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Abstract: In recent decades, air pollution in Ulaanbaatar has become a challenge regarding the health
of the citizens of Ulaanbaatar, due to coal combustion in the ger area. Households burn fuel for
cooking and to warm their houses in the morning and evening. This creates a difference between
daytime and nighttime air pollution levels. The accurate mapping of air pollution and assessment
of exposure to air pollution have thus become important study objects for researchers. The city
center is where most air quality monitoring stations are located, but they are unable to monitor
every residential region, particularly the ger area, which is where most particulate matter pollution
originates. Due to this circumstance, it is difficult to construct an LUR model for the entire capital
city’s residential region. This study aims to map peak PM2.5 dispersion during the day using the
Linear and Nonlinear Land Use Regression (LUR) model (Multi-Linear Regression Model (MLRM)
and Generalized Additive Model (GAM)) for Ulaanbaatar, with monitoring station measurements
and mobile device (DUST TRUK II) measurements. LUR models are frequently used to map small-
scale spatial variations in element levels for various types of air pollution, based on measurements
and geographical predictors. PM2.5 measurement data were collected and analyzed in the R statistical
software and ArcGIS. The results showed the dispersion map MLRM R2 = 0.84, adjusted R2 = 0.83,
RMSE = 53.25 µg/m3 and GAM R2 = 0.89, and adjusted R2 = 0.87, RMSE = 44 µg/m3. In order to
validate the models, the LOOCV technique was run on both the MLRM and GAM. Their performance
was also high, with LOOCV R2 = 0.83, RMSE = 55.6 µg/m3, MAE = 38.7 µg/m3, and GAM LOOCV
R2 = 0.77, RMSE = 65.5 µg/m3, MAE = 47.7 µg/m3. From these results, the LUR model’s performance
is high, especially the GAM model, which works better than MRLM.

Keywords: fine particulate matter; Linear and Nonlinear LUR model; air pollution; Ulaanbaatar

1. Introduction

Air pollution is widely recognized as a significant public health risk [1], particularly
fine particulate matter (PM2.5), which travels deep within the respiratory tract, eventually
reaching the lungs [2]. This type of particulate matter air pollution can affect our health
in many ways, with both short-term and long-term effects [3]. The short-term effects can
include irritation to the eyes, nose, and throat, as well as upper respiratory infections such
as bronchitis and pneumonia. The long-term effects can include chronic respiratory disease,
lung cancer, heart diseases, and even damage to the brain, nerves, liver, or kidneys [4].
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Worldwide, 4.2 million deaths every year occur as a result of exposure to ambient air
pollution [5].

Ulaanbaatar, the capital city of Mongolia, is the coldest capital city on Earth. Its average
ambient temperatures routinely fall below −40 ◦C between November and February [6].
In such cold temperatures, keeping warm is a significant issue for the city’s inhabitants,
where the central heating system is not well developed. To survive, citizens burn coal
and wood during the winter months. Consequently, the ger area has become the city’s
primary source of air pollution [1]. A ger is a typical Mongolian traditional house built of
felt and wood. A sizeable population resides in the ger neighborhood, which is located on
the outskirts of Ulaanbaatar. This type of rapid urbanization has led to deteriorating air
quality in the city, with emissions originating from domestic heating and cooking needs,
an increasing number of vehicles, a growing number of industries, construction activities,
and higher electricity demands [4]. As of 2020, 1,597,300 people were living in Ulaanbaatar,
or 47.5% of the total population of Mongolia [7]. Of these, 391,698 households, or 51.3%
percent, were living in the ger area, using a stove as a home heating device [8]. The Ger
area’s main heating sources comprise various stoves, such as kilns, traditional Mongolian
metal stoves, heat-only boilers, improved stoves, and a small number of electric heating
devices. The ger area mainly consists of two types of housing, gers (Mongolian traditional
dwelling) and houses, both of which are heated by stoves. On average, gers are estimated
to consume 3.8 tons of coal and 2.4 m3 of fuelwood per year, and houses are estimated to
consume 4.3 tons of coal and 2.4 m3 of fuelwood per year [9]. According to IQ Air (World
Air Quality) research, Ulaanbaatar was ranked as the third most polluted capital city in the
world in 2020 [10], and as of 31 January 2022, Ulaanbaatar was ranked fourth in the Live
Air Quality city ranking [11].

To decrease air pollution, the Mongolian government has implemented several projects,
such as the distribution of improved stoves (since 2012) and the use of “Tavan Tolgoi
Briquettes” (since 2019) instead of raw coal. The “improved stove” program ended in 2013,
and as of 2021, in the ger area, 55% of householders were using improved stoves, while the
rest were using traditional stoves [9]. According to an experiment by Yukimasa Takemoto
et al. on stove chimney emissions [12], traditional stoves emit 3.2 g of soot particles and
improved stoves emit 0.6 g of soot particles when coal combustion is 1 kg. The “Tavan
Tolgoi Briquette” project is still ongoing. Even though these projects decrease particulate
matter pollution at the appropriate level, fine particulate matter air pollution in Ulaanbaatar
is still high. In the week of 17–23 January 2022, in Ulaanbaatar, the average PM2.5 in a
24 h period peaked at 413 µg/m3 [13], which is 8.2 times higher than the “Air Quality
General Requirement” levels specified in MNS4585:2016 [14] and 27.5 times higher than the
“WHO Air Quality Guideline: Particulate Matter” levels [15]. However, these are average
measurements over 24 h. Additionally, outdoor PM2.5 levels vary diurnally, as well as by
season, being higher in the morning and the evening than during the rest of the day, since
this is when coal burning for domestic heating and incidentally for cooking takes place [6].
In other words, PM2.5 pollution peaks early in the morning, from approximately 05:00 to
10:00 a.m., and in the evening from approximately 06:00 to 00:00 p.m. [16]. Generally, it
continues for 6 h in the morning and evening, or approximately half of the day, at which
time fine particulate matter is very high. For instance, the highest ever fine particulate
matter pollution—3320 µg/m3—was recorded at 05.00 a.m. on 31 January 2018 [17]. This
over-pollution of PM2.5 has been influencing citizens’ health for years. In the last three
years, the National Statistics Office has published reports regarding epidemiological studies
related to air pollution. According to these reports [18,19], per 10,000 people, respiratory
disease increased continuously from 956 to 1961 from 2010 to 2019. Children under 5 are
especially becoming sick more often. Per 10,000 children under 5, there was an increase
from 4036 to 6405 cases from 2010 to 2019 in Ulaanbaatar.

Previous studies [1,4,20–22] have suggested numerous methods for mapping PM2.5 in
Ulaanbaatar. The scale of the resulting dispersion maps, however, is too great, and some of
the maps merely show the city’s core, without expanding outward. Some researchers have



Remote Sens. 2023, 15, 1174 3 of 17

used mobile devices for the LUR model due to a lack of dedicated air quality monitoring
stations, and a recent review of air pollution dispersion techniques by Xing zhe et al. [23]
found that the LUR model was the most widely used method for accurately mapping
the PM2.5 distribution. The main target of this study is to cover all residential areas of
Ulaanbaatar and to define the highest-risk areas by showing the PM2.5 gradient accurately
with more acceptable techniques.

2. Materials and Methodology
2.1. Study Area and Sampling

As mentioned above, Ulaanbaatar’s PM2.5 pollution is far too high early in the morning
and in the evening, and this influences Ulaanbaatar citizens’ health. Thus, there is a need
to map PM2.5 peak dispersion accurately and to understand the risk level of the air that
we breathe in the morning and evening. Even though Ulaanbaatar’s air pollution is
measured at 16 locations [24], until now, accurate dispersion mapping methods have not
been developed due to the scarcity of monitoring stations, which means that air pollution
dispersion is being mapped by dots. Of these stations, the Department of Capital City
Air Quality possesses 5, and the other 11 belong to the National Agency of Meteorology
and Environmental Monitoring (NAMEM). Some monitoring stations do not measure all
pollutants, and only 10 stations measure the PM2.5 every 15 min–1 h.

The study area covers all residential areas of Ulaanbaatar, including the outskirts of
the city, which amounts to 1464.95 square kilometers (37 km × 39.7 km) (Figure 1).
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The ENVEA Environnement SA MP101 m Outdoor Air Quality Monitoring Station is
a fully automated system for detecting the concentration of airborne particles. In the event
that regulatory thresholds are exceeded, this device will sound an alarm. It can monitor
particulate matter (PM10 and PM2.5) continuously. Furthermore, this gauge uses a beta-
ray attenuation measurement approach. By measuring the amount of radiation absorbed
by a sample collected on a fiber tape after being exposed to a radioactive source, the
concentration of particulate matter can be calculated. According to the monitoring stations’
measurements on 17 January 2021 (Figure 2), Ulaanbaatar’s PM2.5 pollution reaches its
minimum level in the afternoon, or from 02:00 pm to 05:00 pm. From 06:00 pm until the
following morning, it increases continuously and reaches 400 µg/m3. However, these
measurements are relatively low due to the stations being located in the city center, far
from the ger area. Concentrations measured in the center are considerably lower than those
measured in the ger area [20]. The ger area’s fine particulate matter pollution is around
two times higher than the city center’s fine particulate matter pollution [25].
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Based on other researchers’ experience [20–22,26], the “DUST TRAK II Aerosol Monitor
8532” mobile device was borrowed from the Department of Environment and Forest
Engineering, National University of Mongolia, and was utilized for the field study. This
portable device has a “Certificate of Calibration and Testing” (certificate serial number:
8532134301) and can measure aerosol concentrations for PM1, PM2.5, respirable, or PM10
size fractions with a corresponding impactor kit. It can also be used to evaluate the
interior and outdoor air pollution. The major goal was to completely map the PM2.5
pollution in Ulaanbaatar. Sampling was done during the most polluted period of the
day, 05:00–11:00 am and 06:00–00:00 pm, on Sunday 17 January 2021, mostly sampling
the ger area region. Based on the work of Ryan et al. [20] and Grazio Fattoruso [27], this
sample campaign took place over the course of a single day. In addition, the results of
the measurements were compared with long-term measurements taken at fixed stations,
and since the results of the measurements were found to be consistent with the long-term
average measurements taken at fixed stations, the authors concluded that the data could be
used to create LUR models. A total of 64 locations were sampled and a total of 74 locations’
samples (adding in 10 monitoring stations’ samples) were used as dependent variables for
the LUR model. Fixed stations and mobile device measurements’ descriptive statistics are
shown in Table 1.
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Table 1. Descriptive statistics for measurement data.

Count Minimum Mean Maximum Median SD SE

Fixed stations 10 110 283.6 385 305 79.76 25.22
Mobile device 64 10 153.9375 405 98 134.48 16.81

2.2. Predictor Variables

The LUR model is based on the environmental characteristics of the study area, es-
pecially characteristics that influence the pollutant emission intensity and dispersion effi-
ciency [28]. Thus, in this study, two types of predictor variables were collected, air pollution
sources and the environmental characteristics that influence air pollution dispersion. The
integration of road networks, traffic count information, topography, and land cover data
within a geographic information system are common throughout all of these models [29].
According to these research results and conclusions, 22 independent variables (Table 1) that
were related to Ulaanbaatar’s PM2.5 pollution were collected. The main sources of PM2.5
pollutant (gers and houses) were drawn from Google Earth, according to Weiran Yuchi
et al.’s research [1].

Heat-only boiler data were taken from the Department of Air Quality, Ulaanbaatar, all
types of road data were obtained from Open Street Maps [30], and ALOS PALSAR Digital
Elevation Data were obtained from the Alaska Satellite Facility, US [31]. Landcover data
were classified from SENTINEL 2 data. Even though Mongolia has landcover change data
dating back 5 years [32], its classification is not sufficient at the city level, so Ulaanbaatar’s
land surface was classified into 5 types generally. After collecting all data, one full model
was built using all these data. However, the results did not show the true dispersion of
PM2.5. Thus, in order to remove some statistically insignificant independent variables, the
Variance Inflation Factor (Table 2) was calculated and the correlation between independent
variables was detected. Within the results of these calculations, as for the Variance Inflation
Factor, 1 < VIF < 10 levels are generally acceptable for the model [33], and if it is greater than
10, it may create multicollinearity. From these results, VIFs greater than 10 were removed
and there was no significant multicollinearity that needed to be corrected [34]. Thus, to
remove insignificant variables based on a statistical assessment, the stepwise selection
(both forward and backward) method was used. Forward and backward selections are
combined in stepwise selection. Researchers begin without any predictor factors and
gradually introduce the most beneficial ones (as in forward stepwise selection). Then, we
eliminate any predictor variables (such as backward stepwise selection) that no longer
improve the model fit [35]. It was then analyzed using the statistical program R, which
produced the final model.

Table 2. All collected data as independent variables, related to PM2.5 pollution in Ulaanbaatar.

Predictor Variable Type Predictor Variable Data Unit Data Source Direction VIF

Air pollution sources

Gers density
Google Earth

+ 7.92

Houses density + 4.79

Heat-only boilers density
Department of Air

Quality, Ulaanbaatar
City Munincipal

+ 4.03

Main paved roads density

Open Street Maps

+ 6.75

Secondary paved
roads density + 22.34

Soil roads density + 10.01
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Table 2. Cont.

Predictor Variable Type Predictor Variable Data Unit Data Source Direction VIF

Environmental
characteristics (landcover

classification)

Ger area
1 × 1 pixel buffer

SENTINEL 2 data

+ 168.03

25 × 25 pixel buffer + 599.46

50 × 50 pixel buffer + 198.54

Wet area
1 × 1 pixel buffer − 29.19

25 × 25 pixel buffer − 314.01

50 × 50 pixel buffer − 204.18

Industry area
1 × 1 pixel buffer + 147.03

25 × 25 pixel buffer + 593.27

50 × 50 pixel buffer + 376.56

Apartment area
1 × 1 pixel buffer − 104.85

25 × 25 pixel buffer − 971.73

50 × 50 pixel buffer − 694.10

Agricultural area
1 × 1 pixel buffer − 108.35

25 × 25 pixel buffer − 412.35

50 × 50 pixel buffer − 201.44

Elevation Altitude above sea level ALOS PALSAR DEM − 7.25

2.3. LUR Model Development

This research work aimed to map PM2.5 pollution during peak hours in Ulaanbaatar.
According to the review study by Xing Zhe et al. [23], LUR modeling is the most popular
model used in pollution estimation from mobile data and monitoring stations. LUR is based
on the principle that pollutant concentrations at any location depend on the environmental
characteristics of the surrounding area—particularly those that influence or reflect emission
intensity and dispersion efficiency [36]. LUR models were originally developed to assess
the exposure resulting from air pollution as a result of vehicular traffic, but they have since
been expanded to cover air pollution epidemiology [37]. Recently, this model has been
utilized widely, from city-level to continent-level air pollution [38–41].

The LUR model uses linear and nonlinear regression equations with measurement val-
ues (Y) and geographical predictor variables as independent variables (X). In this research,
two LUR models were developed to model the spatial variability of PM2.5 concentrations
and produce high-resolution maps with 100 m × 100 m resolution in Ulaanbaatar for the
year 2019 (Figure 3).

The Multiple Linear Regression (MLR) equations were used as a linear regression
model and the Generalized Additive Model (GAM) was used as a nonlinear multiple
regression model. Linear regression models are easy to understand and interpret, used for
inference, and allow the understanding of the linear relationship between the dependent
and independent variables, but they can suffer from high bias. In other words, machine
learning models such as “Gradient Boosting” and “Random Forest” are very useful in
making predictions of complex relationships, but they tend to need huge amounts of data
and are not easy to interpret. However, the GAM addresses this problem by fitting complex
nonlinear relationships and making better predictions. Simultaneously, the GAM allows us
to perform inferential statistics, and understand and explain the underlying structure of our
used model [42]. As mentioned above in Section 2.2, the final LUR model’s independent
variables were selected by the VIF and stepwise selection methods.



Remote Sens. 2023, 15, 1174 7 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

PM2.5 ~ α + s(House) + s(Ger) + s(MainPavedRoad) + s(HeatOnlyBoilers) + s(AgriculturalArea, 50 × 
50buffer) + ε (2)

In Equation (2), α is the intercept; “s” is the smoothing function of the covariates; and 
ε is the error term or the residual. Smoothing functions are specified in a GAM formula 
using “s”, “te”, “ti”, and “t2” terms. In this study, the default “s” function has been used 
and it uses thin plate regression splines. These are low-rank isotropic smoothers of any 
number of covariates. Isotropic means that the rotation of the covariate coordinate system 
will not change the result of smoothing. “Low-rank” means that they have far fewer coef-
ficients than there are data to smooth. They are reduced rank versions of the thin plate 
splines and use the thin plate spline penalty. They are the default smoothers for s terms 
because there is a defined sense in which they are the optimal smoother of any given basis 
dimension/rank [44]. 

 
Figure 3. LUR model development flow chart. 

2.4. Model Validation 
In statistics, model validation tests the goodness of fit of the fitted model. Thus, in 

this part, we used the Leave-One-Out Cross-Validation technique with the R software on 
both the MRLM and GAM models. In total, 74 samples were used to build 74 models. 
Each model used 5 predictor variables. No pre-processing occurred and the resampling 
method was the Leave-One-Out Cross-Validation. 

Figure 3. LUR model development flow chart.

i. MLRM

PM2.5 ~ β0 + β1(House) + β2(Ger) + β3(MainPavedRoad) + β4(HeatOnlyBoilers) + β5(AgriculturalArea, 50 × 50 buffer) + ε (1)

In Equation (1), β0 is the intercept; β1 to β5 are the β coefficients (slopes) of the
independent variables; and ε is the residual (difference between predicted and observed
values). β coefficients or slopes compare the strength of the effect of each individual
independent variable to the dependent variable. The higher the absolute value of the β
coefficient, the stronger the effect. This means that the variables can be easily compared to
each other [43]. β coefficients are constant and these coefficients are found with the least
square method.

ii. GAM

PM2.5 ~ α + s(House) + s(Ger) + s(MainPavedRoad) + s(HeatOnlyBoilers) + s(AgriculturalArea, 50 × 50 buffer) + ε (2)

In Equation (2), α is the intercept; “s” is the smoothing function of the covariates; and
ε is the error term or the residual. Smoothing functions are specified in a GAM formula
using “s”, “te”, “ti”, and “t2” terms. In this study, the default “s” function has been used
and it uses thin plate regression splines. These are low-rank isotropic smoothers of any
number of covariates. Isotropic means that the rotation of the covariate coordinate system
will not change the result of smoothing. “Low-rank” means that they have far fewer
coefficients than there are data to smooth. They are reduced rank versions of the thin plate
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splines and use the thin plate spline penalty. They are the default smoothers for s terms
because there is a defined sense in which they are the optimal smoother of any given basis
dimension/rank [44].

2.4. Model Validation

In statistics, model validation tests the goodness of fit of the fitted model. Thus, in
this part, we used the Leave-One-Out Cross-Validation technique with the R software on
both the MRLM and GAM models. In total, 74 samples were used to build 74 models. Each
model used 5 predictor variables. No pre-processing occurred and the resampling method
was the Leave-One-Out Cross-Validation.

2.5. Mapping MLRM and GAM Model

In this research, two statistical and mapping software programs were used, generally
ArcGIS 10.4 and R4.2.2. MRLM and GAM models were built and validated in the R
statistical software with the “mgcv”, “MASS”, “ggplot2”, and “car” packages, etc. After
building the MLRM and GAM models with R, all coefficients and prediction values were
exported to the ArcGIS software and calculated with “field calculation”.

When spatially aggregated data are used, the modifiable areal unit problem (MAUP)
is encountered. Thus, spatial grid points at different scale sizes, such as 100 m × 100 m,
200 m × 200 m, 500 m × 500 m, and 1 km × 1 km, were calculated in order to analyze
MAUP sensitivity. There are many methods to perform analysis on MAUP, and spatial
autocorrelation is one of them [45]. The Global Moran’s I spatial autocorrelation index is a
widely used method to analyze MAUP, and, according to this index, for 100 m × 100 m scale
aggregation, the Moran’s I index is 0.948, and it is the highest clustering index compared
to other scale size experiments. In total, 146,211 points across the study region, with
100 m between each point, were used. It is convenient to use the interpolation approach to
generate a surface map when working with a grid of equally spaced points because each
point’s value may be extracted from the raster image as an individual value.

Models were then run using these point-independent values, making it possible to
generate a high-resolution map using Equation (3).

Zp =
∑n

i=1

(
zi
dp

i

)
∑n

i=1

(
1

dp
i

) (3)

Zp = value to be estimated;
Zi = known value;
dp

i = distance from the n data point to the power p of the point estimated.

3. Results
3.1. PM2.5 MLRM and GAM Models

Ulaanbaatar’s gers, houses, main paved roads, heat-only boilers, and agricultural
land were used as independent variables in the final linear LUR model constructed using
the stepwise selection results, with the dependent variable (Y) originating from PM2.5
measurements taken at fixed stations and mobile devices. The final linear model was
defined as follows:

Y = 1.33259 + 15.85699 ∗ ger + 5.28564 ∗ baishin + 0.23285 ∗ r_m_p + 2.00580 ∗ stoves + 0.04753 ∗ F50_agri

Table 3 shows detailed information about the MLRM model, including the constant
coefficients, standard error, t-value, p-value, and Variance Inflation Factor. The standard
error of all independent values ranged between 0.006 and 4.02, and the same was true for
the beta coefficient. The t-value was also between 0.117 and 6.953, or far from “0”, and
we could thus reject the null hypothesis and prove that there were relationships between
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the dependent and independent variables. As for the p-value (Pr(>|t|)), gers, main paved
roads, and agricultural land have high significance, while other independent values offer
insufficient evidence against the null hypothesis. Moreover, all VIF coefficients are less
than 5, meaning that there is no high correlation between the independent variables.

Table 3. Detailed information of the MLRM.

Independent Variable Code Name Estimate Std. Error t-Value Pr(>|t|) Variance
Inflation Factor

α Intercept 1.33259 11.426472 0.117 0.907502 -

Gers ger 15.85699 4.029674 3.935 0.000198 3.17

Houses baishin 5.28564 3.801982 1.390 0.168992 3.21

Main paved roads r_m_p 0.23285 0.065516 3.554 0.000695 1.77

Heat-only boilers stoves 2.00580 1.068806 1.877 0.064855 2.51

Agricultural land F50_agri 0.04753 0.006836 6.953 1.72 × 10−9 1.68

After building the MLRM model, all independent variables were also utilized for
the nonlinear regression GAM. The effective degrees of freedom (edf) estimated from the
GAM model were used as a proxy for the degree of nonlinearity in stressor–response
relationships. According to Table 3, the edfs of independent variables such as houses, main
paved roads, and heat-only boilers are equal to 1 and they have a linear relationship; for
other independent variables, such as gers and agricultural land, the edfs are more than 2
and this indicates that they have a highly nonlinear relationship [46]. The p-value shows
the significance level of independent variables. Gers and agricultural land’s values are
less than 0.05, or they have significance, while others are more than 0.05, or they offer
insufficient evidence against the null hypothesis (Table 4).

Table 4. Detailed information of the GAM.

Independent Variable Code Name edf p-Value

Gers ger 4.621 0.0168

Houses baishin 1.000 0.6364

Main paved roads r_m_p 1.000 0.1117

Heat-only boilers stoves 1.000 0.1150

Agricultural land F50_agri 5.431 <2 × 10−16

3.2. Model Accuracy and Validation

Several statistical metrics were calculated for the model assessment for both models
(MLRM and GAM) and LOOCV. Statistical metrics used in this study were the determi-
nation coefficient (R2), root mean square error (RMSE), adjusted R2, and mean absolute
error (MAE), which are widely used for model assessment. Figure 4 and Table 5 (LOOCV
column) present the plots of the predicted and observed values, model accuracy, and
LOOCV validation coefficients. As for the accuracy of the MLRM model, determination
coefficient R2 = 0.84, adjusted R2 = 0.83, and RMSE = 53.25 µg/m3, and p-values were less
than the significance level. As for the accuracy of the GAM model, the accuracy was slightly
higher than that of the MLRM, or R2 = 0.89, adjusted R2 = 0.87, and RMSE = 44 µg/m3. The
p-values of these models were 2 × 10−16 or much less than the significance level of 0.05,
and the null hypothesis was rejected. Based on these assessment coefficients, the MLRM
and GAM models predict reasonably well.
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Table 5. Model performance accuracy and validation.

Model Type
Fitted Model LOOCV

R2 RMSE Adjusted R2 p-Value R2 RMSE MAE

MLRM 0.84 53.25 0.83 2.2 × 10−16 0.83 55.6 38.7

GAM 0.89 44.0 0.87 2.2 × 10−16 0.77 65.5 47.7

As for model validation, validation technique LOOCV was used and its accuracy coeffi-
cients were similar to the model fit assessment coefficients (Table 4): MLRM LOOCV determi-
nation coefficient R2 = 0.83, RMSE = 55.6 µg/m3, and MAE = 38.7 µg/m3; GAM LOOCV de-
termination coefficient R2 = 65.5 µg/m3, RMSE = 65.5 µg/m3, and MAE = 47.7 µg/m3. Fur-
thermore, there was no large difference or error between the fit model and LOOCV model.

3.3. Mapping

The MLRM and GAM models were run on each point within 146,211 grid points,
with 100 m distances between them. Values of each point were interpolated with the
Inverse Distance Weighting (IDW) method (Formula (3)), and a surface map was cre-
ated (Figure 5). These maps depict the amount of PM2.5 pollution on 17 January 2021,
one of the coldest days of the winter season. In other words, during the winter months,
when most people stay at home and burn coal to heat their homes, for the peak hours
of the day, such as early in the morning and late at night, there are significant levels of
air pollution. In order to show exposure to PM2.5, the EPA’s Air Quality Index for 24-h
Fine Particle Pollution Levels [47] was used for the legend. According to its categories,
0–12 µg/m3—“good”, 12.1–35.4 µg/m3—“moderate”, 35.5–55.4 µg/m3—“unhealthy for
sensitive people”, 55–150.4 µg/m3—“unhealthy”, 150.5–250.4 µg/m3—“very unhealthy”,
<250.5 µg/m3 —hazardous. From this, Ulaanbaatar’s PM2.5 pollution exceeds the haz-
ardous level and this situation continues for nearly every half day in the winter months.
Additionally, Ulaanbaatar’s topography, being surrounded by mountains, blocks air move-
ment and increases the accumulation of pollution throughout the city.
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Finally, the PM2.5 dispersion maps show a spatial dispersion intensity in Ulaanbaatar
City similar to the results of Yukimasa et al. [12], Ryan W.Allen et al. [1], and the “Project
to strengthen air pollution control capacity in Ulaanbaatar, Mongolia” (PSAPCCU) re-
port [48]. Yukimasa et al. used the diffusion simulation method, but its results show the
total emissions of 6 full hours of combustion with each stove’s particulate matter emission
capability. Ryan W. Allen et al. used the LUR model, but they showed the spatial variability
of the annual average PM2.5 concentration and did not report model prediction errors. The
PSAPCCU mapped air pollution dispersion with the CALMET + CALPUFF model. Its spa-
tial variability was determined as grid cells, and compared to this research, it is inaccurate.
We did not find similar research using LUR modeling for PM2.5 over Ulaanbaatar City. The
abovementioned results, despite using different methods, show similar spatial variability
in the dispersion result. The main advantage of this study’s results compared to previous
studies is more detail and wider coverage of the residential areas of Ulaanbaatar.

4. Discussion

A few studies have attempted to model particulate matter pollution exposure at the
city level in Ulaanbaatar [1,4,12,21,22]. However, the resulting maps are not highly detailed
and are not very clear. Weiran Yuchi et al. [1] tried to map air pollution dispersion with the
LUR model using independent variables such as wetness, greenness, gers, and road lengths.
However, they did not create a map, showing only the independent variable dispersion
map. According to their results, independent variables explained an average of 70% of the
model. This research could not issue a satisfactory result. Sarath Guttikunda et al. [4,49]
mapped air pollution with the ATMOS model, but their results’ spatial variability was
not accurate. Yukimasa et al. [12] and Ryan W et al. [20] also tried to map air pollution
with statistical data, and their result regarding spatial variability was similar to the results
of this study, but their spatial accuracy was too poor. In recent years, the Department of
Capital City Air Quality has measured particulate matter, but its stations are mainly located
downtown, and measurement results are issued on the website with dot marks. Thus, the
accurate modeling of particulate matter pollution is still a priority issue in Ulaanbaatar.

In this research, data relevant to Ulaanbaatar’s PM2.5 pollution were collected as
independent variables for the LUR model. Many of them were not well suited to the LUR
model due to the characterization of Ulaanbaatar’s air pollution sources. For instance,
many researchers who have developed a LUR model used altitude or a Digital Elevation
Model (DEM) as an independent variable. This contrasts with Ulaanbaatar’s ger area,
which is the main source of PM2.5, being mainly located on the tops of mountains. If a
DEM was used in this LUR model, it would show an incorrect prediction suggesting that
areas with higher elevation have high pollution. Thus, DEM data are not useful for the
Ulaanbaatar LUR model because they would show that higher places have more pollution
and the residential areas located in lower places have less pollution.

Another finding was that many researchers use population density data for an LUR
model based on the principle that higher population density leads to higher air pollution.
This is contrary to Ulaanbaatar, where ger area residents mainly live in one-floor houses or
“ger” dwellings as a single family within a fenced area of around 0.07 hectares. Apartment
residents live in multi-floored apartments, having many families in a small area. In other
words, in the ger area, every single family emits PM2.5 pollution through a chimney when
burning coal, and apartment-residing families do not, since they are connected to the
central heating system. This would show an incorrect prediction that low-population-
density areas generate high pollution. Thus, population density data are also not useful for
the Ulaanbaatar LUR model.

European researchers mostly use CORINE land cover monitoring data [50] for an
LUR model. This integrated land cover database shows integrated results for LUR model
development. As for Ulaanbaatar, there are no land cover monitoring data at the city
scale. Thus, in this study, the researchers classified land cover themselves, and this will
likely result in different study results as compared with other similar studies. Even though



Remote Sens. 2023, 15, 1174 13 of 17

Mongolia has land cover monitoring data at 5-year intervals, they are not suitable at
the scale needed for the analysis of the city. There is a requirement to monitor city-
level land cover change, as with CORINE land cover data. This type of data will be
fundamental, resulting in integrated data not only for air pollution studies but also various
other environmental studies. Consequently, in this study, only agricultural land cover data
were utilized for the model as an independent variable.

Ulaanbaatar is situated in the Tuul river valley, surrounded by high mountains. This
topographic condition is the main factor in blocking air movement and increasing the
accumulation of air pollution [51]. Additionally, this is one factor that creates “an inversion
layer” over the city. This inversion layer appears as black smoke clouds over the city, and
the accumulated clouds easily differ from cleaner air. When PM2.5 was sampled at the top
of the mountains, the city appeared as if it was diving into smoke. This characteristic was
detected in the resulting image of this study from the drastically differentiated PM2.5 levels
in the mountain slope regions.

This research’s main findings include the more detailed spatial variability of PM2.5
pollution and greater coverage of the residential areas of Ulaanbaatar City compared
to previous studies. In addition, the results of this research were evaluated with some
statistical methods, and the evaluation coefficients were reasonably high. This research’s
results are very accurate and can have very practical uses. For instance, the Mongolian
government is planning to build “micro centers”, which are infrastructures that aim to
address the most polluted “ger” areas within the scope of the National Program to Decrease
Air and Environmental Pollution [52]. These “micro centers” are planned to include 200–
300 householders and will be provided with a heating system. It is hoped that this research
can offer a recommendation in choosing where to build “micro centers” in the ger area.

Limitations

Our LUR models combined the data from a mobile device and a fixed station into a
single model due to the fact that there were only 10 fixed stations, the majority of which
were downtown. These measurement data could not cover all residential areas, and thus
we could not build the models properly. Thus, there is a need to measure air pollution on
the outskirts of the city or in the ger area. We borrowed a DUST TRAK II mobile device
for PM2.5 measurement from the Department of Environment and Forest Engineering,
National University of Mongolia, and performed a short-term sampling campaign with
this device based on the experience of Ryan et al. [20] and Grazio Fattoruso [27]. In our
study, in order to show the highest pollution concentration, measurement was conducted
early in the morning and in the evening. Thus, it is impossible to compare this result with
daytime air pollution.

Our model might be constrained by the availability of predictor data. Gers, homes,
and heat-only boilers in Ulaanbaatar are the main sources of PM2.5 pollution, since they
employ coal combustion stoves. Even though heat-only boilers and gers and houses are
the leading sources of PM2.5 pollution in Ulaanbaatar, the Department of Capital City Air
Quality only keeps track of heat-only boiler statistics. Since gers and houses on the outskirts
of the city must be included in models as the primary source of PM2.5 pollution, the authors
made the decision to collect data from Google Maps in response to the study by Weiran Yu
Chi et al. Google Maps data, on the other hand, remained largely stable over the course of
the three years, indicating that the final two models are largely accurate in reflecting the
spatial variability in PM2.5 pollution throughout the year 2021.

5. Conclusions

The aim of this study was to show the highest PM2.5 pollution dispersion in Ulaan-
baatar by measuring pollution during peak hours, and to detect the most polluted areas
of the city. The linear (MLRM) and nonlinear (GAM) LUR models, a widely used ap-
proach to assess exposure to air pollution, were used as the primary method for dispersion
mapping and their performance was high, with MLRM R2 = 0.84, adjusted R2 = 0.83,
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RMSE = 53.25 µg/m3, and GAM R2 = 0.89, adjusted R2 = 0.87, RMSE = 44 µg/m3. In
order to validate the models, the LOOCV technique was run on both MLRM and GAM.
Their performance were again high, with MRLM LOOCV R2 = 0.83, RMSE = 55.6 µg/m3,
MAE = 38.7 µg/m3, and GAM LOOCV R2 = 0.77, RMSE = 65.5 µg/m3, MAE = 47.7 µg/m3.
From these results, GAM works better than MRLM or its fit model, and the LOOCV
assessment coefficients are higher than those for the MRLM fit model and LOOCV.

Sources contributing to PM2.5 were dominated by emissions from coal combustion in
the ger area. Most householders in the ger area use coal-burning stoves as a home heating
device. Furthermore, due to heating of the home and cooking, both in the morning and
evening, PM2.5 pollution increases heavily, and exceeds the “hazardous” level. According
to this study’s results, Ulaanbaatar’s PM2.5 pollution reaches over 500 µg/m3. This occurs
mainly in the city center during the winter, early in the morning, and in the evening,
continuing for around half a day. In addition to excessive smoke emissions, the topography
of the capital city plays a significant role. In the Tuul river valley, surrounded by mountains,
an inversion layer is created, normal air mixing ceases, and pollutants are trapped in the
lower layer. As a result of this, PM2.5 pollution accumulates significantly, especially on
calm days, where it can be 2–3 times higher than the hazardous level.

With such high fine particulate matter concentrations, there are likely to be significant
health implications for Ulaanbaatar’s citizens. Based on the findings of this study, stoves
used for heating are the primary cause of PM2.5 pollution. Therefore, there is a need to
switch from stoves to various fuel-free heating options. In other words, the ger region
needs to adopt electrical heating gadgets or a central heating system. This will reduce
PM2.5 pollution more successfully. Additionally, the resulting map shows the intensity of
the level of air pollution, and people should avoid living in and visiting areas with high
levels of pollution.

During the experimentation phase of model construction, our LUR models revealed
that altitude and population density data are not always adequate due to PM2.5 pollution
source dispersion, which is a theoretical contribution to the LUR model. The ger district
of Ulaanbaatar, the city’s primary contributor to PM2.5 pollution, is located in relatively
remote, high-altitude areas; its population is dispersed sparsely compared to the downtown,
densely populated, central district. In contrast, according to the laws of physics, particulate
matter pollution must build up in lower places, and places with a large number of people
must support it heavily. In Ulaanbaatar, caused by particulate matter pollution source
dispersion, this pattern is the opposite.

Finally, these maps illustrate the extent to which air pollution is a problem and how
much of a geographic area is affected. We anticipate that these data will be useful in helping
decision-makers to identify areas where urgent action is required to reduce air pollution.
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