than that in the NDS, and the high-risk region’s area was 153.54 km? less than
that of the NDS.

Our research indicates that the variation in spatial scale will affect the accuracy of
landscape ERA. There are evident spatial differences in ecological risks in different regions,
and targeted protection should be carried out for regions with different ecological risk
levels. In addition, our study provides a framework for ERA and prediction in developing
countries and landscape cities.
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