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Abstract: In order to improve the spatial resolution of a one-dimensional aperture synthesis (1-D
AS) radiometer without increasing the size of the antenna array, the method of visibility extension
(VE) is proposed in this article. In the VE method, prior information about the visibility distribution
of various scenes is learnt by a residual convolutional neural network (ResCNN). Specifically, the
relationship between the distribution of low-frequency visibility and that of high-frequency visibility
is learnt. Then, the ResCNN is used to estimate the high-frequency visibility samples from the low-
frequency visibility samples obtained by the AS system. Furthermore, the low- and high-frequency
visibility samples are combined to reconstruct the brightness temperature image of the scene, to
enhance the spatial resolution of AS. The simulation and experiment both demonstrate that the VE
method can enhance the spatial resolution of 1-D AS.

Keywords: aperture synthesis (AS); visibility extension; resolution enhancement; spatial frequency;
residual convolutional neural network (ResCNN)

1. Introduction

For sea-surface-temperature (SST) remote sensing, the demand for improving SST
feature resolution has become urgent in recent years [1]. This demands improvement of
the spatial resolution of sensors. Compared to infrared, due to the ability of microwaves
to penetrate clouds, passive microwave measurements can provide more SST information
during cloudy weather when infrared measurements are disturbed by cloud coverage; but
microwave measurements have a lower spatial resolution [2].

To improve the spatial resolution of passive microwave radiometry for remote sensing
of the Earth, the aperture synthesis (AS) radiometer was proposed [3]. The larger the size
of an antenna array, the higher the spatial resolution the radiometer will achieve. However,
limited by the carrying capacity of satellites, the antenna array size in an AS system cannot
be too large, which limits the spatial resolution of the AS system. For example, the first AS
in orbit, Microwave Interferometric Radiometer with Aperture Synthesis (MIRAS), was
first designed to use a larger antenna array with 130 antennas [4], but was launched with a
smaller antenna array consisting of 69 antennas [5].

In recent years, researchers have developed effective methods for AS radiometers
to reconstruct brightness temperature (BT) images using neural networks to improve
image quality [6–8]. However, no public literature can be found on enhancing the spatial
resolution of an AS radiometer without increasing the size of the antenna array.

In this article, a method of visibility extension (VE) to enhance spatial resolution
without enlarging the size of an antenna array is proposed for 1-D AS. The proposal of the
VE method is inspired by two discoveries. First, the visibility (i.e., the spatial spectrum)
of a scene is truncated in AS observations, and the cutoff spatial frequency (vcutoff ) is
determined by the largest spacing of the antenna pairs in an AS system. Second, visibility
generally distributes continuously; therefore, high-frequency visibility samples are related
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to low-frequency visibility samples. If prior information about the visibility distribution of
various scenes is learnt by a neural network, it is possible to extend the visibility.

Several types of neural network could be candidates for extending visibility. Long
short-term memory (LSTM) networks have been mainly applied in the field of speech
recognition [9,10] and natural language processing [11], and have achieved good perfor-
mance in time-series forecasting [12,13]. Multi-layer perceptron (MLP) networks have been
widely used, and can be designed and trained depending on specific applications [14,15].
Convolutional neural networks (CNNs) are widely used in various fields, such as com-
puter vision [16], speech processing [17], face recognition [18], etc. The residual learning
framework has solved the problem of degradation in very deep networks and has made
them easier to be trained [19].

To find a satisfactory model, seven neural network models with various configurations
are tested, including LSTM network models, MLP network models, CNN models, the
residual convolutional neural network (ResCNN) models, and so on. Of all the models
tested in this article, a ResCNN model outperforms the others. Because the visibility
generally distributes continuously, the visibility samples at local adjacent spatial frequencies
have a connection with each other, by which high-frequency visibility samples can be
estimated from low-frequency visibility samples. CNN can effectively learn the local
features, and with a residual learning framework, the problem of degradation can be
suppressed. This is the reason that ResCNN can work effectively in visibility extension.
Therefore, the ResCNN model is chosen to extend visibility in the VE method.

Thus, the main idea of the VE method is that visibility samples at spatial frequencies
higher than vcutoff are estimated by a ResCNN, and they are combined with low-frequency
visibility samples obtained by an AS system to reconstruct the BT image of a scene, in order
to enhance spatial resolution.

The main contributions of this article are: (1) visibility extension is proposed to
enhance the spatial resolution of AS without enlarging the antenna array size; (2) ResCNN
is proposed to perform visibility extension.

The VE method is introduced in Section 2. The simulation and experiment are de-
scribed in Sections 3 and 4, respectively. Discussion is provided in Section 5, and the
conclusion is presented in Section 6.

2. VE Method
2.1. Theory of Spatial Resolution Enhancement by Visibility Extension

The visibility of 1-D AS is defined below [3].

V(v) =
∫ π

−π
Tb(ϕ)e−j2πvsinϕdϕ (1)

where V is the visibility, v is the spatial frequency, Tb is the scene brightness temperature
(BT), and ϕ is the azimuth angle. The visibility has the property of Hermitian symmetry:
V(−v) = V∗(v), where the superscript * denotes the conjugate.

In theory, the scene BT can be reconstructed by (2).

T̂b(ϕ) =
∫ ∞

−∞
V(v)ej2πvsinϕdv (2)

where T̂b is the reconstructed BT.
In fact, only finite and discrete samples of visibility can be obtained by an AS system;

therefore, the scene BT can instead only be reconstructed by (3).

T̂b(ϕ) =
L

∑
n=−L

V(vn)e−j2πvnsinϕ∆v (3)
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where ∆v is the minimum spacing of the antenna pairs in the AS system, L is the number
of visibility samples at vn > 0, and vn = n∆v. As can be seen from (3), the visibility samples
obtained by an AS system are truncated, and the cutoff frequency vcutoff = L∆v.

If the visibility is extended, the spatial resolution of T̂b can be enhanced. An AS system
can only obtain visibility samples at spatial frequencies lower than vcutoff (denoted as a
complex vector Vlow). If the visibility samples at spatial frequencies higher than vcutoff
(denoted as a complex vector Vhigh) are added, the corresponding BT image reconstructed
from the union of Vlow and Vhigh will have higher spatial resolution and will be closer to
the original BT, especially at the position where the BT changes rapidly, as illustrated in
Figure 1. Because Vhigh is added and there are more high-frequency visibility samples used
in BT image reconstruction, the spatial resolution is higher. This is the theory of enhancing
spatial resolution by visibility extension.
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Figure 1. Illustration of visibility extension. Only the visibility at v ≥ 0 is illustrated because of
Hermitian symmetry. (a) The distribution of the real part of V. (b) The distribution of the imaginary
part of V. (c) The distribution of the BT.

2.2. Procedure

The visibility of ordinary scenes distributes continuously; in other words, the visibility
changes continuously. This implies that there is a relationship between the distribution
of low- and high-frequency visibility. If the prior information of visibility distribution is
learnt by a neural network, it is possible to estimate Vhigh by the neural network from the
Vlow obtained by an AS system.

In the VE method, a neural network is trained by the dataset generated from the
visibility of various scenes to learn prior information about the visibility distribution,
specifically to learn the relationship between the distribution of low- and high-frequency
visibility. The trained neural network is used to estimate Vhigh according to Vlow obtained
by an AS system, and the estimate of Vhigh is denoted as V′high. Then, Vlow and V′high are
combined. Furthermore, the visibility samples at vn < 0 are added, and the BT image of
the scene is reconstructed by the Inverse Discrete Fourier Transform (IDFT). Because high-
frequency visibility samples are added in the image reconstruction, the spatial resolution
of the reconstructed BT image with the VE method is higher than that of the original
reconstructed BT image.

The steps of the VE method are illustrated in Figure 2. There are five steps:

1. Vlow is obtained through observation by an AS system.
2. V′high is output from the trained neural network with the input complex vector Vlow.
3. Vlow and V′high are combined.
4. The visibility samples at vn < 0 are added according to V(− vn) = V∗(v n

)
.

5. The BT image of the scene is reconstructed by IDFT.
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Figure 2. Steps of the VE method.

The most important step of the VE method is step 2. The dataset must be generated
before the neural network is designed and trained. Then V′high can be estimated. The
dataset generation, neural network design, and network training need to be performed
only once for an AS system.

2.3. Dataset
2.3.1. Procedure of Dataset Generation

The neural network needs to be trained by the dataset to determine the weights and
biases. The procedure for dataset generation is listed below.

1. The BT image of a scene is generated. The scene can be an ideal scene or a natural
scene. The BT image of an ideal scene is generated by simulation, while that of a
natural scene is generated from satellite data.

2. The visibility samples V(v 0)−V(v n+p−1

)
(where vj = j∆v, j = 0, 1, . . . , n + p − 1)

are acquired by a Discrete Fourier Transformation (DFT) from the scene BT according
to (1).

3. The first n visibility samples, V(v 0)−V(v n−1
)
, are selected as the input complex

vector Vlow. The following p visibility samples, V(v n)−V(v n+p−1

)
, are selected as

the target complex vector Vhigh. Vlow and Vhigh are combined into one sample, as
illustrated in Figure 3.

4. Multiple samples are generated by repeating steps 1 to 3, and multiple samples
compose the dataset.
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2.3.2. Determination of the Parameters in Dataset Generation

The parameter n in steps 2 and 3, i.e., the length of the input complex vector Vlow, is
determined by the AS system, specifically by the number of baselines of the AS system. For
the MAS-V experiment system, which has eight baselines, mentioned in Section 4, n = 8.

When determining the parameter p in steps 2 and 3, i.e., the length of the output
complex vector V′high, the balance of the spatial resolution and the reconstruction error
should be considered. When p is greater, the advantage is that there will be more high-
frequency visibility samples used in the BT image reconstruction, so the spatial resolution
of T̂b is higher. However, the disadvantage is that T̂b suffers larger reconstruction error.
The reconstruction error is assessed by the root-mean-square error (RMSE) between the
reconstructed BT and the original BT of a scene, as expressed in (4).

RMSE =

√√√√ 1
M

M

∑
m=1

(
T̂b(m)− Tb(m)

)2 (4)

where T̂b is the reconstructed BT, Tb is the original BT, and M is the number of the pixels of
the BT image. In this article, an average reconstruction error of approximately 40,000 scenes
with different values of p was calculated, as illustrated in Figure 4. With an increase in p,
the reconstruction error first reduced, but then increased. The value of p should be as large
as possible with an acceptable increase in RMSE. Thus, according to Figure 4, p = 42 in this
article, which is a trade-off.
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Besides this, in step 2, ∆v = 3.5 according to the experiment system MAS-V mentioned
in Section 4.

2.3.3. BT Images for the Dataset

According to the procedure of dataset generation described above, the first step is to
generate BT images of the scenes. The BT images of numerous scenes are generated, in
which two types of scene are involved: (a) ideal scenes, including scenes of point source
and homogeneous scenes; (b) natural scenes, including scenes observed by the microwave
radiometer carried by a satellite in orbit.

For the ideal scenes, the scenes of the point source at different locations in the field of
view (FOV) are chosen, as well as homogeneous scenes with different widths and located at
different positions in the FOV. BT images of ideal scenes are generated through simulation.

For the natural scenes, the scenes observed by the Scanning Microwave Radiometer
(SMR) [20] onboard HaiYang-2B (HY-2B) are chosen. The SMR was designed to measure
oceanic and atmospheric parameters, such as sea-surface temperature (SST), sea-surface
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wind speed, water vapor, and cloud liquid water. It is a linearly polarized passive mi-
crowave radiometer that measures microwave radiation with the 6.925, 10.7, 18.7, 23.8, and
37 GHz channels, and it employs a conical scanning mechanism [20]. In each scan, the SMR
generates a 150-pixel BT image of the Earth’s surface. The SMR observation data obtained
from the 37 GHz channels with horizontal and vertical polarization in February 2020 are
selected and downloaded from the website (https://osdds.nsoas.org.cn) on 12 April 2021.

For the training dataset, 9000 BT images of ideal scenes and 46,685 BT images of
natural scenes are selected; and for the testing dataset, 30,589 BT images of natural scenes
are selected. Some examples of the selected BT images are shown in Figure 5.
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Figure 5. Examples of the BT images selected to generate the dataset. (a) The BT image of a point
source. (b) The BT image of a homogeneous scene. (c) The BT image of a natural scene.

Thus, a training dataset containing 55,658 samples and a testing dataset containing
30,589 samples are generated.

2.4. Selection of Neural Network Model

In order to find the appropriate neural network model to learn the prior information
of visibility distribution and extend the visibility, the LSTM network models, the MLP
network model, the CNN models, and the residual convolutional neural network (ResCNN)
models are tested in this article.

In Table 1, the parameter-search range of the architecture configuration for seven types
of neural network model are presented. To generate the output with designed size, a layer
(denoted as CN1), illustrated in Figure 6, composed of two convolutional layers convolving
42 and 84 filters of 1 × 1 and a global average pooling layer, is used as the last layer of
the “ResCNN + CN1” and “CNN + CN1” models; a layer (denoted as FC1) composed of
two fully connected layers with 512 and 84 nodes, respectively, is used as the last layer of
the “ResCNN + FC1”, “CNN + FC1”, and “LSTM + FC1” models; and a fully connected
layer containing 84 nodes (denoted as FC2) is used as the last layer of the “MLP + FC2”
models. Because the last layers for the models are determined, the parameter-search range
presented in Table 1 are for the layers excluding the last layer. In the table, the value of the
parameter “ResCNN blocks” indicates the number of ResCNN blocks in the models; the
value of the parameter “Filters” (“Nodes”) indicates the number of filters (nodes) contained
in the first layer, and the number of filters (nodes) in the following layers is a multiple of
the value of “Filters” (“Nodes”); the value of the parameter “Kernel size” is the size of the
convolution kernel; the value of the parameter “Layers” indicates the number of layers
(excluding the last layer) of the models; the value of the parameter “Units” indicates the
number of features in the hidden state of LSTM.

https://osdds.nsoas.org.cn
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Table 1. Parameter-search range of the architecture configuration for the seven types of neural
network model.

Models Parameters Values

ResCNN + CN1 *
ResCNN blocks * 11, 12, 13

Filters 128 to 512
Kernel size 3, 5, 7

ResCNN + FC1
ResCNN blocks * 11, 12, 13

Filters 128 to 512
Kernel size 3, 5, 7

CNN + CN1 *
Layers 1 to 9
Filters 64, 128, 256

Kernel size 3, 5, 7

CNN + FC1
Layers 3 to 9
Filters 128 to 512

Kernel size 3, 5, 7

MLP + FC2 Layers 1 to 7
Nodes 32, 64, 128

LSTM + FC1 Layers 1, 2, 4
Units 32, 64, 128

LSTM Layers 1, 2, 4
Units 32, 64, 128

* The structures of the ResCNN block and CN1 are illustrated in Figure 6.

Other hyperparameters, such as the batch size, learning rate, momentum, and dropout,
are searched simultaneously. The Bayesian hyperparameter-search method is used for
hyperparameter searching. The Bayesian hyperparameter-search method uses a Gaussian
process to model the relationship between the parameters and the test loss, and chooses
parameters to optimize the probability of improvement.

To speed up the hyperparameter search, an early termination strategy called hyper-
band [21] is set to prevent poorly performing runs of the neural network models. Hyper-
band stopping evaluates whether a run should be stopped or permitted to continue at one
or more pre-set iteration counts, which are set as the 4th, 12th, 36th, and 108th epochs in
each run in this article.

For the seven types of neural network model, more than 1300 different configurations
are tested in visibility extension. The training results of the most effective models in each
type of neural network model are shown in Table 2. It can be seen from Table 2 that the
ResCNN model outperforms the CNN model; the CNN model outperforms the MLP model;
and the MLP model outperforms the LSTM model. The most effective of the “ResCNN +
CN1” models is the most effective for visibility extension of all the tested models.

The distribution of visibility only depends on the distribution of the scene BT, so the
high-frequency visibility samples have no memory of low-frequency visibility samples,
which is also the reason for the poor performance of LSTM. In addition, for the general
scenes, visibility distributes continuously. Therefore, there is a connection between the
visibility samples at local adjacent spatial frequencies, which means that the high-frequency
visibility samples are related to the low-frequency visibility samples. Compared with MLP,
CNN can learn the local features of visibility distribution, which is why CNN outperforms
MLP in visibility extension. For a deeper network, residual connections can reduce the
impact of the degradation problem, so ResCNN performs better than other types of network
model mentioned above.

Thus, the most effective of the “ResCNN + CN1” models (i.e., the VE-ResCNN) is
introduced in this article and used to extend the visibility to enhance spatial resolution.
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Table 2. The training results of the most effective models in the seven types of neural network model.

Models Blocks Total
Layers

Trainable
Parameters Test Loss (×10-3) Training Time

* ResCNN + CN1 13 13 × 2 + 2 182,084,166 2.863 4 h 28 min 16 s
ResCNN + FC1 12 12 × 2 + 2 30,884,604 3.116 1 h 42 min 40 s

CNN + CN1 \ 6 + 2 313,268,550 3.229 7 h 14 min 36 s

CNN + FC1 \ 8 + 2 14,254,532 3.606 1 h 9 min 37 s

MLP + FC2 \ 7 + 1 7,516,244 4.102 55 min 10 s

LSTM + FC1 \ 2 + 2 53,460 9.699 53 min 44 s

LSTM \ 2 81,408 11.10 50 min 4 s
* The most effective model of “ResCNN + CN1” (i.e., the VE-ResCNN) is used as the neural network in the
VE method.
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2.5. VE-ResCNN
2.5.1. Architecture

The VE-ResCNN proposed in this article is composed of 13 ResCNN blocks, a dropout
layer, and a last layer (denoted as CN1), as illustrated in Figure 6. The ResCNN blocks
are used to extract the features of the input complex vector. The novelty of the residual
network is in the use of the bypass pathway concept, which was employed in Highway
Nets to address the problem of training a deeper network [19]. The dropout layer is used
to prevent the neural network from overfitting [22]. In addition, the CN1 layer is used for
dimensionality reduction to output the vector with the designed size.

As illustrated in Figure 6, the network input is Vlow, which is a complex vector with n
elements. Then, a matrix with two columns formed by the real and imaginary parts of Vlow
is input into the first ResCNN block of the VE-ResCNN.

The ResCNN block is a conventional convolutional neural network plus a residual
connection. The block output, denoted as xi, can be expressed as (5).

xi= ReLU(F(x i−1) + xi−1
)

(5)

where xi−1 is the block input (when i = 0, x0 is the matrix with two columns transformed
from the input complex vector Vlow), ReLU = max (0, x) is the rectified linear unit function,
and F(x i−1

)
is the output of the feed-forward network in the block, expressed as (6).

F(xi−1) = BN(w 2 ∗ ReLU(BN(w 1 ∗ xi−1 + b1)) + b2) (6)

where BN is the batch-normalization process [23], w1 (w2) is the convolution weight matrix
of the first (second) convolutional layer Conv1 (Conv2) in the ResCNN block, the symbol ∗
represents the convolution operation, and b1 and b2 are the biases.

The input of the dropout layer is the output of the ResCNN block 13. The dropout layer
randomly sets some input elements to zero with a pre-set probability using samples from a
Bernoulli distribution. This has been proven to be an effective technique for regularization
and to prevent the co-adaptation of neurons [24].

Then, the output matrix of the dropout layer is input into the CN1 layer. The architec-
ture of CN1 is inspired by previous works [25,26]. As illustrated in Figure 6, the kernel size
of the convolutional layers (Conv1’ and Conv2’) in CN1 is 1 × 1, and the number of filters
(i.e., the convolutional weight matrices) in Conv1’ and Conv2’ are p and 2p, respectively.
Conv1’ is followed by a leaky ReLU activation whose expression is LeakyReLU (x) = max
(0, x) + f ×min (0, x), where f is the leak factor. As a substitution for a fully connected layer,
the global average pooling layer can significantly reduce the number of model parameters.
A vector consisting of 2p elements is output by the CN1 layer. The output of the CN1 layer
is reshaped into a two-column matrix with size 2 × p × 1. Then, the two columns are
combined as the real and imaginary parts of a complex vector. Thus, a complex vector with
the size p × 1 (i.e., V′high) is obtained.

The architecture parameters of the VE-ResCNN are listed in Table 3. The dropout
probability of the dropout layer is 0.413. In addition, the leak factor (f ) of the leaky ReLU
activation in CN1 is 0.01.
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Table 3. Architectural parameters of the VE-ResCNN.

Parameter Value Parameter Value

ResCNN
block 1

CN1 Filters 512
ResCNN
block 8

CN1 Filters 1024
Kernel size 7 × 1 Kernel size 7 × 1

CN2 Filters 512 CN2 Filters 1024
Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 2

CN1 Filters 512
ResCNN
block 9

CN1 Filters 1024
Kernel size 7 × 1 Kernel size 7 × 1

CN2
Filters 512

CN2
Filters 1024

Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 3

CN1 Filters 512
ResCNN
block 10

CN1 Filters 1024
Kernel size 7 × 1 Kernel size 7 × 1

CN2
Filters 512

CN2
Filters 1024

Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 4

CN1 Filters 512
ResCNN
block 11

CN1 Filters 1536
Kernel size 7 × 1 Kernel size 7 × 1

CN2
Filters 512

CN2
Filters 1536

Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 5

CN1 Filters 512
ResCNN
block 12

CN1 Filters 1536
Kernel size 7 × 1 Kernel size 7 × 1

CN2
Filters 512

CN2
Filters 1536

Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 6

CN1 Filters 1024
ResCNN
block 13

CN1 Filters 1536
Kernel size 7 × 1 Kernel size 7 × 1

CN2
Filters 1024

CN2
Filters 1536

Kernel size 7 × 1 Kernel size 7 × 1

ResCNN
block 7

CN1 Filters 1024

CN1
CN1′

Filters 42
Kernel size 7 × 1 Kernel size 1 × 1

CN2
Filters 1024

CN2′
Filters 84

Kernel size 7 × 1 Kernel size 1 × 1

2.5.2. Training

The training process of the VE-ResCNN is illustrated in Figure 7. The mini-batch
gradient descent algorithm with a momentum is used to train the VE-ResCNN.
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When training the VE-ResCNN, a batch of samples is selected from the training
dataset, and the input complex vectors (Vlow) of the batch of samples are input into the
VE-ResCNN. Then, the output complex vectors (V′high) are compared to the target complex
vectors (Vhigh) of the batch of samples, and the mean-square error is calculated as the loss
function according to (7).

Loss =
1
S

S

∑
s=1

[
1

2p

(∣∣∣real
(

V′high,s − Vhigh,s

)∣∣∣2 + ∣∣∣imag
(

V′high,s − Vhigh,s

)∣∣∣2)] (7)
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where S is the number of samples in the batch, s is the serial number, p is the length of the
complex vector V′high,s (or Vhigh,s), V′high,s is the output complex vector corresponding to the
sth sample, Vhigh,s is the target complex vector corresponding to the sth sample, real (·) is
the real part of a complex vector, imag (·) is the imaginary part of a complex vector, and
|·| represents the modulo of a vector.

After Loss is calculated, the weights and biases are updated by the gradient-descent al-
gorithm with momentum. The main disadvantage of gradient-descent learning algorithms
is that they sometimes become stuck in a local minimum rather than a global minimum.
Momentum is used along with the gradient-descent algorithm to solve this issue [27].

Then, another batch of samples from the training dataset are input into the VE-ResCNN
to continue the training. When all the samples in the training dataset are used, an epoch is
finished. Then, the next epoch begins.

A learning-rate scheduler is employed to adjust the learning rate based on the number
of epochs during training. When Loss stops decreasing for ten epochs, the learning rate is
reduced by a factor of five. Learning-rate schedulers can often benefit model training.

Epoch by epoch, the weights and biases are updated iteratively to decrease Loss. When
the epoch number reaches the pre-set number (NE) or Loss becomes stable, training is
stopped. Thus, the training process is finished.

When training the VE-ResCNN, the batch size is set to 512; the initial learning rate is
set to 0.015; the momentum is set to 0.356; and the maximum number of epochs (NE) is set
to 300 in this article.

In the training process, with an increase in epoch, both the Loss of the training dataset
(denoted as train-loss) and that of the testing dataset (denoted as test-loss) first decrease, and
then remain relatively stable with little effect in further training, as illustrated in Figure 8.
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The VE-ResCNN is programmed on the Pytorch framework with Python 3.9, trained
on a computer with one CPU (AMD Ryzen 7 2800 H) and one GPU (NVIDIA GeForce RTX
3070). It takes approximately 4.5 h to train the VE-ResCNN for 300 epochs.

The VE-ResCNN only needs to be trained once for an AS system. The trained VE-
ResCNN is then used to extend the visibility to reconstruct the BT image, which is rapid,
needing less than 0.02 s, as described in a later section.

3. Simulation
3.1. Simulation Procedure

The simulation procedure is illustrated in Figure 9. The following steps are included.

1. Vlow of the selected scene is obtained by AS simulation according to Formula (1). The
parameters of AS simulation are the same as the MAS-V experiment system mentioned
in Section 4: the minimum antenna spacing is 3.5λ where λ is the wavelength, and
the antenna array arrangement is {1, 2, 3, 4, 5, 6, 7, 8}.
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2. The visibility samples at vn < 0 corresponding to Vlow are obtained by acquiring the
conjugate of Vlow. Moreover, the corresponding reconstructed BT image (denoted as
observed BT) is obtained by IDFT.

3. Vlow is input into the trained VE-ResCNN, and V′high is output. Then, Vlow and V′high
are combined to extend the visibility samples.

4. The visibility samples at vn < 0 corresponding to the extended visibility samples are
obtained by acquiring the conjugate of the extended visibility samples. Additionally,
the corresponding reconstructed BT image (denoted as VE BT) is obtained by IDFT.
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Figure 9. Simulation procedure.

3.2. Simulation Results

In order to show the effect of the spatial resolution enhancement, several scenes are
picked out randomly from the scenes for generating the testing dataset, and the correspond-
ing simulation results are illustrated in Figures 10 and 11.

The simulation results of noise sources are illustrated in Figure 10. A narrow pulse
signal is used to simulate the noise signal radiated from a horn antenna, i.e., to sim-
ulate a noise source (see Figure 10a); and two narrow pulse signals are used to sim-
ulate dual noise sources (see Figure 10b,c). In Figure 10a, the half-power beamwidth
(HPBW, corresponding to spatial resolution) of the observed BT of the single noise source is
approximately 0.0231 (1.32◦); however, for the VE BT of the single noise source, the BPBW
is approximately 0.0079 (0.45◦). In Figure 10b, the observed BT of the dual noise sources
cannot separate the two noise sources, although the VE BT can. In Figure 10c, although the
two noise sources are separated by both observed BT and VE BT, the beamwidth of VE BT
is narrower than that of observed BT. These all indicate that the VE method can enhance
spatial resolution.

It also can be seen from Figure 10 that with spatial resolution enhanced, the recon-
struction error is also reduced. In Figure 10a–c, the RMSE of observed BT are 0.2171, 0.2271,
and 0.3214, respectively; the RMSE of VE BT are 0.0742, 0.1299, and 0.1204, respectively,
reduced by 65.82%, 42.80%, and 62.54%, respectively.
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The simulation results of natural scenes are shown in Figure 11. Compared with the
lines of observed BT, the lines of VE BT are closer to the lines of original BT, especially
where the BT changes rapidly. The results indicate that spatial resolution can be enhanced
by the VE method.

With the spatial resolution enhanced, the reconstruction error of the scenes in Figure 11
is reduced, as listed in Table 4.
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Figure 11. Simulation results of natural scenes. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.
(e) Scene 5. (f) Scene 6.

Table 4. Reconstruction error of the scenes.

RMSE of observed BT (K) RMSE of VE BT (K) Reduced

Scene 1 4.99 2.2 55.91%
Scene 2 7.08 3.28 53.67%

Scene 3 4.27 2.24 47.54%

Scene 4 7.57 2.54 66.45%

Scene 5 3.42 2.56 25.15%

Scene 6 8.16 2.55 68.75%

To further validate the effect of VE-ResCNN, all 30,589 samples in the testing dataset
are tested in simulation. Then, the average of both the mean error and the RMSE of the
reconstructed BT of all the scenes are calculated, as shown in Table 5. The average RMSE of
the observed BT is 5.22 K; however, the average RMSE of the VE BT is 2.73 K (approximately
47.7% less). The reconstruction error of VE BT is smaller because VE BT is closer to the
original BT with the spatial resolution enhanced. The average time for reconstructing one
observed BT image is approximately 0.003 s, and the average time for reconstructing a VE
BT image is approximately 0.019 s, as shown in Table 6.
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Table 5. The average reconstruction error of the whole testing dataset.

Mean Error (K) RMSE (K)

Observed BT 0.11 5.22
VE BT 0.11 2.73

Table 6. The average time for reconstructing a BT image.

Average Time (s)

Observed BT 0.003
VE BT 0.019

The simulation demonstrates that the spatial resolution of AS observation can be
effectively enhanced by the VE method. Additionally, with enhanced spatial resolution, the
reconstruction error also decreases.

4. Experiment

The performance of the VE method is also confirmed by an experiment in this section.
The experiment system MAS-V [28,29] is used, which was developed by Huazhong Univer-
sity of Science Technology (HUST). MAS-V can be used for conventional AS experiments
by removal of its reflectors, as illustrated in Figure 12. The antenna array arrangement of
the system in the experiment is {1, 2, 3, 4, 5, 6, 7, 8}, and the minimum antenna spacing
is 3.5λ.
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Figure 12. Experimental scenario.

4.1. Experimental Procedure

The experiment procedure included four steps. Except for step 1, the other steps are
the same as those of the simulation procedure described in Section 3.1.

In step 1, the scenes in the experiment are real, which is different from the simulation.
There are six scenes used to conduct the experiment: a single noise source and two noise
sources 6 cm, 7 cm, 8 cm, 10 cm, and 12 cm apart. When conducting the experiment, MAS-V
is used to observe the scene, and Vlow is obtained after error calibration.

4.2. Experimental Results

The results of the experiment are illustrated in Figure 13. As can be seen from Figure 13a,
the HPBW of the observed BT of the single noise source is approximately 0.022 (1.26◦); how-
ever, the HPBW of the VE BT of the single noise source is approximately 0.010 (0.58◦),
which indicates an enhancement in spatial resolution. As can be seen from Figure 13b,e,
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the observed BT of dual noise sources cannot separate the two noise sources; however, the
VE BT is able to, which also indicates an enhancement in spatial resolution. In addition, in
Figure 13f, although the two noise sources can be separated by both the observed BT and
the VE BT, the beamwidth of the two noise sources of the VE BT is apparently narrower
than that of the observed BT. These all indicate an enhancement in spatial resolution. The
results are listed in Table 7.
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Table 7. Experimental results.

Evaluation Observed BT VE BT

Single noise source HPBW 1.26◦ 0.58◦

Dual noise sources 6 cm apart Separated or not No Yes

Dual noise sources 7 cm apart Separated or not No Yes

Dual noise sources 8 cm apart Separated or not No Yes

Dual noise sources 10 cm apart Separated or not No Yes

Dual noise sources 12 cm apart Beamwidth Wider Narrower

The time taken to reconstruct the BT image is the same as that in the simulation: 0.003 s
for the observed BT image and 0.019 s for the VE BT image, shown in Table 6.

The experiment indicates that spatial resolution can be effectively enhanced by the VE
method, which is consistent with the simulation.

5. Discussion

The simulation and experiment results demonstrate that the VE method can enhance
the spatial resolution of 1-D AS. Moreover, the simulation results indicate that the VE
method can reduce the reconstruction error by enhancing spatial resolution.

But there are still some disadvantages and limitations of the VE method proposed in
this article.

The training dataset must contain a large number of samples in order to make the
prior information comprehensive for the VE-ResCNN to learn. This necessitates that there
must be enough BT images of scenes to generate the dataset.

The neural network needs to be trained first to learn the prior information of visibility
distribution, which means extra computational costs. The training of VE-ResCNN costs
nearly 4.5 h in this article, as shown in Table 2. Although it takes approximately 4.5 h
to train the VE-ResCNN, the training process needs to be performed only once for an
AS system.

However, it takes little time to perform the VE method after the neural network is
trained. It takes less than 0.02 s to reconstruct a BT image, as shown in Table 6.

6. Conclusions

The spatial resolution of AS is proportional to the size of an antenna array, which is
limited by the carrying capacity of satellites. To enhance the spatial resolution of 1D-AS
without increasing the size of an antenna array, the VE method is proposed in this article.

The key idea of the VE method is that the high-frequency visibility samples of a scene
are estimated by VE-ResCNN from the low-frequency visibility samples observed by an AS
system, and the high- and low-frequency visibility samples are combined to reconstruct the
BT image of a scene to enhance the spatial resolution. Only the visibility samples at spatial
frequencies lower than vcutoff can be obtained by the AS system in observations. With the
additional high-frequency visibility samples estimated from the low-frequency visibility
samples, the spatial resolution of the reconstructed BT can be improved.

The VE-ResCNN stands out from seven types of neural network model with over
1300 different configurations. The visibility of scenes generally distributes continuously,
so the visibility samples at adjacent spatial frequencies have a connection with each other.
ResCNN can learn the local features more effectively than other neural networks mentioned
in this article. Therefore, after training by various scenes to learn the prior information
of the visibility distribution of scenes, VE-ResCNN achieves good performance in visibil-
ity extension.

The simulation indicates that the spatial resolution of 1D-AS can be effectively en-
hanced by the VE method; and with spatial resolution enhanced, the reconstruction error
decreases by approximately 47.7%. The single noise source experiment shows that the
HPBW of the single noise source of the original observed BT and the VE BT are approx-
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imately 1.26◦ and 0.58◦, respectively. Moreover, the experiment with dual noise sources
6 cm, 7cm, 8cm, and 10 cm apart shows that the original observed BT cannot separate be-
tween the dual noise sources, although the VE BT is able to. In addition, in the experiment
with dual noise sources 12 cm apart, although the two noise sources can be separated by
both observed BT and VE BT, the beamwidth of VE BT is narrower than that of observed
BT. These all demonstrate enhanced spatial resolution.
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