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Abstract: Autonomous driving has received enormous attention from the academic and industrial
communities. However, achieving full driving autonomy is not a trivial task, because of the complex
and dynamic driving environment. Perception ability is a tough challenge for autonomous driving,
while 3D object detection serves as a breakthrough for providing precise and dependable 3D geometric
information. Inspired by practical driving experiences of human experts, a pure visual scheme takes
sufficient responsibility for safe and stable autonomous driving. In this paper, we proposed an anchor-
free and keypoint-based 3D object detector with monocular vision, named Keypoint3D. We creatively
leveraged 2D projected points from 3D objects‘ geometric centers as keypoints for object modeling.
Additionally, for precise keypoints positioning, we utilized a novel self-adapting ellipse Gaussian
filter (saEGF) on heatmaps, considering different objects’ shapes. We tried different variations of
DLA-34 backbone and proposed a semi-aggregation DLA-34 (SADLA-34) network, which pruned
the redundant aggregation branch but achieved better performance. Keypoint3D regressed the yaw
angle in a Euclidean space, which resulted in a closed mathematical space avoiding singularities.
Numerous experiments on the KITTI dataset for a moderate level have proven that Keypoint3D
achieved the best speed-accuracy trade-off with an average precision of 39.1% at 18.9 FPS on 3D
cars detection.

Keywords: three-dimensional object detection; monocular vision; anchor-free; keypoint-based; au-
tonomous driving

1. Introduction

Since 2012, due to the rapid development of deep neural network and the continuous
evolution of intelligent vehicles, autonomous driving [1] has ushered in unprecedented
prosperity. Meanwhile, the development of object detection algorithms and the Internet
of Vehicles (IoV) [2] are promoting the upgrades of traffic remote sensing technology [3].
Traditional remote sensing methods [4], such as satellite-borne remote sensing (SRS) and
airborne remote sensing (ARS), depend on high-cost and large-scale specialized equipment
to monitor traffic and road information in a wide range of areas [5]. Nevertheless, the
integration of multiple technologies is an inevitable trend of remote sensing technology in
the future. Intelligent vehicles can be leveraged as monitoring nodes to precisely detect
cars, pedestrians, and road information. The updated remote sensing system can receive
and fuse the information collected by each vehicle through the IoV technique to realize a
large-scale and real-time dynamic updating remote sensing system for complex traffic and
road information [6].

Advanced traffic and road remote sensing systems depend on outstanding autonomous
driving technology. Until now, deep learning algorithms and sensing equipment have
achieved huge breakthroughs, which have promoted the rapid development of autonomous
driving. The evolution of automobiles is turning towards robotization and intelligentization
directions [7]. Autonomous driving can be divided into two parts: the perception and
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reaction systems [8]. The perception system receives detected information from sensors and
tries to understand and perceive traffic scenes through Artificial Intelligence (AI) means.
The reaction system is responsible for controlling and driving vehicles according to the
perception results of dynamic traffic scenes. The high-precision and high-efficiency per-
ception of around environment is an indispensable requirement for autonomous vehicles.
Three-dimensional object detection is of great importance for 3D perception of the world
and lets vehicles measure 3D scales, positions, and poses of nearby cars, cyclists, and
pedestrians. Three-dimensional object detection in autonomous driving heavily depends
on various sensors, such as cameras, light detection and ranging (LiDAR), radars, and
inertial measurement units (IMU) [9].

Mainstream 3D detectors can coarsely be divided into LiDAR- [10–12] and camera-
based [13–16] methods. The characteristic of cameras and LiDAR devices equipped on
autonomous vehicles differs. To be more specific, the greatest strength of LiDAR is the high-
precision 3D geometric point clouds information measured by time of flight (ToF) principle.
However, the manufacturing process of LiDAR is not mature enough for all-weather
operations and depends heavily on manual calibration, thereby resulting in high prices.
Moe over, existing LiDAR equipment is limited by number of laser beams for emission
and reflects extremely sparse point clouds from distant objects. Mechanical LiDAR sensors
can only provide low refresh rates, due to the rotating laser transmitters. LiDAR as an
active sensor can actively send a laser pulse and measure the backscatter reflected to the
sensor. Nevertheless, in autonomous driving task, many LiDAR devices equipped on
different vehicles would emit multi-beam of lasers and waiting for the reflected signals,
which may cause crosstalk of lasers due to the limitation of laser wave band [17]. Crosstalk
makes LiDAR receive the laser beams emitted by another LiDAR. The received crosstalk
signals have a critical impact on the safety of autonomous driving. Cameras as passive
sensors use naturally emitted lights from the sun, with no risk of crosstalk. Due to the
experience accumulated in many professional applications, on-board cameras perform well
under all-weather conditions and acquire texture-rich and high-resolution colorful pixels
with high refresh rates. Additionally, human experts drive vehicles heavily relying on
vision systems without professional sensors such as LiDAR. Inspired by practical driving
experience of human experts, pure vision perception systems are reliable and capable
of taking the responsibility of autonomous driving [18]. Therefore, developing a high-
precision and low-latency 3D detector with vision-based methods for perception systems is
of great significance for practical applications.

To date, the most popular object detection networks, whether single-stage, such as
RetinaNet [19], SSD [20], YOLO series [21–24], or two-stage networks, such as R-CNN
series [25–27], generally depend on preset anchor boxes or region proposal networks (RPN)
for efficient and accurate detection performance. Single-stage networks adopt the strat-
egy of preset anchors to replace RPN to guarantee competitive detection accuracy with
two-stage networks, simultaneously maintaining a fast inference speed. Nevertheless, the
anchors proposal strategy enumerates a list of redundant anchor boxes for subsequent
classification and regression operations, which is nonetheless wasteful of computing re-
sources. Therefore, presetting anchors strategy is also an inefficient design for real-time
detection. Keypoint3D adopted an anchor-free design, thereby removing redundant anchor
box proposals, and further reducing the complexity of the network structure. To make up
for the lost anchors, we leveraged one keypoint to take the responsibility of anchoring one
object for the geometric constraint on objects positioning. In other words, the proposed
anchor-free network does not anchor an object with several 2D or 3D anchor boxes, but
with a single keypoint instead. Therefore, the 3D detection pipeline proposed in this paper
does not need the Non Maximum Suppression (NMS) module for selecting the optimal
bounding boxes at the back-end processing stage. The anchor-free design of Keypoint3D
realized a completely end-to-end differentiable network with an extremely simplified struc-
ture, and achieved the best speed-accuracy trade-off in state-of-the-art 3D detectors with
monocular vision.
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The contributions of this paper can be summarized as follows:

1. This paper proposes an anchor-free and keypoint-based 3D object detection framework
with a monocular camera, namely Keypoint3D. We projected 3D objects’ geometric
center points from world coordinate system to 2D image plane, and leveraged the
projected points as keypoints for geometric constraint on objects localization. Consid-
ering the difficulty of keypoints positioning on objects with high length-width ratios,
we proposed self-adapting ellipse Gaussian filters (saEGF) to adapt to various object
shapes. Keypoint3D also introduced a yaw angle regression method in a Euclidean
space, resulting in a closed mathematical space and avoiding singularities.

2. We tried various variations of DLA-34 backbone and improved the hierarchical deep
aggregation structure. We pruned redundancy aggregation branches to propose a semi-
aggregation DLA-34 (SADLA-34) network and achieved better detection performance.
Deformable convolution network (DCN) is adopted to replace the traditional CNN
operators at the aggregation structure of SADLA-34 backbone for a great improvement
of receptive field and enhance robustness to affine transformations.

3. Numerous experiments on the KITTI 3D object detection dataset have proven the
effectiveness of our proposed method. Keypoint3D can complete highly accurate 3D
object detection of cars, pedestrians, and cyclists in real-time. Additionally, our method
can easily be applied to practical driving scenes and achieved high-quality results.

This paper is structured as follows. Section 2 surveys the 3D detection frameworks
with different sensors and network structures. Section 3 illustrates the whole pipeline archi-
tecture and original points of our proposed Keypoint3D. The proposed work is evaluated
as per the challenging KITTI benchmark and compared with the state-of-the-art works in
Section 4. Section 5 provides a comprehensive discussion about the evaluation results of
performance. Section 6 provides a brief conclusion of our proposed Keypoint3D.

2. Related Work

A crowd of excellent 3D object detectors have been proposed in recent years. This
section surveys previous state-of-the-art 3D detectors, considering different sensors and
network structures. From the point view of sensors, 3D object detection frameworks can
be divided into LiDAR-, camera-based, and multi-sensor fusion methods in Section 2.1.
For single-stage networks, 3D object detection algorithms can be analyzed in the terms of
anchor-based and -free methods in Section 2.2.

2.1. Methods Using Different Sensors

The data characteristic of images and points varies a lot. Specifically, images can
provide dense pixels and texture-rich semantic information with color channels. The pixels
inside are regularly arranged in matrices with three channels, which can easily be processed
using 2D convolution operators with a mainstream object detection pipeline. Nevertheless,
point clouds from LiDAR are much more sparse, irregular, and unordered, without color
information. The density distribution of point clouds is also of great non-uniformity,
considering the intensity of lights reflected from different objects [28]. Therefore, the
tremendous difference between images and point clouds causes 3D detectors to be divided
into LiDAR- and image-based methods. Moreover, LiDAR and camera sensors fusion
methods for 3D object detection are also of great significance to improve the performance
of 3D detectors.

2.1.1. Lidar-Based Methods

Most 3D object detectors using LiDAR tend to achieve higher detection accuracy than
image-based methods. LiDAR-based methods take full advantage of 3D point cloud geo-
metric information in various ways. Simony et al. [29] utilized the 2D detector YOLOv2 [21]
to build a 3D object detection framework, Complex-YOLO, achieving an excellent inference
speed for real-time 3D detection in autonomous driving scenes. Complex-YOLO arranged
3D point cloud data into a 2D image structure and predicted 3D properties of vehicles,
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pedestrians, and cyclists in bird’s eye view (BEV). In many directly point cloud processing
methods, PointNet [30] and PointNet++ [31] served as basic classification networks to en-
able point clouds processing directly. Shi et al. [10] proposed a two-stage 3D detector called
PointRCNN, which uses PointNet++ [31] to process raw 3D point cloud data from coarse to
fine. Through classifying 3D geometric points into foreground and background categories,
the stage-one network generated a number of high-quality 3D bounding box proposals.
The stage-two network refined 3D boxes in a canonical coordinate system by combining
semantic and local spatial features. Yang et al. [11] also presented a two-stage 3D object
detection framework, namely sparse-to-dense 3D object detector (STD). This work used
PointNet++ [31] as the backbone for 3D detection. The novelties are a new spherical anchor
and 3D intersection over union (IoU), achieving high recall and localization accuracy. This
method outperforms other state-of-the-art methods, especially on a hard dataset, but the
inference speed is only 10 frames per second (FPS).

2.1.2. Camera-Based Methods

Camera-based 3D detection methods can be divided into two types, either monocular
or binocular vision. The 3D object detection with monocular vision is a more challenging
task due to the loss of reliable 3D geometric information during imagery projection to a
single image. Based on the scene understanding of 2D images, Qin et al. [32] proposed
a single-stage and unified network, MonoGRNet, through geometric reasoning on 2D
images and the predicted depth dimension. MonoGRNet proposed a novel instance depth
estimation method for predicting the center point depth of objects with sparse supervision.
Chen et al. [33] proposed a two-stage network for 3D detection, Mono3D. The crucial
point of Mono3D is the proposal generation network that generates a list of classified
candidate object proposals. The second stage is responsible for refining high quality 3D
boxes. Brazil et al. [34] improved the region proposal network of two-stage 3D detection
algorithms. M3D-RPN used the geometric transformation of 2D and 3D views, generating
well-known and powerful features for high-quality 3D proposals.

Stereo cameras provide pairs of images, which could be used for calculating depth
information based on the disparity of two cameras. Nevertheless, the disparity estimation is
extremely computationally expensive. The 3D object detectors with stereo vision can hardly
satisfy the demand for applications with high timeliness, such as autonomous driving.
Considering the efficient 3D detection with binocular images, Liu et al. [35] proposed,
YOLOStereo3D, a lightweight single-stage stereo 3D detection network with 2D detection
methods. This work fused the advantages of 2D and 3D detection pipelines and introduced
a high-efficiency stereo matching module. YOLOStereo3D was trained and tested with a
single graphics processing unit (GPU) and could achieve more than 10 FPS. Sun et al. [15]
proposed Disp R-CNN to build a novel instance disparity estimation network (iDispNet)
to estimate depth values only for objects of interest. Disp R-CNN also made up for the lack
of disparity annotations with generated pseudo-ground-truth labels. This work surpassed
the previous outstanding methods by 20% in terms of 3D detection average precision.

2.1.3. Multi-Sensor Fusion Methods

To combine different advantages of sensors, multi-sensor fusion methods play an
important role in balancing different characteristics of different sensors. Multi-sensor fusion
methods can be divided as early, deep, and late fusion. PointPainting [36] prepared the
fused “painted points” at the early stage, and then made fusion process. The points painting
method firstly performed semantic segmentation processing on images and projected the
segmented semantics information onto point clouds. Then, the “painted” point clouds were
sent into the 3D object detector to perform final regression and classification operations.
Chen [37] proposed a two-stage network of 3D detection framework called MV3D. The
first-stage network is a region proposal network (RPN) to generate regions of interest (ROI)
for subsequent processing. The second-stage network is a region-based fusion network
to apply a deep fusion of point clouds data in BEV, in front view (FV), and images data.



Remote Sens. 2023, 15, 1210 5 of 22

MV3D comprehensively analyzed the impact of different fusion stages to the detection
results. MV3D finally made deep data fusion operations in different network layers and
proved the effectiveness of deep fusion method. CLOCs [38] is just a typical late fusion 3D
object detector. CLOCs makes late fusion processing on the combined output candidates of
any 2D and 3D detectors, before the non-maximum suppression (NMS) stage. The utilized
detectors are trained to leverage their geometric and semantic consistencies to produce
more accurate 3D and 2D detection results.

2.2. Methods Using Different Networks

Anchors help single-stage 3D detectors to achieve competitive detecting precision
with two-stage detectors. Anchors serve as the RPN to provide the region of interest (ROI)
for subsequent refinements. Nevertheless, anchor-based object detectors tend to enumerate
numerous potential objects’ boxes, greatly wasting computing resources. Anchor-free
detectors used other geometrical features to model objects in one-to-one correspondence,
avoiding invalid computation. Therefore, we surveyed the representative works consider-
ing the utilization of anchors here.

2.2.1. Anchor-Based Methods

Anchor-based frameworks usually set up a crowd of anchor boxes in advance, using
clustering algorithms, such as K-means [39]. All the presetting anchors will be divided into
positive and negative samples judged by the threshold value of IoU between the ground
truth and presetting anchor boxes. The extreme imbalance of positive and negative samples
leads to lower accuracy than two-stage models. YOLO series [21–24] are the representative
one-stage and anchor-based object detection pipelines. Complex-YOLO [29] just used
YOLOv2 [21] to build a 3D object detection framework. Complex-YOLO used clustering
methods to preset 2D anchor boxes as per the KITTI dataset and extended YOLOv2 to make
3D detection on the BEV point cloud maps, which achieved excellent inference speed.

Two-stage anchor-based object detectors such as R-CNN series [25–27] first used
RPN to generate numerous candidate boxes. Then, stage-two networks need to classify
proposal boxes with NMS and make refinements. Two-stage frameworks can acquire more
accuracy detection performance but also with a slower inference speed. Deep3Dbox [40]
proposed an outstanding 3D object detector using a two-stage model. The first-stage
network regressed 3D bounding box proposals containing 3D properties as candidates
for subsequent processing. Then the second-stage network refined the proposed anchor
boxes with geometric constraints of 2D bounding boxes to make a complete 3D detection.
Moreover, using Faster R-CNN [27], Deep Manta [41] presented a new coarse-to-fine
object proposal network to perform multi-task vehicle analysis, including 3D detection.
PointPillars [42], as a two-stage and anchor-based 3D detector, used PointNet to learn a
representation of point clouds organized in vertical columns (pillars). Then, a 2D CNN
backbone processed the encoded features, and a 3D detecting head was responsible for 3D
boxes regression.

2.2.2. Anchor-Free Methods

Anchor-free networks removed presetting anchors and fundamentally addressed the
extreme imbalance problem of positive and negative samples for single-stage pipelines.
CornerNet [43], as the beginning of anchor-free pipelines, focused on keypoints detection
with proposed heatmaps and modeled each object using a pair of keypoints. CornerNet in-
troduced corner pooling, a new type of pooling layer that helps the network better localize
the corners. The experiments on the MS COCO dataset [44] outperformed all state-of-the-art
single-stage detectors. To avoid the two keypoints pairing process, CenterNet [45] com-
pleted a multi-task detection by modeling objects with center points and using regression
methods for the left 2D and 3D detection properties. CenterNet performed competitively
with sophisticated multi-stage methods in real time. RTM3D [46] as an anchor-free 3D de-
tector, which detected nine keypoints of an object, including a center point and eight corner
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points, then used the geometric constraint methods for fine adjustment. RTM3D achieved
the real-time 3D detection performance (FPS > 24) using the monocular vision method.

3. Materials and Methods

In Section 3.1, we firstly introduce the data collection means and analyze the specific
utilization of the data in our study. In Sections 3.2–3.4, we demonstrate our proposed single-
stage and anchor-free 3D detection framework, Keypoint3D, for detecting cars, pedestrians,
and cyclists using a monocular camera. The overall structure is illustrated in Figure 1,
which consists of a keypoint detection module, a backbone network, and a 3D detection
head. Finally, the loss functions of our model are also introduced in Section 3.5.

Figure 1. Architecture of the proposed 3D object detection pipeline. A single image serves as input
of this framework and will firstly be processed in the SADLA-34 backbone for feature extraction.
The outputting heatmaps will be used to detect keypoints of objects, according to the ground truth
generated by saEGF module. The predicted keypoints will be inputted into 3D detection head to
generate 3D bounding boxes with other regressed 3D properties. Additionally, 2D object detection
can also be implemented in this pipeline.

3.1. Data Collection and Analysis

Since 2012, numerous public datasets for autonomous driving tasks have been pub-
lished, which has greatly promoted the rapid development of 3D object detection frame-
works. We surveyed several frequently-used mainstream public datasets for autonomous
driving, as is shown in Table 1. In terms of the number of scenes, classes, and frames,
nuScenes [47], H3D [48], and Waymo [49] datasets all provide much more abundant an-
notated data than KITTI [50]. Nevertheless, KITTI dataset is of great significance to 3D
object detection algorithms in autonomous driving. Moreover, most outstanding 3D object
detectors were evaluated with KITTI dataset, which makes it possible for the comparison
between mainstream works and our proposed method. Therefore, we utilized KITTI dataset
for training and evaluation.

Table 1. A summary of public datasets on 3D object detection in autonomous driving.

Dataset Scenes Classes Frames 3D Boxes Year

nuScenes [47] 1000 23 40K 1.4M 2019
H3D [48] 160 8 27K 1.1M 2019

Waymo [49] 1150 4 200K 112M 2020
KITTI [50] 50 8 15K 200K 2012
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In this study, we collected the research data from two sources, one is the public
KITTI dataset for training and evaluation, and the other is a real scenes driving video
captured with a monocular camera for practical application. The public KITTI 3D detection
dataset provides 7,481 samples for training, containing image sets from 4 cameras and
corresponding point cloud samples from a 64-beam Velodyne laser scanner [50]. We
followed the frequently used training and validation splitting method in MV3D [37], and
divided training samples into train split (3,712 samples) and val split (3,769 samples) for a
fair comparison with other state-of-the-art methods. Our proposed Keypoint3D is aimed
for a 3D detector of multi-category objects with monocular vision method. Therefore, we
only select data source of one monocular camera from the KITTI data acquisition system.
However, in the data annotation stage, 3D annotated ground-truth labels strongly depend
on the 3D geometric data of LiDAR. Therefore, point cloud data is indispensable at the
data acquisition stage. Our pure vision based 3D detection system only requires monocular
images as input for feature extraction with 3D annotation labels supervising. For practical
applications, we collected the real scenes driving videos using a monocular camera in
Chengdu, China. The self-collected data presents the real traffic scenes of a driving vehicle
equipped with a monocular camera, containing car, pedestrian and cyclist categories. We
conducted numerous real-time 3D object detection experiments on different driving scenes
data to evaluate of the generalization performance for downstream applications of our
Keypoint3D.

3.2. Keypoint Detection

The anchor-free design of our pipeline eliminates complex and redundant 3D anchors
presetting at the data pre-processing stage. For the competitive detection accuracy with
anchor-based algorithms, we utilized one keypoint to model one object for geometric
positioning constraint instead of massive anchor boxes. To be more specific, we selected
the projected 3D central point of an object as the keypoint, taking the hassle out of sorting
for multiple keypoints. Heatmaps generated from the backbone took the responsibility for
positioning keypoints with classification method. For precise keypoints positioning, we
designed a self-adapting ellipse Gaussian filter (saEGF) to process heatmaps in order to
adapt for different objects’ shapes.

3.2.1. 3D Geometric Keypoint Projection

According to the principle of optical imagery, the real 3D world is mapped and
condensed into 2D image planes. However, 3D geometric information is severely lost
at the depth dimension during imagery projection. Considering the ground truth labels
provided by training data, object n in the image can be marked by (xn

1 , yn
1 , xn

2 , yn
2 ), and cn

for objects regression and classification, respectively. As we can see in Figure 2, the former
anchor-based methods generally used 2D anchor boxes (xn

2 − xn
1 , yn

2 − yn
1 ), or 3D anchor

boxes (w, h, l) for preset proposals. Our proposed anchor-free method leveraged keypoints
to model objects for subsequent detection, without adding redundant anchor boxes with
additional properties. Therefore, keypoints as the foundation of the entire system are
of great significance, considering subsequent depth estimation and objects’ localization.
Unlike the two keypoints proposed in CornerNet [43], we select only one keypoint in our
pipeline to simplify the keypoints classification work to a great extent. The 2D center
point kn

2D = (
xn

1+xn
2

2 , yn
1+yn

2
2 ) and the projected 3D geometric center point kn

3D = (xn
3D, yn

3D)
are hardly at the same position, which makes great difference for objects detection. For
3D tasks, we instinctively select the 3D geometric center point Kn

3D = (Xn
3D, Yn

3D, Zn
3D)

in the world coordinate system to anchor object n. The 3D keypoints Kn
3D in the world

coordinate system are projected to 2D image plane as kn
3D, via the transformation matrices

of camera intrinsics K3×4 and extrinsics R3×3, T3×1. K3×4 denotes the inherent parameters
inside cameras, while R3×3 and T3×1 represent the rotation and translation transformations,
respectively. The transformation from 3D to 2D keypoint is shown in Equation (1). zc
represents the depth value from the camera to objects.



Remote Sens. 2023, 15, 1210 8 of 22

zc

x3D
y3D

1

 = K3×4

[
R3×3 T3×1

0 1

]
X3D
Y3D
Z3D

1

 (1)

Figure 2. Keypoints mapping from 3D to 2D space. The red and blue dots denote the 2D center point
and the projected keypoint from 3D space, respectively.

3.2.2. Heatmap

Images shot by a monocular camera are first resized into the unified width W and
height H for convenience of network processing. The heatmaps are generated by the
backbone network, and take the responsibility for keypoints localization. Keypoint3D is
aimed as a multi-category 3D object detector. Therefore, heatmaps should be designed to
contain three additional channels for detecting pedestrians, cyclists, and cars, respectively.
In heatmaps, keypoints are responsible for modeling objects in one-to-one correspondence.
Therefore, for each object, the pixel value of keypoint can be marked as 1 and background
pixels are all marked as 0 in a heatmap. Hence, we splat all ground-truth keypoints onto a
heatmap Ĥ ∈ [0, 1]

W
4 ×

H
4 ×3, where W

4 and H
4 are the output heatmaps size, reduced by the

output stride 4. We utilized DLA-34 as the basic backbone network, which could produce a
high resolution of heatmaps for better performance on small objects detection.

3.2.3. Self-Adapting Ellipse Gaussian Filter

However, the contrast between 0 and 1 set in heatmaps is so sharp, which increases
the difficulty of keypoints localization. Therefore, we used the Gaussian filter to apply
a Gaussian blur processing, where the values of pixels around keypoints are gradually
varied from 1 to 0, while the traditional methods [43,45] make Gaussian blur processing
within a circle area around keypoints. Nevertheless, almost all the ground-truth boxes
on 2D images are rectangles, instead of squares. Thus, it is better to use the self-adapting
ellipse shapes to locate keypoints of objects, as shown in Figure 3. To be more specific,
(a) presents the traditional Gaussian filter to locate keypoints of objects, which definitely
performs worse on rectangular objects due to the restriction of algorithms. We improved
the traditional Gaussian algorithm to be more self-adapted for rectangular shape objects in
(b), which generally occupy the majority among all the objects. Different from the radius
of circles r, the proposed self-adapting ellipse Gaussian filter (saEGF) has two Gaussian
kernel radii a and b, which are equally scaled from the corresponding ground-truth boxes.
Then, we obtain the object size-adaptive standard deviation σa and σb. The self-adapting
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ellipse Gaussian kernel (saEGF) is defined in Equation (2), where p̃x and p̃y represent the
ground-truth keypoints; Yxyc denotes the saEGF kernel on the heatmap of channel c.

Yxyc = exp(− (x− p̃x)2

2σ2
a
− (y− p̃y)2

2σ2
b

) (2)

(a)

(b)

Figure 3. Comparison between two Gaussian filters. (a) Traditional Gaussian filter. (b) Self-adapting
ellipse Gaussian filter (saEGF).

3.3. Backbone
3.3.1. Semi-Aggregation Network Structure

Deep layer aggregation (DLA) [51] as an image classification network makes great
contribution to keypoints localization in our work. We applied the DLA-34 network as a
backbone to take full advantage of the extracted features across different layers, benefited
from the hierarchical information aggregation structure. The output size of the feature map
is downsampled 4 times compared to original images. The high-resolution outputs also
benefit to regression accuracy at the detection head stage. In this paper, we adjusted the
multi-layer iterative aggregation strategy and improved the DLA-34 backbone to achieve
better detection accuracy with a more simplified structure. As we can see in Figure 4, the
left side network is the original DLA-34 backbone structure. The right side is the DLA-34
network applied in CenterNet [45], which completely aggregates all four hierarchical layers
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for a deep fusion of all features. In this paper, we empirically proposed a semi-aggregation
DLA-34 backbone in the middle of Figure 4, named SADLA-34. SADLA-34 cuts the direct
connection with the deepest layer and the final outputting and fuses only 3 layers of
feature maps. The hierarchical structure extracted four different scales of features, where
shallow layers tend to preserve more semantic features and deep layers contain more
object position features. For 3D object detection, the deepest layer position-rich features
are beneficial to precise keypoints localization. Nevertheless, the final output from the
backbone diminished the effects of semantic features, which leads to a worse detection
performance for 3D detection.

(a) (b) (c)

Figure 4. Comparison between three DLA-34 networks with different aggregation strategies. (a) The
original DLA-34 Backbone. (b) The proposed semi-aggregation DLA-34 (SADLA-34) backbone.
(c) Full-aggregation DLA-34 backbone.

The modified SADLA-34 backbone structure is illustrated in Figure 5. After a base
layer, our proposed SADLA-34 can be divided into six levels from L0 to L5. L0 and L1 layers
share the same structure body, but the convolution stride is set as 2 in the L1 layer. From L2
to L5 layers, the convolution structure body starts to contain the downsampling layers and
the ResNet structure [52] to enlarge receptive fields and fuse multi-scale feature maps. In L3
and L4 layers, we also deepened the backbone network to extract more locating information
for keypoints. The hierarchical aggregation structure used iterative deep aggregation to
symmetrically increase the feature maps resolution and fused different hierarchical features
at different layers.

3.3.2. Deformable Convolution

Traditional neural networks used conventional convolution kernels to extract features
at areas of the same size. However, traditional convolution operations cannot counter
space affine transformations, such as translation, rotation, scaling, crop, and projection,
leading to an unstable detection performance. To extract effective features and achieve
more robust results from complex autonomous driving scenes, deformable convolution
network (DCN) [53] is adopted to our backbone network for a great improvement of
receptive field. As is shown in Figure 6, the 3× 3 DCN module adds 9 learnable offsets of
the deformable convolution kernel, which makes it possible for searching more valuable
features on a larger convolution scale. These additional learnable offsets can be updated
through gradient descent algorithm such as the parameters w and b in traditional CNN
operators. In addition, the new generated offsets variables will be arranged in feature maps
of 2N channels, waiting for the next DCN operation. DCN possesses a lightweight structure
that does not significantly increase the number of parameters and FLOPs in the model. We
used the 3× 3 DCN to replace traditional convolution operations at each upsampling layer.
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Figure 5. Semi-aggregation DLA-34 (SADLA-34) backbone structure. SADLA-34 can be divided into
L0–L5 levels and the iterative deep aggregation structure. We summarized each repetitive module
and represented as ’CBL’, ’DRR’, and ’RRR’, which can be further split into basic network units.

Figure 6. Illustration of 3× 3 deformable convolution. Each input feature map would generate 2N
channels in offset fields. N denotes the number of arrows in offsets. Each arrow contains 2 variables
for horizontal and vertical directions. w1–w9 are additional variables representing the offsets.

3.4. Detection Head

Keypoint3D is aimed for a multi-category 3D detection for autonomous driving
application. Additionally, we also embedded a 2D detection task into our pipeline for



Remote Sens. 2023, 15, 1210 12 of 22

acquiring more comprehensive information. We demonstrated the detection head for 3D
and 2D bounding boxes regression.

3.4.1. 3D Detection

The complete 3D object detection needs to acquire 3D localization, scale, and pose
information in the world coordination system. As Figure 7 shows, a 3D bounding box
contains 9 Degrees of Freedom (DoF) geometric information: 3 DoF for central point coordi-
nates, 3 DoF for cube scales, and 3 DoF for rotation angles around three axis. For unmanned
aircraft tasks, 3D detection needs to detect all abovementioned DoF. Nevertheless, an
autonomous vehicle does not have much parameter variations on pitch and roll rotation
angles, which could not cause significantly effects in real transportation scenes. Hence, we
only need to care about seven DoF for a normal autonomous vehicle and the 7-tuple vector
should be represented as (x3D, y3D, z3D, w, h, l, yaw) in 3D space. Therefore, we decide to
encode the 3D bounding box with a 8-tuple vector (δx2D, δy2D, dabs, w, h, l, yim, yre) in 2D
image coordinate system. Therefore, δx and δy denote the offsets for fine-turning of the
localization of keypoints; dabs and (w, h, l) represent the absolute depth at keypoint pixel
and 3D scales for bounding boxes, respectively. We regress yaw angles of 3D bounding
boxes in a Euclidean space and two parameters (yim, yre) are applied to calculate yaw
angles of objects with trigonometric functions.

Figure 7. Degree-of-freedom for 3D object detection. A full-scale 3D bounding box contains nine DoF,
while 3D detection in self-driving eliminates the roll and pitch angles.

Keypoints classification as the core detection element for the whole 3D bounding box
detection, the detection accuracy for keypoints determines the final detection performance.
For further refinement of keypoints detection, we additionally added two more channels
for heatmaps to regress the local offsets to correct the former detected keypoints (x̂3D, ŷ3D).
Our network outputs 2 feature maps for two offsets (δx3D, δy3D) of projected keypoints in
ko f f set ∈ Ĥ

W
4 ×

H
4 ×2. The equation for keypoints detection is shown below:[

x3D
y3D

]
=

[
x̂3D
ŷ3D

]
+

[
δx3D
δy3D

]
(3)

For 3D localization of keypoints, z3D needs to be achieved through depth prediction
method. Our network outputs a feature map for depth in d ∈ Ĥ

W
4 ×

H
4 ×1. Due to the

monocular camera, absolute depth value dabs cannot be received directly. Because the
absolute depth dabs is a variable from 0 to infinity, which is a extremely hard regression
task. Therefore, inspired by the geometric transformation of depth in Eigen et al. [54],
absolute depth dabs could be transformed to normalized depth dnorm in the range of [0, 1]
by Equation (4).

dnorm = 1/sigmoid(dabs)− 1 (4)
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With the depth value achieved, we could recover the 3D keypoints in the world
coordinate system from the projected keypoints in 2D image plane. The recovered keypoint
coordinates in 3D space could be used for the loss function calculation. We applied the
inverse transformation matrix to obtain the 3D coordinates in Equation (5), with the camera
intrinsics K3×4 and extrinsics R3×3, T3×1.

X3D
Y3D
Z3D

1

 =

[
R3×3 T3×1

0 1

]−1

K−1
4×3zc

x3D
y3D

1

 (5)

As for the anchor-free network structure, we have no presetting anchor boxes to
make bounding boxes refinement. Hence, the 3D detection head directly regressed the 3D
bounding box metrics, such as width w, length l, and height h. The network outputs three
channels of feature maps for 3D bounding box metrics in D ∈ Ĥ

W
4 ×

H
4 ×3.

The yaw angle regression method used in CenterNet [45] is too complicated and
proved not much effective for detection accuracy. Specifically, the yaw angle is encoded
with eight scalars, where four scalars are for two angles classification and the remaining
four scalars are responsible for regressing the classified two angles. Finally, the yaw angle
can be calculated with the abovementioned two angles with geometric transformation.
Therefore, Keypoint3D introduces a much more simplified yaw regression method and
still reached a competitive accuracy. As shown in Figure 8, the yaw angle is placed in a
Euclidean space and represented with two variables. The two variables are placed in a
complex number field, where the two axis of Im and Re denote the imaginary and real
components, respectively. Moreover, we can regress the yaw angle in a completely closed
mathematical space, which avoids the unnecessary occurrence of singularities. Because,
two parameters are both in the range of [−1, 1] and each yaw angle matches with a unique
set of two parameters on Im and Re axis. Our proposed yaw regression strategy could also
save six variables compared with method in CenterNet [45]. Our network outputs feature
maps for the yaw angle in Y ∈ Ĥ

W
4 ×

H
4 ×2.

Figure 8. Yaw angle regression in Euclidean space. θ represents the yaw angle of objects, which
further is divided into two variables on Im and Re axis. Im and Re represent the imaginary and real
components, respectively.

Finally, we can construct the eight corners of the 3D bounding box B in the camera
frame using the yaw rotation matrix Y3×3

θ , objects scales S3×8
3D , and keypoints location

K3D = (X3D, Y3D, Z3D)
T . The regressed 3D bounding boxes will first be rotated with a

rotation matrix and then translated by 3D keypoints K3D. Hence, the eight corners can be
calculated and represented in Equations (6) and (7).

B3D = YθS3D + K3D (6)
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B3D =

cos(yaw) −sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

 −l
2

−l
2

l
2

l
2

−l
2

−l
2

l
2

l
2

w
2

−w
2

−w
2

w
2

w
2

−w
2

−w
2

w
2

−h
2

−h
2

−h
2

−h
2

h
2

h
2

h
2

h
2

+

X3D
Y3D
Z3D

 (7)

3.4.2. 2D Detection

Keypoint3D makes 3D projected keypoint detection for accuracy guarantee. The 2D
object detection method also serves as an additional task for verifying the basic detection
performance of our proposed model. Since there is always a gap between the 2D center
and 3D projected points. On the basis of predicted 3D keypoints in 2D coordinate system
(x3D, y3D), we designed two offsets δc = (δc1, δc2) for 2D center points (x2D, y2D). The
transformation equation is shown in Equation (8).[

x2D
y2D

]
=

[
x̂3D
ŷ3D

]
+

[
δc1
δc2

]
(8)

Hence, with the size of 2D bounding boxes S2D regressed, we can achieve the 2D boxes
coordinates B2D with the location of center points k2D in Equation (9).

B2D = S2D + k2D (9)

3.5. Loss Function
3.5.1. Classification Loss

For keypoints classification, the output heatmaps will be supervised by our produced
ground-truth heatmaps through self-adapting ellipse Gaussian filter (saEGF). The positions
of peak values on heatmaps represent the ground-truth for keypoints. We leveraged a
penalty-reduced focal loss function [19] for logistic classification. Let ĥi,j be the predicted
score at the heatmap location (i, j) and hi,j be the ground-truth value of each point filtered
by saEFG kernels. Define the focal loss function in Equation (10):

Lossk =
−1
N ∑i,j

{
(1− ĥi,j)

αlog(ĥi,j) (hi,j = 1)
(1− hi,j)

β(ĥi,j)
αlog(1− ĥi,j) (hi,j < 1)

(10)

Therefore, α and β are hyper-parameters of the focal loss, and N is the number of
keypoints in the predicted image. Considering the empirical hyper-parameters setting in
focal loss, we set α = 2 and β = 4 in our conducted experiments.

3.5.2. Regression Loss

We encoded the 3D bounding boxes with seven DoF (x, y, z, h, w, l, yaw) in 3D detection
head. Even though keypoints have been classified in heatmaps, further refinement still
is conducted for more accurate keypoints detection. Two additional channels are added
to heatmaps for refining the offsets (δx3D, δy3D) of keypoints (x3D, y3D). The offsets are
trained with an L1 loss in Equation (11).

Lo f f sets =
1
N ∑n

k=1(
∣∣δx− δ̂x

∣∣+ ∣∣δy− δ̂y
∣∣) (11)

For the remaining 3D bounding box properties, we also used L1 loss function for
regressing a complete 3D bounding box. The absolute depth value, the three sizes, and the
yaw angle are regressed in Equations (12)–(14), respectively.

Ldepth = 1
n ∑n

k=1

∣∣∣d̂norm − dk

∣∣∣ (12)
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Lsize =
1
n ∑n

k=1

∣∣∣ĥ− h
∣∣∣+ 1

n ∑n
k=1|ŵ− w|

+ 1
n ∑n

k=1

∣∣∣l̂ − l
∣∣∣ (13)

Lyaw = 1
n ∑n

k=1
∣∣sin(Θ̂)− sin(Θ)

∣∣
+ 1

n ∑n
k=1
∣∣cos(Θ̂)− cos(Θ)

∣∣ (14)

For the additional 2D detection task, we conducted the same regression strategy for
2D bounding boxes. L1 loss function is also utilized for 2D center points localization and
2D sizes regression.

4. Results

The proposed 3D object detection framework is trained and evaluated on the public
KITTI dataset [50]. We first introduce the implementation details of our experiments in
Section 4.1. In Section 4.2, the evaluation performance on 2D, 3D, and birds’ eye view (BEV)
detection of Keypoint3D are conducted and compared with state-of-the-art methods. We
also conduct extensive experiments for ablation studies in Section 4.3. Finally, we represent
the qualitative 3D detection results as per the KITTI test set and the real driving scenes in
Section 4.4.

4.1. Implementation Details

The public KITTI 3D detection dataset provides 7481 samples for training and 7518
samples for testing, both containing image sets from four cameras and corresponding
point cloud samples from a 64-beam Velodyne laser scanner [50]. In our experiments,
we followed the frequently used training and validation splitting method in MV3D [37],
and divided training samples into train split (3712 samples) and val split (3769 samples).
The KITTI 3D detection dataset totally covers eight categories: car, van, truck, pedestrian,
pedestrian_sitting, cyclist, tram, and misc. To improve the generalization performance
of the model, we merged ‘van’ and ‘pedestrian_sitting’ into the ‘car’ and ‘pedestrian’
categories, respectively. Each category can be divided into three difficulty levels: easy,
mod., and hard, depending on different extents of occlusion and truncation. We directly
input images of the original size and uniform image size to 1280× 384 for training and
testing. Therefore, the output feature maps keeps a high resolution of 320× 96 to improve
the detection ability of small targets. The most significant thing to note is that all our works
were all trained and evaluated with an Intel Xeon E5-1650 v4 CPU and a single NVIDIA
GTX 1080Ti GPU. The training process costs around 21 h to converge at 140 epochs totally,
and the learning rate dropped at the 90th and 120th epoch, respectively.

4.2. Detection Performance Evaluation

We performed numerous experiments with the KITTI dataset and comprehensively
evaluated our proposed detector on the performance of 2D and 3D detection. As mentioned
in Section 4.1, we trained and evaluated our model on train and val splits, respectively. In
the multi-task evaluation, we compared Keypoint3D with other outstanding 3D detectors
using a monocular camera. We set the Intersection over Union (IoU) of the predicted
boxes and ground-truth to 0.5, and the evaluation results on 2D and 3D detection are
shown in Table 2. Keypoint3D achieved 39.1% in 3D object detection on the moderate level,
which is quite close to M3D-RPN [34]. We utilized the SADLA-34-DCN backbone, pruning
the redundant aggregation structure, which improved the inference speed to 18.9 FPS.
Although, F-PointNet (Mono) [55] could achieve extremely high 3D car detection accuracy,
especially on the easy level. Our Keypoint3D also outperforms the F-PointNet (Mono) [55]
with remarkable margins on the real-time inference speed. Keypoint3D achieved the best
speed-accuracy trade-off with the precision and efficiency in 3D detection. In terms of
2D detection, the strategy of directly detecting projected 3D keypoints in 2D image plane
resulted in lower 2D average precision, considering the comparison of CenterNet [45] and
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modified CenterNet (3dk). However, the overall 2D detection performance of Keypoint3D
could still reach 95.8% on the easy level of the KITTI val set, which demonstrated the
effectiveness of our proposed network greatly.

Table 2. The 2D and 3D detection performance comparison between Keypoint3D and state-of-the-art
methods as per the KITTI benchmark in car category. FPS indicates the inference speed, and 3dk
denotes the utilization of 3D projected keypoints in CenterNet [45]. All the methods in trained and
evaluated on the KITTI train and val set. AP2D and AP3D indicates the 2D and 3D object detection
average precision with the IoU set as 0.7 and 0.5, respectively.

AP2D AP3D
FPS

Easy Mod. Hard Easy Mod. Hard

MonoGRNet [32] - - - 50.5 37.0 30.8 16.7
Mono3D [33] 92.3 88.7 79.0 25.2 18.2 15.5 -

M3D-RPN [34] 90.2 83.7 67.7 49.0 39.6 33.0 6.2
F-PointNet (Mono) [55] - - - 66.3 42.3 38.5 5

MF3D [56] - - - 47.9 29.5 26.4 8.3
AVOD (Mono) [57] - - - 57.0 42.8 36.3 -

CenterNet [45] 97.1 87.9 79.3 19.5 18.6 16.6 15.4
CenterNet (3dk) 87.1 85.6 69.8 39.9 31.4 30.1 15.4

Keypoint3D (Ours) 95.8 87.3 77.8 48.1 39.1 32.5 18.9

Table 3 shows the evaluation results of 3D object detection on cars, pedestrians, and
cyclists at easy, moderate, and hard levels. We compared the proposed work with base-
line work CenterNet [45] and the modified CenterNet (3dk) with projected 3D keypoints.
Overall, 3D detection accuracy on cars, pedestrians, and cyclists all achieved huge im-
provements, which can be greatly contributed to the projected 3D keypoints. CenterNet
[45] aimed to present a multi-task network, ignoring the optimization to specific 3D object
detection task. The utilization of projected 3D keypoints enhanced the perception of three
dimensional geometry scales, proving to make excellent improvements to 3D tasks. Bene-
fiting the proposed saEGF, our model shows an obvious advantage for detecting objects
with high length–width ratios, such as pedestrians and cyclists. Keypoint3D improved the
3D detection of pedestrians and cyclists in Mod. level by 31.6% and 40.3%, respectively, as
compared with CenterNet (3dk).

Table 3. 3D object detection accuracy comparison of the baseline work and Keypoint3D in car,
pedestrian, and cyclist categories. The average precision (AP3D) (in %) of 3D object detection is
evaluated as per the KITTI val set (IoU = 0.5).

Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

CenterNet [45] 19.5 18.6 16.5 21.0 16.8 15.8 19.5 11.8 10.9
CenterNet (3dk) 39.9 31.4 30.1 31.3 20.4 17.5 23.1 16.4 15.9

Keypoint3D (Ours) 48.1 39.1 32.5 37.9 23.9 19.6 30.4 23.0 21.1

We presented the average precision of 3D object localization performance on the KITTI
val set in Table 4. We projected the detected 3D bounding boxes onto the birds’ eye view
(BEV) images to validate the 3D localization performance. Benefiting from the projected
3D keypoints strategy and the self-adapting ellipse Gaussian kernel for 3D keypoints
localization, we also achieved the outstanding performance of the objects localization
in BEV. The average precision of localization in BEV shows first-class results, especially
in moderate and hard datasets. Nevertheless, compared with 3DOP [58] using stereo
cameras and AVOD [57], our proposed work using monocular vision provides a limited
performance. A visualization of BEV detection results is also shown in Figures 9–11.
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Table 4. 3D localization performance as per the KITTI val set in car. The 3D location performance is
evaluated by the average precision (APloc) (in %) of BEV boxes as per the KITTI val set (IoU = 0.5).

Method Sensors Easy Mod. Hard

3DOP [58] Stereo 55.0 41.3 34.6
Mono3D [33] Mono 30.5 22.4 19.2

MF3D [56] Mono 55.0 36.7 31.3
M3D-RPN [34] Mono 55.4 42.5 35.3

AVOD [57] Mono 61.2 45.4 38.3
CenterNet [45] Mono 31.5 29.7 28.1

CenterNet (3dk) Mono 46.8 37.9 32.7

Keypoint3D (Ours) Mono 52.6 39.5 33.2

(a) (b)

Figure 9. Qualitative comparisons of the detection performance in 3D and BEV on the KITTI val
set. (a) Baseline work (CenterNet). (b) The proposed method (Keypoint3D). Ground truth labels
present cars, pedestrians, and cyclists with yellow, red and blue boxes, respectively. The predicted
results present cars, pedestrians, and cyclists with pale blue, brown, and gray boxes, respectively.
The heading direction is represented with a cross mark.

(a) (b)

Figure 10. Qualitative comparisons of the detection performance in 3D and BEV on the KITTI test
set. (a) Baseline work (CenterNet). (b) The proposed method (Keypoint3D). Cars, pedestrians, and
cyclists are represented by pale blue, brown, and gray boxes, respectively. The heading direction is
represented with a cross mark.
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Figure 11. Real scenes application of the proposed Keypoint3D on the road of Chengdu, China. Cars,
pedestrians, and cyclists are represented by pale blue, brown, and gray boxes, respectively. The
heading direction is represented with a cross mark.

4.3. Ablation Studies

In this section, we conducted numerous ablation experiments to analyze the effec-
tiveness of different components of Keypoint3D. In ablation studies, the model is trained
on train split and evaluated on val split with car 3D detection at the moderate level. We
listed all the proposed strategies in Table 5: projected 3D keypoints, SADLA-34 backbone,
DCN optimizing, saEGF module, and the Eulerian yaw angle. Table 5 shows the evaluation
results of our work and each strategy leads to varying degrees of positive effects on 3D de-
tection accuracy and efficiency. The detailed analysis of the contributions of our proposals
has shown that Keypoint3D achieved a comprehensive improvement for 3D detection.

Table 5. Ablation studies of the proposed strategies. We used the verification experiments to explore
the effect of the five proposed strategies at the detection accuracy and efficiency improvements.

3D
Keypoint

SADLA-
34

SADLA-
34-DCN saEGF Eulerian

Angle mAP FPS

X × × × × 31.4 15.4
X X × × × 35.7 19.6
X X X × × 36.1 18.0
X X X X × 38.9 18.0
X X X X X 39.1 18.9

4.4. Qualitative Results
4.4.1. Qualitative Results on the KITTI Validation Set

For a comprehensive comparison between our baseline work and the proposed Key-
point3D, we performed experiments on 3D and BEV object detection and presented the
visualization of predicted results on the KITTI val set. The detection results of (a) our
baseline work CenterNet [45] and (b) Keypoint3D are shown in Figure 9. For evaluating the
deviation between ground truth and predicted results of two models, we visualized ground
truth labels and predicted 3D bounding boxes in the same images simultaneously. Ground
truth labels present cars, pedestrians, and cyclists with yellow, red, and blue boxes, respec-
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tively. The predicted results present cars, pedestrians, and cyclists with pale blue, brown,
and gray boxes, respectively. The differences in 3D localization performance between the
two models are more clearly represented on the corresponding BEV images. The f irst
row shows the heading direction prediction mistakes of two distant cars in the baseline
work. The second row shows a lost target of an occluded car in the baseline work. The third
row further demonstrates the better yaw regression ability on cyclists of our Keypoint3D.
Hence, through the above comparison in detail, our proposed Keypoint3D achieved the
outstanding 3D object detection performance on the KITTI val set.

4.4.2. Qualitative Results on the KITTI Test Set

For practical applications in autonomous driving scenes, we evaluated 3D and BEV
detection performance and presented the visualization on the KITTI test set. The detection
results of (a) our baseline work CenterNet [45] and (b) Keypoint3D are shown in Figure 10.
The differences in 3D object detection performance between the two models are more
clearly represented on the corresponding BEV images. The f irst row shows a lost target
in the baseline work. The second row shows a better yaw angle regression performance of
vehicles. The third row further demonstrates the better recall and yaw regression ability
of our Keypoint3D. Hence, through the above comparison in detail, our proposed work
Keypoint3D achieved an overall improvement with the proposed strategies.

4.4.3. Qualitative Results on Real Driving Scenes

To test the generalization ability of the proposed Keypoint3D, we applied the trained
model in real autonomous driving scenes. We used the real traffic scenes data from a
driving vehicle equipped with a monocular camera in Chengdu, China. As shown in
Figure 11, we can see 3D detection performance and corresponding results in Birds’ Eye
View (BEV). The pale blue, brown, and gray boxes represent cars, pedestrians, and cyclists,
respectively. Except for the missing detection in dark corners of images, 3D detection
results are acceptable for a real-time testing in real application scenes.

5. Discussion

Numerous experiments conducted using the public KITTI 3D object detection dataset
have proven the effectiveness of our proposed method. In the terms of 3D object detection
in car category at moderate level, our proposed Keypoint3D achieves an extremely high
average precision of 39.1% in Table 2, but still shows a small margin with the state-of-the-
art result of 39.6% in M3D-RPN [34]. Benefiting from the strategies for simplifying the
complexity of our model, Keypoint3D shows the best inference speed of all the state-of-
the-arts as per the challenging KITTI benchmark with a NVIDIA GTX 1080Ti GPU. The
outstanding performing efficiency also makes it possible for various real-time downstream
applications with our proposed lightweight model. Our Keypoint3D could perform the
multi-category 3D object detection for cars, pedestrians, and cyclists in Table 3. Keypoint3D
makes an overall improvement on 3D object detection at all categories, compared with
CenterNet [45] and the modified CenterNet (3dk). In addition, we introduce the projected
3D keypoints based network and the saEGF to improve the keypoints detection accuracy at
the pixel level. As shown in Table 4, Keypoint3D represents a competitive 3D localization
performance in BEV maps, which has an important influence on the final 3D detection
accuracy. The 3D localization performance of our proposed method using a monocular
camera almost reaches to the similar average precision of 3DOP [58] with stereo cameras.
We conducted ablation studies on Keypoint3D and demonstrated the effectiveness of each
single strategy on accuracy and efficiency in Table 5. With the well-trained model, we
applied Keypoint3D in real driving scenes of Chengdu, China. Our Keypoint3D still
presents a stable and high-performance on 3D detection in real driving scenes. In terms
of the future work, we are planning to apply our Keypoint3D algorithm in IoV technique,
and build a real-time and dynamic-updating traffic remote sensing system, providing the
high-accuracy 3D detection information.
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6. Conclusions

In this paper, we proposed an anchor-free and keypoint-based 3D object detector with
monocular vision, namely Keypoint3D. We creatively leveraged projected 3D keypoints
for object modeling, which improved 3D object detection accuracy greatly. Moreover, self-
adapting ellipse Gaussian filter (saEGF) also made large contributions for precise keypoints
positioning, considering different objects’ shapes. The proposed semi-aggregation DLA-34
(SADLA-34) network simplified the network complexity but achieved better precision
performance with a faster inference speed instead. Keypoint3D regressing the yaw angle
in a Euclidean space also achieved better effects on the visualization of KITTI test set.
Numerous experiments on the KITTI dataset have proven that Keypoint3D achieved
the best speed–accuracy trade-off with an average precision of 39.1% at 18.9 FPS on 3D
car detection at the moderate level. With a monocular camera equipped on a driving
vehicle, our proposed Keypoint3D can be applied easily to complete 3D perception tasks
for cars, pedestrians, and cyclists in real autonomous driving scenes and achieves extremely
balanced performance.
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