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Abstract: Land surface temperature (LST) is an important driving factor in the land-atmosphere
energy cycle. To examine the spatiotemporal patterns of LST changes and the internal mechanisms
driven by multiple factors, we used a trend analysis method on TRIMS LST data from 2000 to 2020 in
the Qingling-Daba Mountains. The optimal parameter geographic detector (OPGD) model was used
to detect the influence of twelve factors, including elevation, precipitation, albedo, relative humidity
(RH) and normalized difference vegetation index (NDVI), on the spatial distribution of LST, as well
as to explore the dominant factors affecting LST differentiation in the study area. The results showed
that: (1) From 2000 to 2020, the average annual LST of the Qinling-Daba Mountains was 18.17 ◦C.
The warming trend was obvious (0.034 ◦C/a), and the warming effect at nighttime (0.066 ◦C/a) was
stronger than that during daytime (0.0004 ◦C/a). The difference between day and night temperature
(DIF) was decreasing. (2) The seasonal changes in LST and DIF in the Qinling-Daba Mountains were
significant, and the spatial distribution of their average values in the summer was slightly larger and
fluctuated more than in the other seasons. (3) Elevation was the main driving factor affecting the
spatial distribution of LST, with the contribution scores of 62.9% in the daytime and 92.7% in the
nighttime. The controlling effects of these factors were generally stronger in the nighttime than in the
daytime. (4) Nighttime elevation had the strongest interaction with precipitation (contribution score
of 95%), while daytime elevation had the strongest interaction with albedo (contribution rate of 83%).
We revealed the temporal and spatial variation in LST in the Qinling-Daba Mountains since 2000 and
explored the main driving factors involved, thereby improving our understanding of LST changes in
the Qinling-Daba Mountains. This study can provide a scientific basis for distinguishing dominant
drivers of LST dynamics in the Qinling-Daba Mountains.

Keywords: land surface temperature; driving factors; spatiotemporal differentiation; optimal parameter
geographic detector; Qinling-Daba Mountains

1. Introduction

Since the industrial age, the average global land surface temperature (LST) has been
increasing rapidly, and climate warming has become a key issue of widespread concern [1,2].
Research shows that, from 1980 to 2012, the global LST showed a linear upward trend, with
a total increase of 0.85 ◦C [3]. According to the Blue Book on Climate Change in China (2019)
released by the China Meteorological Administration, from 1951 to 2018, the average annual
temperature in China increased by 0.24 ◦C per decade, a significantly higher increase than
the global average during the same period [4,5]. However, in the context of current global
climate change, related studies have mostly focused on air temperature [6,7]. Carrying
out research on the spatiotemporal differentiation of LST from multi-time series [8,9], and
further quantifying the interaction between LST and various driving factors [10,11], can
more directly reflect the spatiotemporal differentiation characteristics of LST on the earth’s
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land surface under global warming. Mitigating and adapting to LST changes [9], as well as
monitoring agriculture and forestry [12], and urban heat (cold) island effect evaluation and
optimization are of great significance [13].

LST is not only an important driving factor in land-atmosphere energy exchange
and energy flux control processes [8,14], but is also a key parameter in surface energy
budget and water cycle processes at the regional and global scales [15]. The degree of
response of various geographical factors to the change in LST also shows a high degree
of heterogeneity [4,16]. Some researchers have found that the spatial difference in LST is
mainly related to the dynamic changes in the Earth’s effective radiation [9]. Temperature
change has been shown to be the direct factor leading to changes in LST [8,17], in addition
to other important factors, including terrain factors [14,17], the underlying surface [18],
and vegetation growth status [19,20]. Previous studies have mostly focused on the relation-
ship between LST and land use and cover changes [21], vegetation changes [22], climatic
factors [5], elevation [17], and slope and aspect [23]. However, the relationship between
LST and geographic factors, such as albedo, relative humidity and cloud cover, still needs
to be further explored [24,25]. In addition, in terms of spatial interaction, most studies
have focused on the nonlinear spatial relationship between single or multiple factors and
LST [10,26]. Therefore, quantitative analysis of the relationship between LST and multiple
factors is the focus of current research on the ecological surface environment under climate
change [10,19,27].

There are certain differences in the natural geographical environment of different
surface layers on different spatial scales, and the heterogeneity of topography and climate
is even more common [28,29]. At present, large-scale LST research mostly explores the
spatial heterogeneity of LST globally or nationally from a macro perspective [11]. However,
due to the large east–west span of China and the complex natural geographical environment
of some mountainous areas, there are often differences in the heterogeneity at different
spatial scales [8]. However, studies on China’s small-scale LST are mostly focused on urban
areas with intensive economic activities [18,27], as well as on ecologically fragile areas,
such as the Tibetan Plateau [14], Loess Plateau [30], and Dongting Lake Basin [31]. The
Qinling-Daba Mountains are located in the transition zone between the north sub-tropical
and warm temperate zones in China, that is, in the north–south transition zone. They
play an important role in China’s climate, geography, and hydrology [32]. Due to the
influence of many factors, such as special geographical location, complex terrain conditions,
and mountain climate, LST significantly differs between the north and the south [33].
Previous studies also focused on the spatiotemporal variation characteristics of LST in the
Qinling-Daba Mountains and the boundary between the warm temperate zone and the
subtropical zone. However, studies on LST have rarely investigated the natural boundaries
of geography and climate between north and south China, and the important ecological
corridor of the Qinling-Daba Mountains as a whole region and the internal mechanism
of LST and related driving factors still needs to be explored [7]. In addition, the existing
meteorological observation points are mostly concentrated in urban areas, whereas the
mountainous stations are sparsely distributed and are easily affected by terrain and other
factors. It is difficult to further capture the region’s overall response to climate change [34].
The introduction of high-precision remote sensing data into the study of the Qinling-Daba
Mountains provides certain conditions for the quantitative study of LST in the region.

In this study, based on the remote sensing data of LST in the Qinling-Daba Mountains
from 2000 to 2020, we analyzed the temporal and spatial evolution characteristics of daytime
and nighttime LST of this region in different temporal and spatial dimensions. The OPGD
model was further used to quantitatively analyze the multi-factor interaction between LST
and various driving factors, such as precipitation (PRE), cloud cover, wind speed (Ws),
relative humidity (RH), albedo, solar radiation (SR), elevation, slope, aspect, land use and
land cover change (LUCC), NDVI, and vegetation type. It is helpful to understand the
characteristics of LST variation particular to a mountainous environment, to provide a
theoretical basis for climate change and local environmental monitoring in the Qinling-
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Daba Mountains, along with providing new evidence to define the boundary between the
warm temperate and subtropical zones in the north and south of China. For these reasons,
the specific objectives of this study are: (1) to understand the interannual and seasonal
variation of LST in the Qinling-Daba Mountains, an ecologically fragile area; (2) to explore
the main driving factors affecting the spatial variation pattern of LST in the Qinling-Daba
Mountains; and (3) to determine how the interaction with various driving factors affects
LST in a complex geographical environment, and further analyze the impact of the optimal
range of each driving factor on LST.

2. Materials and Methods
2.1. Study Area

The Qinling-Daba Mountains are located in central China, between 30◦ and 36◦ N
and 102◦ and 114◦ E (Figure 1). The area is a watershed of the Yangtze River-Yellow River
Basin and the main area of China’s north–south transition zone. It spans six provinces
and cities, namely Henan, Shaanxi, Gansu, Sichuan, Hubei, and Chongqing. The terrain
gradually decreases from west to east, with complex and diverse geomorphology and
landforms [35]. This area is located in the transition zone between the warm temperate and
northern subtropical zones, and the climate difference between the north and the south is
large. The air temperature and precipitation rate show a decreasing trend from south to
north. The Qinling Mountains are dominated by warm temperate deciduous broad-leaved
forests, while the Daba Mountains are dominated by north subtropical evergreen-deciduous
broad-leaved mixed forests. It is a north–south transition zone in terms of human society,
geography, climate, and biology, and is also a sensitive area for climate change and one of
the ecologically vulnerable areas in China [36].
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Figure 1. Location of the Qinling-Daba Mountains.

2.2. Data Sources
2.2.1. TRIMS LST

The LST data products were obtained from the National Qinghai-Tibet Plateau Scien-
tific Data Center (http://data.tpdc.ac.cn, accessed on 26 June 2022) with a spatial resolution
of 1 km. The principle underlying the generation of this dataset is based on the decompo-
sition model of the LST time series, and utilizes a novel reanalysis and thermal infrared
remote sensing data merging (RTM) method to reconstruct the 1-km all-weather LST. The

http://data.tpdc.ac.cn
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main input data of the method are Terra/Aqua MODIS LST products and GLDAS data,
and auxiliary data include NDVI and albedo provided by satellite remote sensing. This
dataset utilizes high-frequency components, low-frequency components, and spatial corre-
lation of LSTs, provided by satellite thermal infrared remote sensing and reanalysis data,
to reconstruct a high-quality Thermal and Reanalysis Integrating Moderate-resolution
Spatial-seamless LST (TRIMS LST) dataset [37], which effectively solves the spatial mis-
match problem in the MODIS LST and reanalysis LST datasets. The time span of the
selected TRIMS LST data was 2000–2020, and the daytime and nighttime data were unified
to 12:30 (local solar time) and 01:00 (local solar time), respectively. Many studies have
verified that TRIMS or MODIS daytime and nighttime clear-sky retrievals can be used to
calculate the monthly or annual mean LST. Based on previous studies, the TRIMS LST
data pre-processing, including the daytime and nighttime LSTs, were averaged to yield
the monthly mean LST, and thus the annual mean LST. Each season had 3 months: spring
(March, April, and May), summer (June, July, and August), autumn (September, October,
and November), and winter (December, January, and February) [38,39]. The data were also
divided by season to analyze the spatiotemporal distribution characteristics of annual and
quarterly LSTs.

2.2.2. Supplementary Data

The LTDR NDVI dataset was obtained from the National Aeronautics and Space
Administration (NASA) (http://ltdr.nascom.nasa.gov, accessed on 26 June 2022) and was
the latest dataset for the AVHRR sensor, which is characterized by a long time series.
The meteorological data included precipitation, RH, albedo, Ws, SR and cloud cover. Of
these, precipitation, RH, SR and Ws data were obtained from the National Qinghai-Tibet
Plateau Scientific Data Center (http://data.tpdc.ac.cn, accessed on 26 June 2022) [40,41].
Cloud cover and snowfall were obtained from ERA5 reanalysis data (https://cds.climate.
copernicus.eu, accessed on 26 June 2022) with a spatial resolution of 0.01◦ × 0.01◦ and
a temporal resolution of 1 h. The terrain data was the SRTM 90 m DEM product, which
was obtained from the geospatial data cloud (http://www.gscloud.cn, accessed on 26 June
2022), and the aspect and slope data were obtained after processing. The vegetation data
was 1:1 million raster data obtained from the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on 26 June
2022), and it showed that the study area included broad-leaved forests, coniferous forests,
shrubs, grasses, meadows, cultivated vegetation, and other vegetation types. The land
cover data was obtained from GlobeLand30, a 30 m spatial resolution global land cover
dataset developed by the National Basic Geographic Information Center (http://www.
globallandcover.com, accessed on 26 June 2022) [42].

2.3. Research Methodology
2.3.1. Analysis of the LST Time Series Trend

The trend analysis adopts a one-variable linear regression analysis method, which can
be used to simulate the changing trend of different pixels [43]. This method can reduce
the impact of accidental factors on LST and accurately reflect the long-term LST change
trend [44]. Therefore, this method was used to simulate and analyze the interannual and
seasonal trends of LST in the Qinling-Daba Mountains using Equation (1):

Slope =
n ∑n

i=1(i× LSTi)−∑n
i=1 i×∑n

i=1 LSTi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where Slope is the change trend of LST, i is the number of years, n is the length of the LST
time series, and LSTi is the average LST in the ith year; here, n = 21. A positive slope
indicates an increase in LST (warming), while a negative slope indicates a decrease in

http://ltdr.nascom.nasa.gov
http://data.tpdc.ac.cn
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://www.gscloud.cn
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LST (cooling). The F test was used to determine the significance of the trend using the
following equations:

F =
SR

SE/(n− 2)
(2)

SR =
n

∑
i=1

(ŷi − y)2 (3)

SE =
n

∑
i=1

(yi − ŷi)
2 (4)

where SR and SE are the error sum of squares and regression sum of squares, respectively,
ŷi is the regression value, y is the average LST value throughout the 21 years, and yi is the
actual observed LST value in the ith year. Combined with the F test results, the change trend
was divided into six grades: extremely significant warming (Slope > 0, p < 0.01), significant
warming (Slope > 0, 0.01 < p < 0.05), insignificant warming (Slope > 0, p > 0.05), extremely
significant cooling (Slope < 0, p < 0.01), significant cooling (Slope < 0, 0.01 < p < 0.05), and
insignificant cooling (Slope < 0, p > 0.05).

2.3.2. Optimal Parameter Geographic Detector (OPGD)

(1) Variable selection. We used correlation analysis to study the correlation between LST
and the independent variables, and selected the variance inflation factor (VIF) method
to determine the collinearity of all independent variables (Figure S1 and Table S1).
The VIF values of elevation and SR were still higher than the other variables after
screening, but they were all less than 10, indicating that there was no strong collinear
relationship with other driving factors. Therefore, the precipitation (X1), cloud cover
(X2), Ws (X3), RH (X4), albedo (X5), SR (X6), elevation (X7), slope (X8), aspect (X9),
NDVI (X10), vegetation types (X11), and LUCC (X12) were incorporated into the
OPGD model as driving factors.

(2) Optimal parameter selection. The OPGD model is a quantitative method used to detect
spatial heterogeneity and reveal the driving forces behind it [45]. Determining the
optimal scale of spatial hierarchical heterogeneity through spatial data discretization
is a key point in the use of the OPGD model. Here, methods, such as equal breaks,
natural breaks, quantile breaks, geometric breaks, standard and deviation breaks,
were compared. The number of levels was selected to filter out the optimal parameters
for the analysis in order to carry out the LST driving factor correlation analysis.

(3) Factor Detector. To detect the spatial differentiation of LST (Y) and the extent to
which the driving factors (X) explained the spatial differentiation of Y, the factor
detector revealed the relative importance of the explanatory variables through q
statistics. Among them, X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 refer to the average
annual temperature, precipitation, cloud cover, NDVI, elevation, aspect, slope, LUCC,
vegetation type, and snowfall, respectively. The q value of each explanatory variable
was calculated using Equation (5):

q = 1− ∑L
i=1 Niσ

2
i

Nσ2 = 1− SSW
SST

(5)

where i = 1, 2, . . . , L are the strata of Y or X, i.e., classification or partition; σ2
i and σ2

are the variances of units in local strata i and global strata, respectively; Ni and N are
the numbers of units in local strata i and global strata, respectively; SSW is the within
sum of squares; and SST is the total sum of squares. The q value ranges from 0 to 1;
the higher the q value, the stronger the explanatory power.

(4) Risk Detector. This is used to determine whether there is a significant difference in
the attribute mean between two sub-regions. The sub-region with a higher mean
value has a higher LST value and can be used to determine which areas are high-
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temperature areas of the LST. The risk detector was tested with the t-test and calculated
by Equation (6):

t =
Yi=1 −Yi=2[

Var(Yi=1)
ni=1

+
Var(Yi=2)

ni=2

] (6)

where Yi is the average value of the observations of the subregion i, ni is the number
of observations, and Var is the variance.

(5) Interaction Detector. While considering a single influencing factor, the interaction
between different drivers was identified, that is, the explanatory power of the com-
bined (enhanced or weakened) and independent effects of the drivers on LST was
assessed. Five types of interactions between the two factors were observed and are
shown in Table 1.

Table 1. Types of interactions between two factors.

Interaction Judgment Criteria

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear weaken
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Univariate weaken

q(X1∩X2) > Max(q(X1), q(X2)) Bivariate enhance
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Nonlinear enhance

3. Results
3.1. Spatiotemporal Variation Characteristics of LST

The average annual LST had obvious spatial differentiation patterns in the Qinling-
Daba Mountains from 2000 to 2020, and the overall distribution characteristics were high
in the east and low in the west (Figure 2). The low-value areas of the average annual LST
were mainly concentrated in the areas west of the Jialing River, and the high-value areas
were distributed on both sides of the Hanjiang River.
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Among them, the average annual LST was slightly lower south of the Hanjiang River
and near the ridgeline of the Daba Mountains and the Micang Mountains. The high-value
areas were mainly concentrated in the east of the Daba Mountains, while north of the
Hanjiang River, the high-value areas were mainly concentrated in the northeast of the
Qinling Mountains. The low-value areas of the average annual daytime LST were mainly
located in the mountainous areas with higher elevation, such as the Honggang Mountains,
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Minshan Mountains, Yanggong Mountains and Chagangling Mountains to the west of the
Jialing River, and the main ridgelines of the Qinling Mountains and Daba Mountains; the
high-value areas were mainly located in the northeastern part of the Qinling Mountains.
The spatial differentiation characteristics of the average annual nighttime LST were similar
to the average annual LST, and the nighttime LST in the areas west of the Jialing River
was lower; the high-value areas were mainly located on both sides of the Hanjiang River
and in the south and east of the Daba Mountains. In addition, the DIF in the Qinling-
Daba Mountains was high in the middle of the region and low in the east and west. The
high-value areas were mainly located around the mountains with higher elevation, mostly
concentrated in the West Qinling Mountains, west of the Jialing River, and a small amount
in the northeast of the Qinling Mountains.

The average annual LST showed an increasing trend year by year (0.034 ◦C/a) in the
Qinling-Daba Mountains from 2000 to 2020, with the most obvious rise in LST at nighttime
(0.066 ◦C/a). The increasing trend of daytime LST was not significant (0.0004 ◦C/a)
(Figure 3). From the perspective of inter-annual variation, the average annual LST peaked
at 19.14 ◦C in 2002, and dropped to a minimum in 2012 (16.89 ◦C). The average daytime
LST peaked at 25.87 ◦C in 2013 and dropped to its lowest (23.16 ◦C) in 2012; while the
average nighttime LST peaked at 12.67 ◦C in 2018 and reached its minimum of 9.70 ◦C in
2001. Moreover, the DIF showed a decreasing trend year by year, with a decreasing rate of
0.065 ◦C/a. This is thought to be due to the interruption of global warming from 1998 to
2012. The warming trend was significantly lower during this time than in previous decades,
and the warming gradually disappeared in the short and medium term after 2014. At the
same time, in the winter of 2012, the temperature was lower and the snowfall increased,
and the large-scale snow accumulation led to the enhancement of surface albedo. In 2018,
the western Pacific subtropical high was extremely abnormal, crossing the area at almost
40◦ north latitude. Under the influence of the abnormal subtropical high, the LST in 2018
was higher than throughout the historical period.
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The complex geomorphological pattern of the Qinling-Daba Mountains is the reason
for the obvious regional differences in the spatiotemporal distribution of interannual LST
changes. To further explore the pattern and regional differences in LST changes among
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different regions, we analyzed the average annual LST change trends in the Qinling-Daba
Mountains from 2000 to 2020 (Figure 4). Most areas showed a warming trend, and the
overall rate of LST warming gradually decreased on both sides, with the Hanjiang River as
the dividing line. Further analysis of daytime and nighttime changes in the interannual
LST showed that the warming and cooling trends during the daytime were significantly
higher than those during the nighttime, and the warming and cooling trends of interannual
LST were most affected by daytime changes. Furthermore, human activities, solar radiation
intensity, and sunshine time changes were the dominant factors affecting daytime warming.
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3.2. Seasonal Spatiotemporal Variation Characteristics of LST

Our results showed that the variation in LST had significant seasonal differences. We
analyzed the spatial distribution and its variation trend in different seasons and illustrate
the temporal and spatial variation patterns of LST in a more detailed manner in Figure 5.
From highest to lowest, the seasonal LSTs and DIFs in the Qinling-Daba Mountains from
2000 to 2020 followed the trend of summer > spring > autumn > winter. The DIF was the
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lowest in winter mainly because of the short sunshine duration and high snow and ice
coverage, and the specific heat characteristics of ice and snow decrease LST fluctuation.
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Figure 5. Spatial distribution of multiyear mean daytime and nighttime LST in spring (a); summer
(b); autumn (c); and winter (d) in the Qinling-Daba Mountains from 2000 to 2020.

Furthermore, we also found significant differences between seasonal LST variation
trends in the Qinling-Daba Mountains (Figures 6 and 7). The LST change rate in the summer
(0.102 ◦C·a−1) was much higher than that of other seasonal and interannual LSTs, and
78.8% of the study area showed a warming trend, which was particularly pronounced in
the Hanjiang, Yinghe, and Shahe rivers. The LST change rate in the spring was the second
highest (0.417 ◦C·a−1), and the area with a greater variation in LST was the Danjiangkou
Reservoir. The amplitude of LST variation in autumn was relatively small (0.013 ◦C·a−1).
This is due to the fact that with global warming, the delay of vegetation phenology and
the extension of the growing season promote changes in vegetation greenness and slow
down the upward trend of LST. The amplitude of LST variability in winter was essentially
the same as that in autumn. Winter was dominated by cooling, with the largest amplitude
of cooling recorded in the Taizishan Mountains. The winter LST reached its minimum in
2011, which may be the result of the strong East Asian winter monsoon and the La Niña
influence of the winter Pacific.
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Figure 7. The interseasonal variability rates (slope) and trend significance of LST in spring (a); summer
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the trend significance in the four seasons.

3.3. Impacts of Driving Factors on LST Spatial Distribution
3.3.1. Contribution from Individual Factors

To explore the LST spatial distribution pattern, we used factor detectors to analyze
the contribution of selected driving factors to LST. The q values of each factor are shown in
Table 2, and all q values passed the significance test (p < 0.01). The nighttime q values of
each driving factor were higher than the daytime values, and these differences revealed
that the changing mechanism of LST is more complex in the daytime than in the nighttime.
From highest to lowest, the q values of the influence of each driving factor on the spatial
distribution of daytime and nighttime LST were ranked as follows: X7 > X5 > X11 > X2 >
X8 > X12 > X6 > X4 > X1 > X10 > X3 > X9; X7 > X6 > X1 > X4 > X11 > X5 > X10 > X2 > X3 > X8
> X12 > X9, respectively. The factor detection results showed that the q value of elevation
was the largest in both the daytime and nighttime, and elevation was the main driving
factor affecting the spatial distribution of LST. The influence of the daytime albedo was
the second-largest, and albedo directly affected the available energy of the surface, which
in turn had a direct impact on LST. However, the influence of albedo at nighttime was
less than that of solar radiation. There was no solar radiation at nighttime, but there was
ground radiation. When the earth’s surface absorbs solar radiation, it transmits most of the
energy to the atmosphere in the form of radiation. The contribution of a single factor of
aspect was less than 10%, and its influence on the spatial distribution of LST was small.
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Table 2. The q values of single factors for daytime and nighttime LST.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X10 X12

Daytime 0.085 0.268 0.058 0.122 0.306 0.128 0.629 0.234 0.003 0.081 0.276 0.081 0.167
Nighttime 0.358 0.133 0.086 0.352 0.210 0.605 0.927 0.074 0.002 0.178 0.248 0.178 0.062

Notes: X1 is Precipitation, X2 is Cloud cover, X3 is Ws, X4 is RH, X5 is Albedo, X6 is SR, X7 is Elevation, X8 is Slope,
X9 is Aspect, X10 is NDVI, X11 is vegetation type, X12 is LUCC.

3.3.2. The Dominant Factors of the Spatial Differentiation of LST Change between
Geomorphic Types

The geomorphology of the Qinling-Daba Mountains is complex and diverse, and
the landform fluctuates greatly, resulting in a diversity of climate, plants, and soil. The
differences in geomorphic types lead to large differences in the explanatory power of each
driving factor for the spatial differentiation of LST (Figure 8 and Table 3). The same driving
factors had different effects on LST in different geomorphic types. Albedo was the main
driving factor determining the spatial variation of daytime LST in plains, platforms, hills,
and extremely large relief landforms. Driving factors, such as elevation, NDVI and cloud
cover, also had a greater impact on the daytime LST of plains, platforms and hills. In
small, medium and large relief landforms, the main driving factor was elevation, which
contributed significantly more to the spatial distribution of daytime LST than other factors.
However, in extremely large relief landforms, the influence of RH and SR on daytime
LST was similar to that of albedo. In addition, there were also certain differences in the
influence of each driving factor on the daytime and nighttime LSTs of different geomorphic
types, and the q value at nighttime was greater than that during the daytime. In terms of
geomorphic types, elevation was the main factor affecting nighttime LST, and the q value
was significantly higher than other driving factors. Slope and NDVI had less influence. In
extremely large relief landforms, RH played a leading role, with the largest q value (0.7),
and the effect of elevation was slightly smaller, with a q value of 0.32. Slope, aspect and
LUCC were not among the main driving factors affecting LST.
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Table 3. Main influencing factors and corresponding q values in different geomorphic types for
daytime and nighttime LST.

Geomorphic Types Influencing Factors (q)

Daytime

Plain Albedo (0.46) Elevation (0.42) NDVI (0.26) Cloud cover (0.24)
Platform Albedo (0.50) Elevation (0.48) Cloud cover (0.44) NDVI (0.41)

Hill Albedo (0.42) Cloud cover (0.40) Elevation (0.36) NDVI (0.36)
Small relief landform Elevation (0.34) Cloud cover (0.21) Albedo (0.20) NDVI (0.14)

Medium relief landform Elevation (0.57) Veg (0.25) RH (0.17) SR (0.16)
Large relief landform Elevation (0.69) Veg (0.24) Pre (0.21) Albedo (0.19)

Extremely large relief landform Albedo (0.34) RH (0.313) SR (0.307) Cloud cover (0.28)

Nighttime

Plain Elevation (0.87) SR (0.72) Pre (0.48) RH (0.24)
Platform Elevation (0.88) SR (0.78) Pre (0.53) RH (0.23)

Hill Elevation (0.89) SR (0.79) Pre (0.63) RH (0.28)
Small relief landform Elevation (0.91) SR (0.78) Pre (0.59) RH (0.38)

Medium relief landform Elevation (0.93) SR (0.70) Pre (0.52) RH (0.43)
Large relief landform Elevation (0.93) SR (0.55) Albedo (0.51) NDVI (0.46)

Extremely large relief landform RH (0.70) SR (0.68) Cloud cover (0.66) Albedo (0.56)

3.3.3. Driving Factors Indicate Function

Besides identifying significant differences between the driving factors, risk detec-
tion can also help identify the optimal range at which each factor can significantly affect
the LST, and pass the statistical significance test at the 95% confidence level (Table 4,
Figures S2 and S3). This pattern is evident from the optimal range results showing that,
when LST was at its maximum, the types and optimal ranges of the driving factors were
roughly the same during the daytime and the nighttime. With the increase in elevation,
cloud cover, and slope, the LST gradually decreased in the daytime and nighttime, and
the average LST reached its maximum, within the ranges of 54.2–484 m, 53.7–60.5%, and
0–1.65◦. The daytime LST variation in the optimal intervals of Ws, RH and aspect had little
difference, but at nighttime, due to the cooling effect and the reduction of transpiration, the
fluctuation range of wind speed and relative humidity in each optimal interval increased.
Precipitation, albedo, SR, and NDVI had a curvilinear interaction relationship with LST.
With the increase in precipitation, albedo, SR and NDVI, the LST presented a distribution
feature that increased first and then decreased. In the ranges of 867–936 mm, 7.95–10.2%,
148–156 W/m2 and 0.37–0.41 for precipitation, albedo, SR, and NDVI, respectively, LST
reached its maximum during the daytime. In the ranges of 951–1060 mm, 5.24–6.8%, and
0.52–0.55 for precipitation, albedo, and NDVI, respectively, LST was at its highest during
the nighttime. When the LUCC and vegetation types were different, the LST was obviously
different and showed a fluctuating trend. When the LUCC type was an artificial surface,
the daytime LST reached the maximum value, which was related to the low thermal con-
ductivity and rapid heating of the artificial surface. The LST of the water area was the
highest at nighttime, which was related to the thermal insulation effect of the water, natural
convection inside the water body, and sufficient water on the surface for evaporation, which
made the water area cool down slowly.

Table 4. Type or range of the influence factors at maximum LST.

Factors
Type or Range LST/◦C

Daytime Nighttime Daytime Nighttime

Pre/mm 867–936 951–1060 26.48 15.43
Cloud cover/% 53.7–56.4 53.7–60.5 31.49 14.32

Ws/m·s−1 2.21–2.52 0.93–1.28 28.41 13.97
RH/% 78.8–80.1 84.6–88.5 26.44 14.58

Albedo/% 7.95–10.2 05.24–6.8 27.81 12.57
SR/W·m−2 148–156 137–142 26.56 14.46

Elevation/m 54.2–484 54.2–477 30.55 16.88
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Table 4. Cont.

Factors
Type or Range LST/◦C

Daytime Nighttime Daytime Nighttime

Slope/◦ 0–1.65 0–0.51 28.58 15.25
Aspect south southwest 25.07 11.67
NDVI 0.37–0.41 0.52–0.55 27.76 13.34

Vegetation types Cultivated vegetation Grass 27.88 13.90
LUCC Artificial surface Water body 31.41 15.93

3.3.4. Interaction between the Driving Factors

Interaction detector is mainly used to identify the interactive effects of different driving
factors on LST distribution and analyze whether it would enhance or weaken the explana-
tory power of LST distribution, as well as whether the effects of these driving factors on LST
distribution are independent of each other. The q values of the interaction and interaction
types are shown in Figure 9. Overall, the interaction q values of most driving factors were
higher than the q values of single factors, and the interaction effects of the factors showed
a relationship of bivariate and nonlinear enhancement. This indicated that the spatial
distribution of LST was the result of a combination of factors, rather than a single factor.
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Similar to the effect of a single factor on LST changes, the interactions of elevation
with other factors were significant during both daytime and nighttime. The q values of the
interactions of elevation with other driving factors were all greater than 0.9 at nighttime,
which again proved that elevation was the main factor driving the spatial distribution of
LST. The degree of increase in the q values of the interaction between driving factors during
the daytime was higher than that during the nighttime, indicating that daytime interaction
had a stronger effect on the spatial distribution of LST. At nighttime, the interaction between
elevation and precipitation had the highest q value (0.95), whereas during the daytime, the
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interaction between elevation and albedo had the highest q value (0.83). We also found great
differences between the interaction effect and influence of a single factor on LST. In single
factor detection, the q values of aspect, Ws, and NDVI were relatively small. However,
the interaction effect of these three factors increased greatly during both the daytime and
nighttime. Furthermore, the effects of aspect, Ws, and NDVI on LST changes were mainly
reflected in the interaction with other factors. In conclusion, the influence of driving factors
on LST is not independent, but their interaction is significant; the influence of multi-factor
interaction on LST is not a simple superposition process, but has a bivariate enhancement
or nonlinear enhancement.

4. Discussion

The Qinling-Daba Mountains are an important area that divides the north and south of
China. As a consequence of the differences in geographical location and climatic conditions,
the non-zonal law within the region is particularly significant. The spatial heterogeneity
of LST is closely related to factors, such as elevation, aerosol concentration, LUCC, and
vegetation coverage [21,24,46,47]. In the present study, we found that elevation was the
main driving factor of LST. However, in reality, the effect of terrain on LST is usually not
determined by a single terrain factor, and regional differences in LST are often the result
of combined effects of multiple terrain factors. Therefore, the actual influence of terrain
on LST can be effectively described only by comprehensively considering the influence
of terrain factors, such as elevation, slope, and aspect. Furthermore, we found that LST
was negatively correlated with elevation, which was similar to the findings of the study
carried out in Hangzhou, China, which showed that LST was negatively linearly correlated
with elevation [23]. In addition, some researchers have analyzed the impact of terrain
factors, underlying surface characteristics, and vegetation growth conditions on the spatial
differentiation of the surface thermal environment, considering the differences between
day and night [16,18,20]. In this study, we incorporated albedo, wind speed, and relative
humidity to the study of LST driving factors. The results show that the impact of albedo
on the spatial variation of LST during the daytime is second only to that of elevation,
and the increase in albedo reduces the absorption of solar radiation, thereby causing a
decrease in LST. The interaction between albedo and elevation during the daytime is the
strongest, because albedo and elevation are positively correlated, and high-elevation areas
also cause LST to decrease, so the interaction between the two has a greater impact on
LST [48]. At nighttime, the interaction between elevation and precipitation is stronger.
More precipitation leads to an increase in soil moisture. Changes in soil moisture can cause
changes in latent and sensible heat, thereby causing changes in LST [49]. We also found that
the impact of static variables (topographic elements) on LST is higher than that of dynamic
variables (meteorological elements). This is because topographic factors, as relatively stable
elements, directly affect LST through relatively fixed limiting factors, such as elevation
decline, shady and sunny slopes, peak and valley topography, and the mountain effect
of the Qinling-Daba Mountains, thereby making the change of LST more complicated.
Meteorological elements have more indirect effects on LST, which are easily disturbed by
other elements and are unstable [50,51].

In general, in terms of driving factors and method choice, many researchers have
focused on the interaction between a single factor and LST [14,22]. Although the impact of
different driving factors on the spatial differentiation of LST has been studied in detail, it
is impossible to compare different driving factors at the same level. Therefore, it is very
important to select an effective analysis method to study the impact of various driving
factors on LST. However, the currently available methods, such as the spatial error model,
spatial lag model, and spatial autocorrelation often ignore the interaction of internal corre-
lation characteristics among various factors in space and thus cannot accurately reflect the
heterogeneity between regions [4,52]. As a powerful tool for analyzing spatial variability,
the geodetector model breaks through the linear assumption of traditional models and
is widely used to study the mechanisms underlying the impact of natural environmental
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variables. It is also based on nonlinear assumptions, and it is not necessary to know in
advance whether the relationship between factors is additive or multiplicative when ex-
ploring the interaction relationship. In addition, collinearity can be avoided, and factors
can be analyzed regardless of whether they comprise qualitative or quantitative data. In
order to improve the accuracy and reliability of the results, we based the present study on
the pixel scale, which reflects the spatial distribution characteristics of each driving factor
in a more refined manner, to further deepen the microscopic research on the impact of
LST, and we used the geodetector model to examine the relationship between LST and
various driving factors. Many judgments in the parameter identification of the optimal scale
of spatial hierarchical heterogeneity in geodetector are subjective, which leads to biased
detection results [53]. Therefore, the present study used the OPGD model to objectively
assess the contribution of each driving factor, more accurately identifying the interaction
mode and process [54], and scientifically revealing the influence mechanism of various
geographical elements on the spatial differentiation of LST. This allowed us to describe and
understand the variation characteristics of LST in a complex geographical environment in
detail, and has certain reference value for promoting ecological monitoring and ecological
environmental protection in the Qinling-Daba Mountains.

Traditional remote sensing data are easily affected by cloud blocking, atmospheric dis-
turbances, and other factors, resulting in large areas of missing data. Due to the complexity
of LST on spatiotemporal scales, the problem of missing pixels limits its further application
in the study of regional surface thermal environments [55,56]. Currently, the common LST
data products include Landsat, Moderate-resolution Imaging Spectroradiometer (MODIS),
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [57–59].
Landsat has a long revisit period (16 days) and generally only provides data during the day.
If affected by clouds, there may be no data available for several months, which limits the
application of Landsat LST datasets [60]. The MODIS LST dataset effectively solves some
problems of the Landsat LST dataset. However, because of the lack of effective pixel data,
obvious overestimation or underestimation can occur in certain cloudy conditions based
on its calculation results [58]. ASTER can provide high-resolution (90 m) LST data, but its
widespread application in surface thermal environment research is hindered by high costs
and limited data archiving because of the high acquisition cost of ASTER imagery [59].
The TRIMS LST uses the RTM method for synthesis optimization. This method has high
accuracy under both clear sky and non-clear sky conditions and effectively solves the
spatial mismatch between the MODIS LST and reanalysis LST datasets. Therefore, the
present study is conducive to promoting the application of TRIMS LST in the study of
surface thermal environments, as well as to exploring the spatiotemporal characteristics
and driving factors of the surface thermal environment under real all-weather conditions
from a richer time and space dimension.

5. Conclusions

In the present study, based on TRIMS LST, DEM, LUCC, and other data, and using
trend analysis methods and the OPGD model, we studied the spatiotemporal patterns of
LST change in the Qinling-Daba Mountains from 2000 to 2020, and quantitatively analyzed
and discussed the internal relationship between them and various driving factors. This
paper mainly constructs a framework for exploring the spatiotemporal differentiation
and influencing factors of LST in mountainous areas. After analysis, this method can
be extended to other mountainous areas. At the same time, in the study of LST in other
mountainous areas, this study provides a reference for the selection of driving factors, such
as elevation and albedo, etc. as the primary choices. The main conclusions are as follows:

(1) From 2000 to 2020, the average annual LST in the Qinling-Daba Mountains showed
a significant upward trend; the warming area accounted for 82.5% of the total area,
while the cooling area accounted for 17.5%. During the study period, both daytime
and nighttime LST in the Qinling-Daba Mountains showed an upward trend, but the
nighttime warming effect was stronger than that of the daytime, and the difference
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between day and night temperature continued to decrease. Meanwhile, the trend of
LST changed significantly in different seasons, with the most obvious warming trend
in the summer.

(2) Differences in the influence of various driving factors on LST were observed. Among
them, elevation was the main factor driving the spatial distribution of LST. Elevation
had the greatest explanatory power both in the daytime and nighttime, followed
by albedo in the daytime and precipitation in the nighttime, and the explanatory
power for LST changes was higher at nighttime than during daytime. The mean LST
of different ranges or types of driving factors was different, and the maximum LST
corresponded to different ranges or types of drivers.

(3) The interaction analysis found that the impact of driving factors on LST was not
independent, but rather the result of a combination of factors. Compared with the
influence of a single factor on LST, the interaction effect was quite different. The
interaction among driving factors was significant. The effect of multi-factor interaction
on LST is not a simple superposition process, but has bivariate enhancement or
nonlinear enhancement.

Overall, this study improved our understanding of the variation characteristics of LST
in the special mountainous environment, which has certain reference value for mitigating
and coping with climate change in the Qinling-Daba Mountains. The results of the study
can also provide new evidence for the definition of the boundary between the north and
south warm temperate zone and subtropical zone in China.
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