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Abstract: Estimating consistent large-scale tropical forest height using remote sensing is essential for
understanding forest-related carbon cycles. The Global Ecosystem Dynamics Investigation (GEDI)
light detection and ranging (LiDAR) instrument employed on the International Space Station has
collected unique vegetation structure data since April 2019. Our study shows the potential value
of using remote-sensing (RS) data (i.e., optical Sentinel-2, radar Sentinel-1, and radar PALSAR-2)
to extrapolate GEDI footprint-level forest canopy height model (CHM) measurements. We show
that selected RS features can estimate vegetation heights with high precision by analyzing RS data,
spaceborne GEDI LiDAR, and airborne LiDAR at four tropical forest sites in South America and
Africa. We found that the GEDI relative height (RH) metric is the best at 98% (RH98), filtered by
full-power shots with a sensitivity greater than 98%. We found that the optical Sentinel-2 indices are
dominant with respect to radar from 77 possible features. We proposed the nine essential optical
Sentinel-2 and the radar cross-polarization HV PALSAR-2 features in CHM estimation. Using only
ten optimal indices for the regression problems can avoid unimportant features and reduce the
computational effort. The predicted CHM was compared to the available airborne LiDAR data,
resulting in an error of around 5 m. Finally, we tested cross-validation error values between South
America and Africa, including around 40% from validation data in training to obtain a similar
performance. We recommend that GEDI data be extracted from all continents to maintain consistent
performance on a global scale. Combining GEDI and RS data is a promising method to advance our
capability in mapping CHM values.

Keywords: GEDI; canopy height model; Sentinel 1; Sentinel 2; PALSAR-2

1. Introduction

Tropical areas play a significant role in the forest-related carbon cycle. Estimating
tropical forest parameters, such as height and biomass, at a large or global scale is a big
challenge for remote sensing. Many significant technologies have been developed to
calculate the parameters of forests. For example, the European Space Agency is developing
a mission of synthetic aperture radar (SAR) BIOMASS [1,2] and its tomographic capacity,
in which the forest structures can be observed layer-by-layer [1]. The BIOMASS delivers
crucial information about the state of the forest via the first satellite carrying a P-band (e.g.,
∼69 cm wavelength) SAR in space. The BIOMASS mission aims to generate a biomass
map on tropical forest areas at a resolution of about 200 m with a standard error accuracy
of under 20%. Furthermore, the canopy height model (CHM) error is expected to be
less than 5 m [1]. The NASA effort was the spaceborne Global Ecosystem Dynamics
Investigation (GEDI) light detection and ranging (LiDAR), which is the world’s first high-
resolution observation of vertical forest structure [3]. The GEDI mission provides valuable
information for the scientific community and decision-makers in ecology, conservation,
and environmental management. The high-resolution data produced by the mission offers
a comprehensive understanding of the Earth’s forest cover, allowing for improved control
and protection of these essential ecosystems. The GEDI is in orbit from April 2019 for a
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NASA mission expected to last until January 2023 [4]. The GEDI mission offers a new
measurement to quantify forest structure parameters globally using a waveform LiDAR
system that produces eight-track measurements. The GEDI mission provides information
about forest biomass, CHM, and topography. The GEDI system is sensitive to the forest
CHM, but only provides sparse measurements (i.e., not continuous images). In detail, the
GEDI beam pattern provides scattered footprints (diameter of ∼25 m) with a distance of
∼60 m along and ∼600 m across tracks, respectively [4].

Remotely sensed satellite imagery is an important data source for forest studies.
Remote-sensing data has been used to detect deforestation and forest degradation [5],
assess forest carbon stocks [2], map biodiversity [6], and monitor forest fires [7]. Remote-
sensing (RS) images, such as optical and radar, are wall-to-wall data, providing a synoptic
view and mapping from local to global scales. Nowadays, many modern RS images are
available for free, such as C-band radar Sentinel-1 [8], L-band radar PALSAR-2 [9], and
optical Sentinel-2 [10], which offer a unique source of information to investigate forest
areas. Many studies have exploited machine learning algorithms in the remote-sensing
literature, such as linear regression and random forest approaches that allow extrapolating
continuously interested sparse parameters [11–14]. CHM values can be modeled by relating
GEDI footprint-level CHM to Landsat [14]. In detail, the researchers used global Landsat
analysis-ready data to generate a 2019 global forest canopy height map with 30 m spatial
resolution. This map was compared with GEDI validation data (error = 6.6 m) and airborne
LiDAR data (error = 9.07 m) to assess its accuracy. Although its performance is not high (i.e.,
an error of 9 m with respect to the airborne LiDAR data), it demonstrated the feasibility of
making a continuous GEDI version. However, there needs to be more understanding of the
potential value of new data, such as Sentinel-1 and PALSAR-2 radar and Sentinel-2 optical
data. The combination of these missions is expected to improve the performance. In our
work, we aim to address this point. Specifically, we investigate remote-sensing indicators
which are suitable for quantifying CHM. In detail, we evaluate all possible indicator data
derived from Sentinel-1, Sentinel-2, and PALSAR-2 to understand the essential features
for the CHM estimation. We focus our analysis on four tropical forest sites: Paracou and
Nouragues from South America and Lopé and Rabi from Africa. These forest areas are
fundamental sites for the training and calibration of the BIOMASS mission.

Machine learning algorithms can be broadly classified into two categories: unsuper-
vised and supervised [15]. Unsupervised techniques discover patterns in data without
the involvement of human input, while supervised learning relies on labeled datasets. In
the context of remote-sensing images, both regression and classification are examples of
supervised machine learning algorithms [16,17]. Training sets are used to calculate specific
model parameters and then estimate unknown pixels in the regression [15]. Recently, deep
learning methods (e.g., convolutional [18] and recurrent [19,20] neural networks) have been
used to exploit the massive trained data available. However, standard algorithms, such
as random forest and support vector regression are popular due to their performance and
fast computation [21]. In this paper, we focus on the random forest algorithm because it
allows us to calculate feature importance and their contributions, allowing us to select the
essential features and interpret the results.

2. Method
2.1. Study Sites

In support of the upcoming BIOMASS mission, two airborne campaigns are being
conducted in tropical forest areas. The TropiSAR campaign was flown in the summer
of 2009 at the Paracou and Nouragues sites in French Guiana (Sofuth American) [22].
Gabon (Africa) forest areas were illuminated during the AfriSAR campaign carried out in
2015–2016 [23]. The in situ biomass and airborne LiDAR datasets were collected for the
algorithm study of the BIOMASS mission [13]. We focus on the Lopé and Rabi forest sites
in Africa (AF) and the Paracou and Nouragues areas in South America (SA) (see Figure 1).
The main difference between the two continents is the availability of canopy low-height
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values in African sites. All sites’ average canopy height value is around 38 m, showing
dense and thick forest areas. Detailed descriptions can be found in [13].

Figure 1. Forest sites used in this study with an adapted version of Figure 1 in [13]. (a) South
America (SA): Paracou and Nouragues. (b) Africa (AF): Lopé and Rabi. The middle panels show
the distribution of 1254 airborne LiDAR points in South America and 1505 in Africa. The right
panels show the reduced dataset by selected full-power lasers and sensitivity greater than 98% (South
America composed of 464 points and Africa 702) (see Section 2.2).

2.2. GEDI Processing

NASA’s Land Distributed Active Archive Center provides GEDI Level 2 products,
including footprint-level elevation and canopy height metrics (L2A) and footprint-level
canopy cover and vertical profile metrics (L2B). The L2A data product is the LiDAR
waveform using six algorithms (i.e., different threshold groups) [4]. The different algorithms
are available with variation thresholds for noise and signal-smoothing widths. Over the
natural forest areas, a suitable algorithm is selected based on the forest types. The algorithm
tuning parameters can impact the waveform metrics used for CHM retrieval. In this paper,
over four tropical forest areas, as suggested in [24,25], we used the a5 algorithm, which
has a lower waveform signal end threshold compared to the other setting groups. The
L2A product provides all the calculations of the relative height metrics (RHn), where n
varies from 0 (lowest detectable return, ground position) to 100% (highest detectable return,
canopy top). RHn can be understood as the height of the location at n% of cumulative
energy with respect to the ground position. From L2A, we extracted the following variables:

• Num-detected modes, which shows the detected modes in number.
• Canopy position: longitude, latitude, and elevation of the highest return (EHR).
• Ground position: longitude, latitude, and elevation of the lowest return (ELR).
• Relative height metrics RHn, for which n varies from 0% (lowest detectable return,

ground position) to 100% (highest detectable return, canopy top). RHn is the height
above the ground position and at a certain n% in the cumulative energy.

• Sensitivity. The shot sensitivity is the probability of a given canopy cover reaching
the ground.
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It is noted that not all of these shots can be usable due to atmospheric perturbations
that have impacts on the signals. Therefore, a shot was ignored if it met any of the
following criteria:

• num-detectedmodes = 0. These shot signals can be mostly noisy without any de-
tected modes.

• Shots where the absolute difference between the ELM and the corresponding SRTM
DEM is higher than 75 m (|ELM− SRM| > 75).

• Shots where RH98 < 3 m. These shots most likely correspond to bare soil or low vegetation.

Over our forest sites (see Figure 1), more than 3600 GEDI shots were acquired from
April 2019 to August 2021. After applying the filtering scheme, 2759 shots collected from
airborne LiDAR, a remote-sensing dataset, and GEDI measurements were kept for analysis.
Furthermore, to minimize noise impacts, we ignored the GEDI shots corresponding to
coverage power laser and sensitivity less than 98% as proposed in [25]. This filtering
resulted in 1166 shots left for studying.

2.3. Remote Sensing Image Processing

We calculated remote-sensing indicators for both optical and radar satellite images.
While Sentinel-2 images are used for the optical data, the radar images include both C-band
Sentinel-1 and L-band PALSAR-2. Their spatial resolution is similar to the footprint of
GEDI (e.g., 25 m). For Sentinel-1 data, the processing steps include the radiometric terrain
correction and the border noise correction for analysis. The processing of Sentinel-2 data
was performed by removing cloud pixels with a “cloudy pixel percentage” of less than 30.
PALSAR-2 data are calibrated and provided by JAXA EORC as a yearly mosaic product [9].
The Sentinel-1 and Sentinel-2 data filtered the time coverage from 1 January 2019 to 1
January 2021 and overlapped with the GEDI data, resulting in a median image. A total of
77 possible features are used for the regression, including original optical Sentinel-2 bands,
Sentinel-1 and PALSAR-2 radar backscatters, and calculated vegetation indices (see Table 1).

Table 1. Characteristics of the indicators. The radar index is highlighted in bold font. The symbol
used in the expression follows the mapping standard of Sentinel-2: A (Aerosol)—B1; B (Blue)—B2;
G (Green)—B3; R (Red)—B4; RE1 (Red Edge 1)—B5; RE2 (Red Edge 2)—B6; RE3 (Red Edge 3)—B7;
RE4 (Red Edge 4)—B8A; N (NIR)—B8, S1 (SWIR 1)—B11; S2 (SWIR 2)—B12. g is a gain factor for the
enhanced vegetation index (EVI). ‘**’ is the pow operator.

ID Indices Description Formulation

(1) Green Green G
(2) BCC [26] Blue Chromatic Coordinate B/(R + G + B)
(3) Blue Blue B
(4) BNDVI [27] Blue Normalized Difference Vegetation Index (N − B)/(N + B)
(5) CCCI [28] Canopy Chlorophyll Content Index ((N − RE1)/(N + RE1))/(( N − R)/(N + R))
(6) CLGREEN [29] Chlorophyll Index Green (N/G) − 1.0
(7) CVI [30] Chlorophyll Vegetation Index (N/G) × (R/G)
(8) DVI [31] Difference Vegetation Index N − R
(9) EVI [32] Enhanced Vegetation Index g × (N − R)/(N + C1 × R − C2 × B + L)
(10) ExG [33] Excess Green Index 2 × G − (R + B)
(11) FCVI [34] Fluorescence Correction Vegetation Index N − ((R + G + B)/3.0)
(12) GARI [35] Green Atmospherically Resistant Vegetation Index (N − (G − (B − R)))/(N − (G + (B − R)))
(13) GBNDVI [36] Green-Blue Normalized Difference Vegetation Index (N − (G + B))/(N + (G + B))
(14) GCC [26] Green Chromatic Coordinate G/(R + G + B)

(15) GEMI [37] Global Environment Monitoring Index
((2.0 × ((N ** 2.0) − (R ** 2.0)) + 1.5 × N + 0.5 × R)/
(N + R + 0.5)) × (1.0 − 0.25 × ((2.0 × ((N ** 2.0) − (R ** 2)) +
1.5 × N + 0.5 × R)/(N + R + 0.5))) − ((R − 0.125)/(1 − R))

(16) GLI [38] Green Leaf Index (2.0 × G − R − B)/(2.0 × G + R + B)
(17) GNDVI [35] Green Normalized Difference Vegetation Index (N − G)/(N + G)
(18) GRNDVI [36] Green-Red Normalized Difference Vegetation Index (N − (G + R))/(N + (G + R))
(19) GRVI [39] Green Ratio Vegetation Index N/G
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Table 1. Cont.

ID Indices Description Formulation

(20) GSAVI [40] Green Soil-Adjusted Vegetation Index (N − G)/((N + G + 0.5) × (1 + 0.5))
(21) GVI [40] Green Vegetation Index (−0.290 × G − 0.562 × R + 0.600 × RE1 + 0.491 × N)
(22) GVMI [41] Global Vegetation Moisture Index ((N + 0.1) − (S2 + 0.02))/((N + 0.1) + (S2 + 0.02))
(23) lHHdb PALSAR-2 HH HH
(24) HVdb PALSAR-2 HV HV
(25) IPVI [42] Infrared Percentage Vegetation Index ((N/(N + R))/2) × ((N − R)/(N + R) + 1)
(26) IRECI [43] Inverted Red-Edge Chlorophyll Index (RE3 − R)/(RE1/RE2)

(27) MCARI [43] Modified Chlorophyll Absorption in Reflectance
Index ((RE1 − R) − 0.2 × (RE1 − G)) × (RE1/R)

(28) MNDVI [44] Modified Normalized Difference Vegetation Index (N − S2)/(N + S2)
(29) MNSI [45] Misra Non Such Index −0.404 × G − 0.039 × R − 0.505 × RE1 + 0.762 × N
(30) MSAVI [46] Modified Soil-Adjusted Vegetation Index 0.5 × (2.0 × N + 1 − (((2 × N + 1) ** 2) − 8 × (N − R)) ** 0.5)
(31) MSBI [45] Misra Soil Brightness Index 0.406 × G + 0.600 × R + 0.645 × RE1 + 0.243 × N
(32) MSR [47] Modified Simple Ratio (N/R − 1)/((N/R + 1) ** 0.5)
(33) MTCI [43] MERIS Terrestrial Chlorophyll Index (RE2 − RE1)/(RE1 − R)

(34) MTVI2 [48] Modified Triangular Vegetation Index 2 (1.5 × (1.2 × (N − G) − 2.5 × (R − G)))/((((2.0 × N + 1)
** 2) − (6.0 × N − 5 × (R ** 0.5)) − 0.5) ** 0.5)

(35) MYVI [45] Misra Yellow Vegetation Index −0.723 × G − 0.597 × R + 0.206 × RE1 − 0.278 × N
(36) NBR [49] Normalized Blue Red (N − S2)/(N + S2)
(37) NDGI [50] Normalized Difference Greenness Index (G − R)/(G + R)
(38) NDMI [49] Normalized Difference Moisture Index (N − S1)/(N + S1)
(39) NDVI [42] Normalized Difference Vegetation Index (N − R)/(N + R)
(40) NDWI [49] Normalized Difference Water Index (N − S2)/(N + S2)
(41) NDYI [51] Normalized Difference Yellowness Index (G − B)/(G + B)
(42) NGRDI [52] Normalized Green Red Difference Index (G − B)/(G + B)
(43) NIR NIR N
(44) NRS1 NIR/SWIR1 N/S1
(45) NIRv [53] Near-Infrared Reflectance of Vegetation ((N − R)/(N + R)) × N
(46) NLI [54] Non-Linear Vegetation Index ((N ** 2) − R)/((N ** 2) + R)
(47) OSAVI [55] Optimized Soil-Adjusted Vegetation Index (1.16) × (N − R)/(N + R + 0.16)
(48) PNDVI [11] Pan NDVI (N − (B + G + R))/(N + (B + G + R))
(49) PSRI [56] Plant Senescence Reflectance Index (R − B)/RE2
(50) RHVHH PALSAR-2 HV/HH HV/HH
(51) RVVVH Sentinel-1 VV/VH VV/VH
(52) RCC [26] Red Chromatic Coordinate R/(R + G + B)
(53) RDVI [57] Renormalized Difference Vegetation Index (N − R)/((N + R) ** 0.5)
(54) RE1 Red Edge 1 RE1
(55) RE2 Red Edge 2 RE2
(56) RE3 Red Edge 3 RE3
(57) RE4 Red Edge 4 RE4
(58) Red Red R

(59) REDSI [58] Red-Edge Disease Stress Index ((705.0 − 665.0) × (RE3 − R) − (783.0 − 665.0) × (RE1 − R))/
(2.0 × R)

(60) RVI [59] Radar Vegetation Index Sentinel-1 (4 × VHdb)/ (VVdb + VHdb)
(61) RVIpal [59] Radar Vegetation Index PALSAR-2 (4 × HVdb)/ (HHdb + HVdb)
(62) S2REP [43] Sentinel-2 Red-Edge Position 705.0 + 35.0 × ((((RE3 + R)/2.0) − RE1)/(RE2 − RE1))
(63) SAVI [60] Soil-Adjusted Vegetation Index (1.0 + L) × (N − R)/(N + R + L)
(64) SeLI [61] Sentinel-2 LAI Green Index (RE4 − RE1)/(RE4 + RE1)
(65) SR [62] Simple Ratio N/R
(66) SWIR1 SWIR1 S1
(67) S1RS2 SWIR1/SWIR2 S1/S2
(68) SWIR2 SWIR2 S2

(69) TCARI [63] Transformed Chlorophyll Absorption in Reflectance
Index 3 × ((RE1 − R) − 0.2 × (RE1 − G) × (RE1 / R))

(70) TCI [64] Triangular Chlorophyll Index 1.2 × (RE1 − G) − 1.5 × (R − G) × (RE1 / R) ** 0.5
(71) TDVI [65] Trasformed NDVI 1.5 × ((N) / ((N ** 2 + R + 0.5) ** 0.5))
(72) TRRVI [66] Transformed Red Range Vegetation Index ((RE2 − R) / (RE2 + R)) / (((N − R) / (N + R)) + 1.0)

(73) TTVI [67] Transformed Triangular Vegetation Index 0.5 × ((865.0 − 740.0) × (RE3 − RE2) − (RE4 − RE2) ×
(783.0 − 740))

(74) VARI [39] Visible Atmospherically Resistant Index (RE1 − 1.7 × R + 0.7 × B) / (RE1 + 1.3 × R − 1.3 × B)
(75) VHdb Sentinel-1 VH VH
(76) VIG [39] Vegetation Index Green (G − R) / (G + R)
(77) VVdb Sentinel-1 VV VV

Data processing and indices computation were performed by the cloud-computing
environment of Google Earth Engine [68]. The 77 feature indices are defined in Table 1.
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More information on the formula and the reference for these indices can be found at https:
//github.com/DinhHoTongMinh/agr-spectral-indices (accessed on 18 January 2023).

2.4. Random Forest

In this work, we consider the random forest algorithm to study the potential of
remote-sensing data for forest canopy height estimation. The rational explanation is mainly
because (1) it allows us to calculate the important features in the procedure which we need
to evaluate for the selection, and (2) it is one of the most popular machine learning models
in the remote-sensing community due to its high performance and fast computation.

The random forest method relies on an ensemble of decision-tree learners to aggregate
their results. The training fits several tree learners on many sub-sampled data, and then
an average version is calculated to avoid over-fitting and improve the performance [21].
In other words, the regression can effectively mitigate over-fitting by using the average
responses from multiple decision trees to make the final prediction. The input features will
be calculated and weighted for their contributions during tree construction, providing a
metric to select features. Feature importance is computed as the decrease in node impurity,
which is weighted by the probability of corresponding to that node. The node probability
is calculated as the ratio between the number of samples corresponding to the node and
the total number of samples. The higher the value, the more important the feature. The
prediction ability should depend more on important features than unimportant features.
Hence, a similar performance can be expected on the reduced quality set by working on
the selected important features.

In this paper, the model parameters are selected by a grid search to obtain the best
performance during the random forest process. As a result, we set a minimum tree depth
of 8 and a leaf size of 5. All models are trained by performing 5-fold cross-validation to
reduce bias in the estimation.

There are two continents: South America (Paracou and Nouragues, composed of
1254 points) and Africa (Lopé and Rabi, 1505 points). For full power and sensitivity greater
than 98%, the data reduce to 464 points for South America and 702 points for Africa. These
data points are input for the random forest algorithm to study regression and feature
selection. We report the statistical comparison using the coefficient of determination (R2)
and the root-mean-square error (RMSE).

3. Results
3.1. Select Suitable GEDI RH Metric

The GEDI only provides RH metrics which do not necessarily refer to the canopy top
height. The RH metric calculates the total height of returns from the LiDAR instrument,
including the canopy, understory, and ground [4]. While commonly used as a proxy for
forest height, it is not a definitive measurement and must be evaluated for each study
area. We study which GEDI RH metric is comparable. We examine the performance of
the GEDI RH metrics selected at the upper limit from RH90 to RH100. We recall that
the GEDI lasers’ power is split into coverage and full-power lasers. Furthermore, the
shot sensitivity is the probability of reaching the ground over a given canopy cover. We
evaluate the performance of GEDI RH metrics and airborne LiDAR for two scenarios. One
is with all filtered measurements (2759 shots), and the other with only full-power lasers
and sensitivity > 98% (1166 shots). Figure 2 reports the performance. RH100 is the best for
the all measurements scenario, with an RMSE of 5.8 m. However, in the case of a full-power
laser with sensitivity greater than 98%, RH98 is better than RH100, resulting in an RSME of
5.1 m. Indeed, RH98 is a more common choice in the recent literature as it is less sensitive
to noise [3,69,70]. As a result, we recommend RH98 as a proxy for CHM estimation. We
focus on the RH98 as GEDI CHM for analysis in the remaining paper.

https://github.com/DinhHoTongMinh/agr-spectral-indices
https://github.com/DinhHoTongMinh/agr-spectral-indices
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Figure 2. RMSE analysis between GEDI RH metrics and airborne LiDAR CHM. The blue line shows
the calculation results using all measured values. The black line indicates the calculated results using
only selected points that satisfy the full power and sensitivity conditions.

3.2. Feature Selection

To understand the contribution of remotely sensed features in the regression, we
showed feature importance from the random forest in Figure 3. We trained two models
separately. The first model used GEDI data, and the second analyzed airborne LiDAR data.

We propose a feature that yields an important measure greater than its average value
in all sites (Paracou, Nouragues, Lopé, and Rabi), Paracou-Nouragues, and Lopé-Rabi. To
guarantee stable performance for different sites, we propose to keep only those features
co-existing between GEDI and airborne LiDAR measurements. The selected features are
shown in Figure 4. They are all optical indicators: (2) BCC (blue chromatic coordinate),
(5) CCCI (canopy chlorophyll content index), (10) ExG (excess green index), (14) GCC
(green chromatic coordinate), (16) GLI (green leaf index), (33) MTCI (MERIS terrestrial
chlorophyll index), (54) RE1 (red edge 1), (62) S2REP (Sentinel-2 red-edge position), and
(69) TCARI (transformed chlorophyll absorption in reflectance index).

To showcase the performance of the selected remote-sensing features, we estimated
the CHM from all data and only the selected ones. We used data from GEDI measurements
for training and airborne LiDAR for validation. In the first case, with all 77 features, the
coefficient of determination was 0.65, and the RMSE of 4.8 m (see Figure 5a), where the
average height value of all sites was around 38 m. Using the nine selected features in
the second case allows us to obtain primarily the same performance for CHM estimates
(see Figure 5b). Thus, instead of using 77 features, we worked on nine selected features
and obtained similar results.
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Figure 3. Feature importance in order as in Table 1 from the random forest for all sites (Paracou,
Nouragues, Lopé, and Rabi), South America (Paracou-Nouragues), and Africa (Lopé-Rabi). (a) GEDI;
the horizontal label feature is in odd numbers (see Table 1). (b) Airborne LiDAR; the horizontal label
feature is in even numbers.

Figure 4. Proposed feature selection. Feature importance trained from GEDI data in all sites is
reported. Stability index in both airborne LiDAR and GEDI: (2) BCC (blue chromatic coordinate),
(5) CCCI (canopy chlorophyll content index), (10) ExG (excess green index), (14) GCC (green chromatic
coordinate), (16) GLI (green leaf index), (33) MTCI (MERIS terrestrial chlorophyll index), (54) RE1
(red edge 1), (62) S2REP (Sentinel-2 red-edge position), and (69) TCARI (transformed chlorophyll
absorption in reflectance index).
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Figure 5. The predicted CHM performance with respect to airborne LiDAR. (a) training by GEDI
and total features. (b) training by GEDI and only nine selected features: BCC, CCCI, ExG, GCC, GLI,
MTCI, RE1, S2REP and TCARI.

3.3. Combine Optical and Radar Features

The missing radar indicator in the feature selection procedure can be due to the many
optical features used. We tested a model using only radar features to provide a better
perspective on radar indicators. The RMSE was 6.0 m with a coefficient of determination of
0.49. Figure 6 shows the feature importance from the random forest for nine selected optical
and all radar indicators. Interestingly, we found that the reflectivity of the cross-polarization
(i.e., PALSAR-2 HV and Sentinel-1 VH) was a more significant feature than the others (see
Figure 6b). This was due to the dominance of volume scattering in cross-polarization
reflectivity, which is highly correlated with the forest structure and biomass [71].

Figure 6. Feature importance in descending order. (a) Optical selected features: CCCI, MTCI, GCC,
BCC, GLI, ExG, TCARI, RE1, S2REP. (b) Radar features: HVdb, VHdb, RVI, HHdb, RVVVH, VVdb,
RHVHH, RVIpal.

To better exploit the complementarity between optical and radar information, we
propose to combine nine optimal Sentinel-2 and HV PALSAR-2 features in the CHM
estimation. The performance is shown in Figure 7 with an RMSE of 5 m. An example of the
combined optical and radar selected features for CHM estimation is shown in Figure 8.
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Figure 7. The predicted CHM performance by combining optical and radar-selected features to
airborne LiDAR. They include nine Sentinel-2 (BCC, CCCI, ExG, GCC, GLI, MTCI, RE1, S2REP, and
TCARI) and HV PALSAR-2 features.

Figure 8. The predicted CHM map compared to the GEDI points in four forest areas. Left panels:
sparse GEDI data available after filtering as in Section 2.2. Middle panels: wall-to-wall CHM maps
using optical and radar-selected features. Right panels: standard Sentinel-2 red, green, and blue
bands of a composite RGB image, in which the green color indicates forest areas. (a): Paracou.
(b): Nouragues. (c): Rabi. (d): Lopé.
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3.4. The Robustness of the Selected Features

To test the robustness of the selected optical and radar features in two different
continents, we used 464 points from South America (Paracou and Nouragues) for training
and 702 samples from Africa (Lopé and Rabi) for validation, and vice versa. However, the
performance was not good because of the different CHM distribution (see right panels in
Figure 1). We improved this situation by including a certain percentage from validation
data in training (see Figure 9). The result, including 40%, was reported in Figure 10. The
cross-validation RMSE values used a similar metric.

Figure 9. The predicted CHM compared to the airborne LiDAR validation data in cross-validation
between South America and Africa.

Figure 10. The predicted CHM compared to the airborne LiDAR validation data. (a) Validation in
Africa (AF). (b) Validation in South America (SA).

4. Discussion

First, we showed that RH98 is a good metric for the CHM study. We inspected the
performance of the GEDI RH metrics from 90% to 100%. We evaluated the performance
of GEDI metrics and airborne LiDAR for two scenarios. The first dataset used all filtered
measurements proposed in Section 2.2, and the other used full-power lasers and sensitivity
>98% to minimize the noise as suggested in [25]. It is noted that there was no bias
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between the full-power GEDI and airborne LiDAR [25], even though time acquisition was
different among the datasets. We showed that RH98 was a better choice than RH100
as RH98 was less sensitive to noise. Indeed, the RH98 is a more common choice in
the recent literature [3,69,70]. As a result, we recommended RH98 as a proxy for GEDI
CHM estimation.

We studied the feature selections based on the random forest model to understand
the prediction ability better. The performance should be dependent on more important
features than unimportant features. We noticed that the importance of features varied
from site to site (as seen in Figure 3). This discrepancy can be attributed to the different
distributions of CHM and the presence of low-height canopy values in African regions
(as shown in Figure 1). We selected nine features from the original 77 possible ones
(see Figure 4). They are all optical vegetation indices (BCC, CCCI, ExG, GCC, GLI, MTCI,
RE1, S2REP, TCARI). Interestingly, we observed that the two most significant features were
dominated by the canopy chlorophyll content (i.e., CCCI and MTCI) indices (see Figure 6a).
They are well-known optimal indicators for the quantitative estimation of biophysical
variables in vegetation canopies in the literature [43,72].

We observed that there was no radar indicator in the selected features. This was mainly
due to the dominance of high-range biomass values in our study sites. The C-band Sentinel-
1 (∼5.5 cm) and L-band PALSAR-2 (∼24 cm) have a limitation in terms of penetration in
the forest. Even with the L-band, it is well-known that radar signals decrease with the
presence of greater than 150 t/ha biomass values [12,73]. Future long wavelength missions
(such as P-band ∼69 cm BIOMASS [2]) are needed to penetrate thick and dense forests,
providing a potentially better indicator with respect to the C- and L-bands. On the other
hand, the missing radar indicator can also be due to the many optical features used. We
tested a model using only radar features to provide a better perspective on radar indicators.
We found that the reflectivity of the cross-polarization (i.e., PALSAR-2 HV and Sentinel-1
VH) was a more significant feature than others. The L-band HV PALSAR-2 was better than
the C-band Sentinel-1 radar index due to the longer wavelength (∼24 cm vs. ∼5.5 cm).

We showed that GEDI measurements could be used to train remote-sensing data for
forest canopy height estimation. We proposed combining optical and radar features in the
CHM estimation for remote-sensing data. They include nine Sentinel-2 selected features
(BCC, CCCI, ExG, GCC, GLI, MTCI, RE1, S2REP, TCARI) and one cross-polarization HV
PALSAR-2 feature. The validation with airborne LiDAR gave an RMSE of around 5 m
(see Figure 7). This is similar to the performance of GEDI measurements in tropical forest
areas [25]. The CHM using remote-sensing data can be estimated at up to 50 m. These
remote-sensing data are naturally continuous wall-to-wall measurements, overcoming the
sparse distribution of GEDI data.

In this paper, we used the random forest technique because of its capacity to provide
important features and its standing in the remote-sensing community. The RF algorithm
can determine the significance of various features in predicting forest height by assigning
each feature an importance score. This information can be utilized to pick the most im-
pactful features for estimating forest height through GEDI data, resulting in fewer data to
process and more straightforward interpretations. The RF algorithm is especially advan-
tageous for feature selection because it can handle large datasets, a common occurrence
in remote sensing, and effectively identify the crucial features even in high-dimensional
data, improving the interpretability of the results. The main limitation of the RF approach
is its proneness to overfitting. In this condition, a model is excessively complex and fits
the training data too accurately, decreasing its generalization ability to new, unseen data.
This study employs an optimal subset of features that can reduce this issue and enhance
the computational efficiency of the random forest approach. Several alternatives exist
to improve the random forest method’s performance in remote sensing. One such ap-
proach is the ensemble method [74], where multiple machine learning algorithms (and with
geostatistical methods [75]) are combined to make predictions, thus capitalizing on the
strengths of each algorithm. Additionally, exploiting deep learning methods could improve
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performance [18,19]. Although deep features can be generalized to unseen geographical
regions [76], deep-learning-trained data should be extracted from all continents to maintain
the performance that is consistent on a global scale (see Figure 9). Finally, we suggested
using only our proposed ten indices for the regression problems to avoid unimportant
features and reduce the computational effort.

5. Conclusions

This paper addresses the potential value of remote sensing and GEDI in mapping
canopy height. The study sites are tropical regions where various vegetation types char-
acterize these forests. We show that remote-sensing data can be trained using GEDI to
estimate canopy height with high accuracy. We show that GEDI RH98, with attention to
selecting full-power shots with a sensitivity greater than 98%, is a good proxy for the CHM
parameter. We found that the optical Sentinel-2 indices dominate radar from 77 possible
features. We proposed the nine essential optical Sentinel-2 and one radar cross-polarization
HV PALSAR-2 features that robustly maintain performance to complete indicators in CHM
estimation. Applying the proposed features, optimal indices can avoid unimportant fea-
tures and reduce computational effort. The predicted CHM using ten selected features was
compared to the available airborne LiDAR data, resulting in an error of around 5 m. Finally,
we tested the cross-validation error values between South America and Africa, including
around 40 percent from validation data in training to obtain a similar performance. We sug-
gested that GEDI data be extracted from all continents to maintain consistent performance
on a global scale. Thus, the results obtained confirm the great potential of determining
forest canopy height from only optical data, making wall-to-wall CHM mapping possible
using GEDI data.
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