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Abstract: Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one
requirement to design and execute effective climate and food policies. In digital soil mapping
(DSM), machine learning algorithms are used to predict soil properties from covariates derived from
traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However,
such DSM models are trained for a specific dataset and region and have so far only allowed limited
general statements to be made that would enable the models to be transferred to different regions. In
this study, we test the transferability of SOC models for cropland soils using five different covariate
groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation
model derivatives (terrain), climate parameters (climate), and combined models (combined). The
transferability was analyzed using data from two federal states in southern Germany: Bavaria and
Baden-Wuerttemberg. First, baseline models were trained for each state with combined models
performing best in both cases (R2 = 0.68/0.48). Next, the models were transferred and tested with soil
samples from the other state whose data were not used during model calibration. Only satellite and
combined models were transferable, but accuracy declined in both cases. In the final step, models
were trained with samples from both states (mixed-data models) and applied to each state separately.
This process significantly improved the accuracies of satellite, terrain, and combined models, while
it showed no effect on climate models and decreased the models based on soil covariates. The
experiment underlines the importance of EO for the transfer and extrapolation of DSM models.

Keywords: machine learning; digital soil mapping; soil organic carbon; model transfer; extrapolation;
soil reflectance composite; legacy soil maps; Baden-Württemberg; Bavaria

1. Introduction

Soil organic carbon (SOC) is not only a large sink for atmospheric CO2 but also one
of the most important factors of soil quality and soil fertility [1]. Since the beginning of
human land-use activities, most intensely used soils lost a large fraction of their natural
SOC stock [2]. This is especially true for cropland soils which depend on good management
to keep a stable carbon equilibrium [3]. In environmental policy, this deficit is commonly
portrayed as an opportunity for synergetic policymaking; to use the ability of soils to store
organic carbon to sequester CO2 and enhance soil quality and food security [4]. To improve
our understanding of cropland SOC stocks and support soil management, precise maps
with a high spatial resolution are needed [5].
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The framework of digital soil mapping (DSM) is based on the idea that soil properties
are represented by environmental covariates and can be mapped with soil spatial prediction
functions (SSPF) [6,7]. The basic DSM framework has been updated to account for modern
machine learning (ML) algorithms [8] and was successfully used to predict SOC over large
areas [9,10]. Along with terrain attributes, Earth observation (EO) data are important assets
of DSM and multispectral images of bare soil are often used to predict SOC [11–13]. Most
times of the year, cropland is densely covered with vegetation and the soils of different
areas are rarely exposed at the same time. To solve this problem, multi-temporal EO data
are analyzed to detect bare soil areas over multiple years [14–17]. Spectral indices such as
the Normalized Difference Vegetation Index (NDVI) [18], the Bare Soil Index (BSI) [15], or
the Normalized Burn Ratio 2 (NBR2) [18] are calculated to differentiate between covered
and exposed soil and the reflectance of each pixel is averaged over a defined period. The
resulting soil reflectance composite maps can be used as covariates to model SOC and other
soil properties in cropland soils [16,18–20].

Ground truth is necessary to train and validate DSM models but soil samples can be
scarce in some regions [21], limited in field operability [22], and analysis is expensive and
time-consuming [23]. Efforts have been made to reduce the number of necessary ground
measurements by extrapolating or transferring DSM models from donor areas that have a
higher availability of soil data [24–31]. In most cases, models of soil types or classes were
transferred with mixed overall accuracies between 46% [29] and 83% [30]. One study was
able to transfer a SOC model with a relative overall accuracy of 70% [28]. The models were
either based on expert knowledge [24], regressions [25], ML algorithms such as artificial
neural networks (ANN) [26], or random forest (RF) [30]. The choice of method is important
as some models, such as RF, are unable to extrapolate values outside the range of the
training data [32]. However, a direct comparison between different model types showed
that tree-based algorithms such as RF had the highest accuracies in extended modeling
areas [29]. Since RF is one of the most common methods for DSM [8], this study aims to
define preconditions to successfully transfer RF models to new areas.

Covariates from various sources such as remote sensing [29], ground-based detec-
tion [25], digital elevation models (DEM) [30], and soil legacy data [28] have been used
to transfer machine DSM models. It is difficult to compare covariates between different
studies as ML algorithms are sensitive to the context of the training dataset which often re-
flects a specific research area [10,33]. Furthermore, covariates reflect different data sources,
and some covariates groups likely express a higher degree of transferability while others
should only be used in a local context [28].

In this study, the transferability of SOC models based on multispectral soil reflectance
composites (satellite), soil legacy data (soil), DEM derivatives (terrain), climate parameters
(climate), as well as combined models (combined) were tested. This was done by comparing
models in the two southern German federal states of Bavaria and Baden-Wuerttemberg,
with a combined area of about 100,000 km2. The degree of transferability was analyzed in
three steps: (i) First, a baseline was set by testing the accuracy of each covariate group for
the prediction of SOC in both states. (ii) These models were then transferred and tested
with the soil samples of the respective other state to analyze how the performance changes
if the models are applied to a new area. (iii) In the last step, mixed data models with
different proportions of training data from both states were built to evaluate the effect of
additional samples from outside the validation area. This was repeated for each covariate
group and both states.

2. Materials and Methods
2.1. Study Area

The study area includes the federal states of Baden-Wuerttemberg (BW) and Bavaria
(BY), in southern Germany (Figure 1A,B). Summary statistics of both states are provided in
Table 1. The climate is temperate and humid with mean temperatures of about 9 ◦C and
precipitation above 800 mm. Southern Germany is a diverse landscape and both states
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share most geologic formations and parent materials of pedogenesis [34]. Most of the area
of BW and the northern parts of BY is located in the Southwest German Scarplands which
are characterized by fast-changing strata of the Triassic and Jurassic. BW is characterized
by its distinct geological features, namely the Rhine Valley and the Black Forest in the west
followed by the Swabian Alps, ranging towards the Bavarian border in the east (Figure 1A).
The southeast of BW and Southern BY is covered by the North Alpine Foreland Basin which
is filled with sediments of the Alps and was further formed by the glacial activities of the
Pleistocene. Luvisols and cambisols are the most frequent soil types while groundwater-
influenced and carbon-rich gleysols and fluvisols are connected to streams originating
from the Alps [35]. Cropland is the predominant land use type throughout the research
area, excluding the mountainous areas. The models in this study were limited to cropland
without permanent vegetation and regularly exposed soils [14] (Figure 1C).
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Figure 1. Study area: (A) Sampling locations in Bavaria (east) and Baden-Wuerttemberg (west).
(LUCAS = The Land Use and Cover Area Frame Survey, LfU = Bavarian Environment Agency,
LGRB = State Authority for Geology, Resources and Mining; (B) Location within Germany; (C) Mask
of the exposed soils (black) in the soil reflectance composite.

Table 1. Comparison of both federal states.

Bavaria Baden-Wuerttemberg

Area (km2) 71,000 36,000
Area of cropland soils (km2) 34,000 11,000

Proportion of cropland to total area (%) 48 31
Mean temperature (◦C) 8.7 10

Mean precipitations (mm) 836 818
Predominant soil type Cambisol Luvisol

2.2. Procedures

The DSM framework is based on the idea that unknown soil properties can be repre-
sented by environmental factors (covariates). The covariate layers should be selected to
meet all soil forming factors (e.g., climate and topography) and to represent the complex
processes behind the soil attribute of interest. Then, a quantitative relationship between
measured soil samples and relevant covariates is used to predict values over large areas
and to create soil maps. In the current study, we followed the DSM approach for spatial
prediction of SOC in the two states of Germany. The procedure included (i) acquiring the
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SOC data, (ii) calculating covariates, (iii) model training, and (iv) SOC prediction. The four
main components of DSM are discussed in the following sections.

2.3. Soil Samples

The SOC content of cropland topsoil (0–30 cm) was used to train and evaluate the DSM
models. A total of 950 soil samples (475 per state) from three different sources were included
(Table 2; Figure 1A). The Land Use and Cover Area Frame Survey (LUCAS) was started
by the Statistical Office of the EU in 2006 and sampled the soils of over 20,000 individual
locations on EU ground [36]. Two sampling campaigns were carried out in 2009 and
2015 on a subset of a 2 km × 2 km regular grid. The LUCAS 2015 dataset includes 837
samples of cropland soils in Germany. If a sampling location was visited in 2009 and
2015, only the more recent measurements were considered. Mixed samples were taken
from the topsoil of each location and the SOC was determined using dry combustion. In
addition to the LUCAS dataset, measurements from soil legacy databases of the Bavarian
Environment Agency (LfU) and the State Authority for Geology, Resources and Mining
(LGRB) were included. These point data are allocated to different sampling campaigns
(mapping activities, long-term field experiments, etc.) and therefore do not follow a
consistent sampling design (Figure 1A). Only samples taken within the analysis period
of the exposed soil composite (Section 2.4.1) were considered (1984–2014). The databases
contain descriptive information about the soil profiles, which were raised for general soil
surveys, as well as further analytic information about the soil properties. As in the LUCAS
surveys, the SOC was also analyzed using dry combustion. Only topsoil samples from
cropland profiles were considered. This was verified using the mask of the exposed soil
composite (Figure 1C). Duplicate measurements from the same sampling locations were
removed. All LUCAS samples within the soil reflectance composite were used for the
models. As the number of samples in BW was limited, all available samples from the soil
database were added to the training data (Table 2). The general availability of soil samples
was higher in BY. This is true for samples of the LUCAS campaigns and the legacy data.
The number of soil samples in BY was adjusted to the BW dataset with a random selection
of samples from the legacy data (Table 2) so that both states can be trained with the same
sample size (475). This step was included to increase the comparability of the results and to
simplify the sample exchange in mixed-data models (Section 2.8).

Table 2. Summary statistics of SOC measurements for each data source and both states.

State Source Samples SOC (%) SOC (%) SOC (%) SOC (%) SOC (%)
Min Max Mean SD IQR

BY
LUCAS 227 0.6 14.81 2.1 1.68 1.15

LfU 248 0.54 15.6 3.13 2.8 1.91
Total 475 0.54 15.6 2.63 2.38 1.54

BW
LUCAS 91 0.79 5.78 1.78 0.87 0.99
LGRB 384 0.45 8.31 1.48 0.93 0.88
Total 475 0.45 8.31 1.74 0.92 0.9

2.4. Covariates

The covariates were selected to meet the criteria of the SCORPAN factors [6]. An
overview of the covariate groups and layers used in the models is provided in Table 3. The
layers were resampled to a common grid cell size of 30 m (1”) using a cubic spline interpo-
lation in GDAL [37]. It has been shown that distance-based covariates can be included in
RF models to account for the spatial autocorrelation of the soil samples [8,38,39]. This was
done using seven Euclidean distance fields (EDF), as proposed by Behrens et al., (2018) [38]:
one for X and Y coordinates, each corner and the center of the research area.
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2.4.1. Earth Observation

The Soil Composite Mapping Processor (SCMaP) was developed to automatically
analyze multispectral data over a defined period and detect exposed soils to create per-
pixel composites for area-wide mapping [14]. A detailed description of the method and
processing steps of the SCMaP workflow is provided in the original papers [14,40]. For the
bare soil reflectance composite of Germany, all available Landsat 4, 5, and 7 scenes from
1984–2014 were processed. The period of 30 years was analyzed for several reasons. First, it
allows to include of a higher percentage of cropland areas, as some soils are rarely exposed.
The larger area also increases the number of available soil samples that can be used for
modeling. Secondly, a longer period also increases the number of bare soil observations and
therefore reduces seasonal effects like moisture or crop residues. A modified vegetation
index (PV) was used to distinguish between exposed soils (i.e., croplands) and other land
cover classes, like urban areas, grassland, or forests:

PV = ((NIR − RED)/(NIR + RED)) + ((NIR − BLUE)/(NIR + BLUE)) (1)

Thresholds of maximum (PVmax) and minimum (PVmin) index composites were
derived to create an exposed soil mask [40] (Figure 1C). The reflectance of the detected
exposed soil pixels was averaged per band to create the soil reflectance composites. The
used composite map consists of six spectral bands from 0.45 to 2.35 µm with a spatial
resolution of 30 m. A description of the bands is provided in Table 3. In the following,
the six Landsat bands are referred to as scmap.1–6. The generated exposed soil mask is
provided in Figure 1C.

2.4.2. Terrain Attributes

All terrain-based covariates were extracted from the ALOS World 3D-30m DEM,
provided by the Earth Observation Research Center of the Japan Aerospace Exploration
Agency [41]. The System for Automated Geoscientific Analyses (SAGA-GIS) [42] was used
to calculate five terrain-related covariates: topographic wetness index (TWI); valley depth
(vdepth); multiresolution index of valley bottom flatness (VBF); and negative and positive
topographic openness (openn and openp), as proposed by Hengl and MacMillan (2019) [43].
The contextual spatial modeling (CSM) framework was applied to enhance the representa-
tion of different scales in the modeling process [44]. To do so, the DEM was up-scaled six
times (90, 180, 360, 720, and 1440 m) and the terrain-based covariates were recalculated at
each step (e.g., dem_twi_90-1440). It has been shown that the explanatory power of the
terrain covariates can be improved with this process, as some large-scale patterns are only
visible if the resolution of the DEM is reduced by aggregation.

2.4.3. Climate Data

Climate data were downloaded from the Open-Data-Server of the German Meteoro-
logical Service (DWD) with a spatial resolution of 1 × 1 km [45]. The rasters are based on
interpolated mean values of weather and soil measurements at climate stations in Germany.
Detailed descriptions of the methods are provided online at the Open-Data-Server [45].
Climate parameters are calculated in 30-year intervals and are only updated every 10 years.
The period of 1981–2010 was selected, as it is as close as possible to the calculation of
the soil reflectance composite (1984–2014). Most climate parameters are available with
12 rasters as monthly averages. To reduce redundancy, a spatial principal component
analysis (PCA) was performed for each climate parameter with more than one raster, using
the GSIF package [46]. The most important components of each climate parameter with a
combined explained variance of over 85% were kept.
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Table 3. Overview of all covariates.

Group Covariate Original
Resolution Layers (n) Abbreviation Source

Satellite

SCMaP Band 1: blue (0.45–0.52 µm) 30 m 1 scmap.1 [14]
SCMaP Band 2: green (0.52–0.60 µm) 30 m 1 scmap.2 [14]

SCMaP Band 3: red (0.63–0.69 µm) 30 m 1 scmap.3 [14]
SCMaP Band 4: NIR (0.77–0.90 µm) 30 m 1 scmap.4 [14]

SCMaP Band 5: SWIR1 (1.55–1.75 µm) 30 m 1 scmap.5 [14]
SCMaP Band 6: SWIR2 (2.09–2.35 µm) 30 m 1 scmap.6 [14]

Soil

Soil type 1:200,000 1 soil_type [35]
Soil texture 1:200,000 1 soil_texture [35]

Sand content 1:200,000 1 soil_texture_sand [35]
Silt content 1:200,000 1 soil_texture_silt [35]

Clay content 1:200,000 1 soil_texture_clay [35]
Parent material 1:5,000,000 1 soil_geology [47]

Geomorphographic class 1:1,000,000 1 soil_geomorphology [48]

Terrain

Digital elevation model 30 m 1 dem_30 [41]
Topographic wetness index 90–1440 m 5 dem_twi_90-1440 [42]

Valley depth 90–1440 m 5 dem_vdepth_90-1440 [42]
Multiresolution index of valley

bottom flatness 90–1440 m 5 dem_vbf_90-1440 [42]

Negative topographic openness 90–1440 m 5 dem_openn_90-1440 [42]
Positive topographic openness 90–1440 m 5 dem_openp_90-1440 [42]

Climate

Multi-year means of air temperature (2 m) 1000 m 2 DWD_temp [45]
Multi-year means of precipitation 1000 m 2 DWD_prec [45]

Multi-year soil temperature at 5 cm depth
in bare soil 1000 m 2 DWD_soil_temp [45]

Multi-year grids of soil moisture under
grass and sandy loam 1000 m 1 DWD_soil_moist [45]

Multi-year mean of the number of
frost days 1000 m 1 DWD_frost_days [45]

Multi-year mean of the number of
hot days 1000 m 1 DWD_hot_days [45]

Multi-annual mean onset/ending
of vegetation 1000 m 1 DWD_vegetation [45]

Multi-year mean of the annual climatic
water balance 1000 m 1 DWD_water_balance [45]

Multi-year mean of the monthly
drought index 1000 m 2 DWD_drought [45]

Multi-year mean of sunshine duration 1000 m 2 DWD_sunshine [45]

2.4.4. Legacy Soil Maps

Legacy maps and databases of soils and geological properties are provided by the
German Federal Agency of Geoscience and Resources (BGR). The most recent soil map
covering Germany is based on a 1:200,000 scale (BÜK200) and is composed of 55 individual
tiles that have been harmonized into a common format [35]. The vector format map is
based on expert knowledge and the German soil mapping standards KA4/KA5 [49]. The
polygons are connected to a database containing details about soil types and sub-types
as well as information about the properties of the individual soil horizons. The main soil
types of the German Soil System were extracted and transformed into a raster layer. It was
verified that both states share the same soil classes, as this is necessary for the models to
be transferable to the other state. For illustration, the soil types were converted into the
system of the World Reference Base (Table 4). Carbon-rich bog soils were excluded from
the modeling area with the BÜK200 to avoid biases arising from outliers with very high
SOC contents. Information on topsoil texture was extracted from the first mineral horizon.
Separate layers were created for the corresponding sand, silt, and clay shares using mean
values of the soil texture classes [47]. The Geological Map of Germany (1:5,000,000) [44]
and the Map of Geomorphographic Regions in Germany (1:1,000,000) [45] were used to
extract information about geological properties.
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Table 4. Soil types and mean SOC content at the sampling locations. Main soil types were extracted
from the German Soil Map (BÜK200) [35] and converted to the units of the World Reference Data Base.

Soil Type BY BW

German Soil System World Reference Base Samples Mean SOC (%) Samples Mean SOC (%)

Vega Fluvisols 26 2.69 66 1.67
Braunerde Cambisols 217 1.64 70 2.1

Pelosol Vertisols 26 1.96 31 2.72
Gley Gleysols 53 3.44 22 2.66

Anmoorgley Gleysols 37 8.76 1 3.57
Parabraunerde Luvisols 35 1.77 201 1.37

Rendzina Leptosols 14 3.14 24 2.23
Pararendzina Regosols 44 2.77 52 1.64
Pseudogley Planosols 15 2.02 1 1.16
Kolluvisol Colluvic 8 1.34 7 1.47

2.5. Similarity Analysis

The spatial variation of the natural conditions was analyzed to evaluate if both states
are similar enough to successfully transfer the DSM models. Multivariate Environmental
Similarity Surfaces (MESS) were created using Maxent [50]. The MESS is calculated by
comparing the covariate values at the training locations with the values of the research
area. The resulting map can be used to evaluate the area of applicability of the models and
to distinguish regions where covariates are outside the range of the training data. Two
uncertainty maps were created for the whole research area, one with the training data of
each state. Based on the feature selection, the most important climate, terrain, and soil
covariates were used to calculate the similarity of the natural conditions. This approach
is similar to the study by Meyer and Pebesma (2021) [51] but does not assign weights
according to the feature importance. Additionally, density plots were created to compare
the values of the most important spectral bands at the sampling locations of both states.
This process was repeated for other important numeric covariates from the climate and
terrain group.

2.6. Random Forest

RF models were used as spatial prediction models. The algorithm creates a large
array of decision trees that are trained with a random subsample of the input data and
use random features at each decision node [52]. This approach is widely used because RF
models can easily deal with a high number of covariate layers and achieve good prediction
results with a minimal amount of hyperparameter tuning [8,53]. The models were trained
and evaluated with the R package h2o (version 3.38.0.1) [54]. To improve comparably, all RF
models were trained with the same default set of parameters (ntree = 200, mtries = number
of predictors divided by 3). Categorical variables were preprocessed with one-hot encoding.
A variable importance ranking was conducted with the h2o package [54] to identify the
most important covariates for the combined models in both states. The importance of
every feature is estimated by calculating the attributed reduction of error (i.e., the variance
reduction of the response value) at each decision node. To reduce the risk of overfitting, the
training of combined models was performed in two steps. First, the variable importance
was calculated for all covariates. Subsequently, covariates with relative importance above
1% in either state were selected and used in the final combined models in both states.

2.7. Accuracy Assessment

The prediction accuracies of RF models were assessed based on the results of a 10-fold
cross-validation. For each of the five covariate groups, the process was repeated six times. R2,
root-mean-square error (RMSE), mean absolute error (MAE), Lin’s concordance correlation
coefficient (CCC), as well as the out-of-bag error (OOB) were calculated from the results
of each cross-validation run. The differences between the groups were tested using an
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ANOVA and Tukey’s honest significance test (HSD). Plots of the results were created with
the package ggpubr [55] and the significance levels were illustrated with stars: * p < 0.5;
** p < 0.01; *** p < 0.001; **** p < 0.0001. To check if the models under- or overestimated the
SOC values, a locally estimated scatterplot smoothing (LOESS) function was applied to
the cross-validation results. The mean R2 of the cross-validation results was calculated to
compare the results of the mixed-data models and the control models. This was done for
each of the five covariate groups and both states. Differences between both groups were
assessed with standard error (SE) of the means.

2.8. Transferability of Different Covariates

To test the transferability of different covariates, five groups were created based on
the primary data sources: (i) remote sensing data (satellite), (ii) terrain attributes (terrain),
(iii) climate data (climate), (iv) soil legacy maps (soil), and (v) a combination of the most
important covariates from all groups (combined). An overview of the workflow is shown
in Figure 2. Soil samples from both states and environmental covariates from different
sources were harmonized into a common raster format. In the first step, models for BY and
BW were trained and assessed separately. Each of the five covariate groups was used to
predict the SOC content of the respective state. The results were used as a baseline to assess
the prediction accuracy of each covariate group before the models were transferred. The
transferability was evaluated in two steps. First, the pre-trained models of the previous
step were tested with the soil samples of the respective other states (Figure 2A). It is not
uncommon that models are extended to regions with low or no availability of soil data.
To simulate this condition, soil samples from both states were used to train the models
(mixed-data models) while only soil samples from one state were used to test the model
accuracies. For each state and covariate group, nine proportions were tested (10–90%)
(Figure 2B). The percentages correspond to the number of training samples from the same
state as the test data. Control models were set up with the same training samples but
without the additional data from the other state (Figure 2C). The training data of both states
were divided into ten equal parts using stratified random sampling. The random strata
were then assigned to both groups manually to ensure that the samples are identical and
that no bias is introduced with the training data. Differences in the accuracy of both groups
can thus only be explained by the additional training data from outside the validation area.

2.9. Prediction of the SOC Maps

A final map of the SOC in both states was predicted using the RF models with the
highest accuracies and the ranger package [56]. SOC values were predicted for BY and BW
separately and subsequently combined into a final raster. To illustrate the influence of the
satellite and soil covariates on the prediction results, additional maps were generated using
the individual covariate groups. The results are presented in magnified sites to showcase
small-scale variations. In the last step, the satellite models of both states were transferred
and used to predict the SOC of the respective other state. To examine the effectiveness
of model transferability, two sites were selected in each state: one in an area with high
similarity (i.e., the soil forming factors explaining variation in SOC are quite similar in the
two states) and one in an area with low similarity (i.e., the soil forming factors explaining
variation in SOC are different in the two states). The results were then compared to the
SOC predictions of the non-transferred satellite models.
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were trained with soil samples from one state and tested with samples from the other one. (B) Mixed-
data models were trained with samples from both states to evaluate the effect of additional data.
Nine models (10–90%) with different proportions were trained for all covariate groups and both
states. The results were compared to control models built without the additional data (C).

3. Results
3.1. Performance of the Baseline Models

The cross-validation results for each covariate group and the combined models are
provided in Table 5. A median RMSE between 1.37 and 1.6% of SOC was calculated.
Combined models show significantly higher accuracies than all other covariate groups
and produced the best results in both cases (R2: BY = 0.68, BW = 0.48; RMSE: BY = 1.42%,
BW = 1.37%). The results of the other covariate groups were different in both states (see
Figure 3). Satellite (R2 = 0.53) and especially soil models (R2 = 0.61) produced good results
in BY. In contrast to that, terrain models produced the second-best results in BW (R2 = 0.35)
while satellite models showed the overall lowest accuracy (R2 = 0.30). In general, R2 and
RMSE were lower in BW.
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Table 5. Cross-validation results (R2, RMSE, CCC, MAE, and OOB) of the baseline and transferred
models in both states.

Baseline Models Transferred Models

Group R2 RMSE CCC MAE OOB R2 RMSE CCC MAE

BY

combined 0.68 1.42 0.81 0.74 1.93 0.34 1.68 0.47 0.57
satellite 0.53 1.53 0.71 0.88 2.69 0.42 1.63 0.5 0.58

soil 0.61 1.48 0.77 0.79 1.97 0 1.91 0 0.76
terrain 0.44 1.58 0.63 0.96 3.18 0 2.01 0 0.87
climate 0.42 1.6 0.61 0.92 3.31 0 1.99 0 1.2

BW

combined 0.48 1.37 0.63 0.44 0.4 0.36 1.43 0.44 0.91
satellite 0.3 1.44 0.48 0.52 0.53 0.25 1.50 0.41 0.87

soil 0.31 1.43 0.5 0.49 0.51 0 1.64 0 1.15
terrain 0.35 1.41 0.54 0.51 0.50 0 1.60 0 1.11
climate 0.31 1.43 0.5 0.54 0.52 0 1.62 0 1.22
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Scatter plots of predicted and measured SOC values are illustrated in Figure 4. The
models in BW showed a clear tendency to overestimate low and underestimate high values.
Some models in BY had the same issue but a general underestimation of middle to high
values seems to be apparent in most models. Soil and combined models produced the best
results for high SOC values in BY and therefore also the overall highest R2 values.
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Figure 4. Scatter plot and LOESS-function (blue) of the predicted and measured SOC values in BY
(A) and BW (B). R2 values were calculated based on all cross-validation results (6 times 10). 1:1 lines
are displayed in red.

The results of the variable importance ranking of both states are shown in Figure 5.
Spectral bands of the exposed soil composite were highly important for the models in
both states. The SCMaP band 1–4 contributed 55% to the combined models of BY and
26% of BW. The categorical covariates for soil type, geology, and geomorphology also
showed a high importance in both cases. In general, fewer covariates were classified with
importance higher than 1% in BY. This is especially true for terrain covariates which were
more important for models in BW.
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3.2. Performance of the Transferred Models

The results of the transferred models are presented in Table 5. Considering the
comparatively low model performances for the soil, terrain, and climate group, it is clear
that only combined and satellite models were successfully extended to the other state.
Satellite models produced the best results in BY (RMSE = 1.63%) while the combined model
showed better results in BW (RMSE = 1.43%). Differences between combined and satellite
models before and after the model transfer are displayed in Figure 6. As expected, the R2

declined in all cases but in different magnitudes. Generally, the decline was more significant
for the models in BY and combined models in both cases.

3.3. Performance of the Mixed Data Models

The results of the mixed-data models are shown in Figure 7. R2 values are plotted
against the results of the control models (blue line) to evaluate the effect of the additional
data. The X-axis corresponds to the percentage of training data from the test area. It can
be seen that the R2 values at 90% are similar to the results of the baseline models while
the results at 10% are similar to the results of the transferred models (Table 5). The R2

of the control models increased with the number of training samples for each covariate
group. This trend was more pronounced for small training sets (10–40%) and saturated
with increasing size (e.g., Figure 7C,D).
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Additional training samples in the mixed-data models improved the accuracies of
combined, satellite, and terrain models, as illustrated by the SE. This trend is more pro-
nounced when the proportion of training data from the test state is low (10–20%) and is
illustrated by the fact that the SE of control and mixed-data models is not overlapping. The
improvement is greatest for satellite models in both states (Figure 7C,D) and combined
models in BW (Figure 7B). In contrast to all other groups, mixed-data models decreased to
accuracies of soil models in both states (Figure 7E,F). No effect was observed for the climate
models (Figure 7I,J).

3.4. Final Prediction Maps

The final SOC map, based on the predictions of the combined models, is presented
in Figure 8. It is visible that the highest SOC values generally occur in southern BY and
are connected to the main streams, originating from the Alps. On the other hand, low
SOC values are present in the north and west of BW, as well as in between the carbon-rich
streams in southern BY. Magnified scenes of the predictions based on different covariates
are presented in Figure 9. The maps illustrate local variations of the SOC as well as the
influence of different covariates on the prediction results. In the case of BW, the local
patterns of the SOC were similar when predicted with satellite (Figure 9D) or combined
models (Figure 9F). This is not the case for BY, where clear differences between both models
are visible (Figure 9C,E). In contrast to the other maps, the outlines of the polygons are
visible in the SOC maps of the soil models (Figure 9A,B). However, this mosaicking effect
is barely visible in the SOC maps of the combined models, even though the soil covariates
were included. The maps in Figure 10 showcase the effect of the transferred satellite models
on the local SOC predictions. Sites with dissimilar soil conditions between the states are
compared to sites with similar soil conditions. It is visible that satellite models trained in
BY overpredicted high SOC values in BW (Figure 10C,D) while the models trained in BW
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underpredicted the values in BY (Figure 10A,B). This effect is less pronounced for the sites
with similar soil conditions (Figure 10B,D).
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Figure 7. Results (R2) of mixed-data (red) and control models (blue) for each covariate group. Mean
values and SE of the 6 times 10-fold cross-validation are shown. The x-axis corresponds to the
percentage of training samples from the state in which the models were tested. Control models were
trained with the same data but without additional samples from the other state.
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3.5. Similarity of the States

The MESS was calculated for both states using the locations of the training samples
and the most important covariates (Figure 11). Negative values (red areas) correspond
to covariate values that are not represented in the training data. The results show that
the mountain ranges are not represented in the training data of either state. This was
expected as no soil samples of these regions were included and almost no exposed soils
were detected (Figure 1C). Training samples of BW represent most parts of central BY but
show low similarity with the most northern parts and some regions in the east (Figure 11A).
In turn, the training samples of BY are most similar to regions close to the border of BW
but do not represent the covariate values of the Rhine Valley, in the west (Figure 11B).

Density plots of important satellite, climate, and terrain covariates at the sampling
locations are shown in Figure 12. The spectral bands are mostly normally distributed and
the peaks are congruent. This is not the case for most of the other analyzed covariates.
Especially, the distributions of the terrain covariates are fundamentally different between
the states.
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Figure 9. Comparison of the results from different models in BY (top) and BW (bottom). Examples
of the exposed soil composite and soil types as input covariates (A,B); Respective SOC prediction for
satellite and soil models (C,D); SOC predictions of the combined models (E,F). Red dots show the
locations within the research area.
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Figure 10. Influence of the model transfer on the SOC prediction for satellite models in BY (A,B) and
BW (C,D). Maps of non-transferred models (left) and transferred models (right). Sites with dissimilar
soil conditions in both states (A,C) are compared to sites with similar soil conditions (B,D). Red dots
show the locations within the research area.
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4. Discussion
4.1. General Model Performance

We compared DSM models of SOC in two German federal states to assess the trans-
ferability of five different covariate groups. To set a baseline, models were first trained
and assessed without being transferred. The best results in both states were achieved with
combined models that were trained with the most important covariates from all groups (see
Table 5) (R2: BY = 0.68, BW = 0.48). This finding is coherent with the concept of DSM and the
idea to include a wide range of environmental covariates to represent and predict complex
soil properties such as soil type or SOC content. Vaudour et al. (2022) [57] conducted a
review to analyze the usage of satellite imagery for the prediction of topsoil SOC. Most
models were solely based on soil reflectance composites derived from time-series analyses.
The majority of studies were conducted in small- to medium-sized regions and R2 values
between 0.5 and 0.7 were reported [18,19,58,59]. A lower accuracy was achieved in a model
on a continental scale (R2 = 0.35) [17] while R2 values above 0.8 were reported for observa-
tions on field level with Sentinel-2 and high-resolution data [60]. Considering the relatively
large size of the research area, combined models produced good results, especially in BY.
However, the RMSE in this study is still relatively high (BY = 1.42, BW = 1.37) and the
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models should not be used for final SOC predictions without further optimization. As
seen in the results of the literature, the error also depends on the size of the research area.
Large areas, such as the one in this study, usually cover more diverse landscapes and are
therefore more prone to error. Still, the RMSE can be improved by model optimization
and hyperparameter tuning. However, this was not the main objective of this study, as
the comparability between the different covariate groups was more important to describe
the transferability.

Ensemble models based on multiple individual ML algorithms have been successfully
used to optimize the prediction of SOC [10] and improve the extrapolation of spatiotempo-
ral DSM models [61]. Mixed results were reported for the relative importance of additional
covariates in comparison to the satellite images for the prediction of SOC. In one case, the
integration of satellite time-series data did not improve the model accuracy [33]. In other
studies, the remote sensing images were the most relevant covariates but the importance
also depended on the research area [9,10,62]. The results of our study show that the satellite
covariates were most important for the combined models in both states, closely followed
by the soil covariates (Figure 6). Comparing the individual covariates groups, soil models
performed slightly better than satellite models in both cases (Table 5). This mismatch can
be explained by the fact that the satellite models underestimated high SOC values, as
illustrated by the LOESS function (Figure 4). This resulted in a reduction in the overall R2

of the satellite models and is less pronounced in soil models, as carbon-rich gleysols are
easily segregated from other soil types. As illustrated by the combined models, satellite
covariates were generally more important for the prediction of SOC (Figure 5). However,
the soil models showed better results for areas with high SOC concentrations and therefore
produced high R2 values. This demonstrates the fact the accuracy of remote sensing data
can be significantly increased by adding further covariates from different sources, especially
soil properties from legacy maps.

4.2. Differences between the States

The models in BY generally produced better R2 values while the RMSE was slightly
lower in BW (Figure 3). It has been shown that the R2 correlates with the SD of the
soil samples, which is significantly higher in BY [63] (Table 2). This can be explained by
dissimilarities in the natural soil conditions of both states. High SOC values are mainly
present in the North Alpine Foreland Basin of BY and are allocated to high soil moisture [64].
Even though bog soils were excluded, carbon-rich Gleysols were more abundant in BY
(Table 4). As shown in Figure 4, this fact also influences the prediction results of the models
in BY. Another reason for different prediction results between states might stem from
differences in soil data collection and analysis protocols. The inclusion of soil samples from
legacy databases can introduce uncertainties resulting from different sampling methods
and imprecise localization. Sampling design is another important factor of DSM [65]. The
proportion of LUCAS samples was higher in BY which led to a better representation of
the research area and less spatial clustering (Figure 1) [66]. From the results in Figure 7
(A), it can be seen that only 30% of the samples in BY were necessary to maximize the
prediction accuracy of the combined models. This trend is different in BW where the
accuracy incrementally increases with sample size (Figure 7). The trend can be explained
by the spatial clusters in BW and the fact that more samples are necessary to reach the same
representation of the research area as in BY. Furthermore, the redundancy of soil information
might be higher in BY, as fewer samples are necessary to reach a stagnating accuracy.

The MESS and the density plots of terrain covariates illustrate significant topographic
dissimilarities between both states (Figures 11 and 12). This is especially true for the Rhine
Valley in the west of BW which is heavily cultivated and very dissimilar to the sampling
locations in BY (Figures 1 and 11). Overall, the terrain covariates were more important for
the models in BW (Figure 6). The landscape in BW is diverse and terrain attributes might
influence the distribution of SOC to a larger extent than in BY, which is mostly dominated
by North Alpine Foreland Basin.
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Surprisingly, satellite models had the lowest overall R2 of all covariate groups in BW
(Table 5). This result is not in line with the high accuracies that were reported using soil
reflectance composites to predict SOC [18,19]. The differences between satellite models in
both states could also be explained by the lower variance of SOC values in BW. As described
in Section 2.1, the geologic formations in BW are diverse and affect the soil formations as
well as SOC. The multispectral images may not provide enough information to differentiate
between the different soil types and detect small variations in SOC content. This argument
is supported by the fact that the accuracy of the combined models is significantly higher
and that the soil types were identified as important covariates (Figure 5). Effects such as soil
moisture or crop residue on the generation of the exposed soil composite could be another
reason why it is more difficult to predict SOC values with a lower variance [67,68]. These
problems may be improved by the availability of large-scale hyperspectral images [5,69,70],
and comprehensive measurement campaigns to improve the representation of cropland
soils [71]. Nevertheless, the multispectral bands were still valuable for the prediction of
SOC, as seen from the variable importance rating of combined models (Figure 6).

4.3. Transferability of Different Covariate Groups

Satellite imagery has been successfully used to predict the SOC content on many
occasions (e.g., [10,19]). However, little effort has been made to use remote sensing data
to transfer SOC models to extended research areas. The results of this study show that
satellite covariates are highly transferable and can be used to improve model extrapolation
(Table 5). This is supported by the fact that the accuracy of the satellite models improved
when soil samples from another state were added to the training data (Figure 7C,D). The
prediction maps of the transferred satellite models show that the results are similar to
the original models (Figure 10). Overall, the results indicate that the transferred models
based on the soil reflectance composite can serve as a basis for the prediction of SOC in
unknown regions. However, the SOC maps based on the transferred models also illustrate
the influence of the input samples. Mean SOC values were generally lower in BW (Table 2)
and the transferred models underpredicted the SOC in BY (Figure 10A). Differences in the
distribution of the input samples should therefore be considered when transferring satellite
models. Subsequently, the results can be improved and fine-tuned with the addition of
soil samples from the prediction area, as shown by the results of the mixed data models
(Figure 7C,D). It has been shown that soil reflectance, especially in VNIR–SWIR region,
is closely correlated to the accumulation of organic matter in the topsoil [72,73]. For this
reason, efforts have been made to adapt SOC models that were trained with laboratory soil
spectral libraries to remote sensing data [67,74]. The results of this study suggest that a
similar approach could be used to improve the transferability of DSM models.

Terrain covariates have been regularly used to transfer DSM models [24–30] and it was
unexpected that the transferability was lower in comparison to the satellite data (Table 5).
A possible explanation could be the fact that the terrain attributes of both states are not
similar enough (Figures 11 and 12). The problem was improved by the additional training
data. In this case, the mixed-data models were able to adjust for the dissimilarities of the
terrain attributes and improve the prediction accuracy in comparison to the control models
(Figure 7G,H). Hence, the results suggest that the terrain covariates are only transferable
under optimal conditions and if the extended research area is similar to the training data.
This is fundamentally different from satellite covariates and should be considered when
terrain covariates are used to transfer DSM models.

Models based on soil covariates showed no sign of transferability. One possible
explanation could be the natural dissimilarities of soil conditions in both states. This is
illustrated by the imbalance of the soil classes in both states, as summarized in Table 4.
All soil classes must be present in both states for the models to be transferable. However,
because of different natural conditions, some soil types are underrepresented in samples
of BW. This can introduce biases during the model training which are then transferred to
the other state and lead to poor results. In contrast to terrain and combined models, the
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accuracy of mixed-data models dropped in comparison to the control models (Figure 7E,F).
These results suggest that the soil covariates were not transferable and should therefore
only be used in a local context. Unlike EO data, underlying soil legacy maps are based on
various soil mapping standards and extrapolated measurements. Similar conclusions were
drawn in the study of Zhao et al. (2020) who only used information from soil legacy maps
to correct the results after the models were transferred to an extended area [28]. To improve
the transferability of soil covariates, the soil condition needs to be as similar as possible to
reduce the errors resulting from unbalanced classes.

4.4. Limitations and Future Research

The sampling design is an important step to optimize the results of DSM. The inclusion
of clustered sampling locations can result in biased predictions and high uncertainties [66,75].
Biases might also arise from the fact that samples of the LUCAS campaign and the soil
databases are not harmonized as they were collected in different years and with different
sampling protocols. SOC, as a dynamic soil property, is exposed to constant change and it is
arguable whether the observed period of 1984–2014 is appropriate for accurate predictions.
These factors illustrate the fact that it is necessary to optimize the models and improve the
overall results. However, the main goal of this study is not to maximize the prediction
accuracy of the models but to compare the transferability of stable covariate groups. Future
studies should be directed to test the spatial as well as temporal transferability of remote
sensing for the prediction of SOC dynamics. To guarantee comparability, harmonized soil
data should be used to optimize the spatial representation and reduce biases. Recently,
efforts have been made to improve the sample coverage in Germany with a nationwide
Agricultural Soil Inventory (BZE-LW) to improve the quality of future DSM projects [71,76].

Unlike linear regressions, RF models and other tree-based algorithms have problems
with the prediction of values outside the range of the training data [32]. It has been
shown that ensemble models based on different types of learners produce better results
for unknown values and should therefore be preferred for spatial or temporal extrapola-
tion [32,61]. The next step should therefore be to test the transferability of covariates in
the context of ensemble models which also showed promising results for the prediction of
SOC [10]. The success of DSM extrapolation highly depends on the similarity of biophysical
conditions in the donor and extended modeling area [28]. The MESS (Figure 11) and the
distribution of the soil types (Table 4) illustrate that there are significant differences in
the biophysical conditions of both states which influence the prediction accuracy as well
as the transferability. Taking this into account, further research should be conducted to
describe the similarity of different regions and define thresholds and conditions under
which models can be successfully transferred [77]. Additionally, the similarity can be
increased by defining suitable conditions to reduce the model area. In the case of this study,
this can be done by removing certain soil types (e.g., Gleysols) which introduce extreme
values and decrease the model-similarity of both states.

4.5. Recommendations for the Transfer and Extrapolation of SOC-Models

The results of our study show that there are significant differences in the transferability
of covariate groups. The extrapolation of DSM models can be split into two phases to
increase the number of available soil samples while still accounting for the predictive
power of non-transferable covariates. For the first step, only covariate groups with a high
degree of transferability should be used to train the models. These include information
derived from EO data like soil reflectance composites or DEM attributes. This way, soil
samples from outside the research can be included to improve the model accuracy (Figure 7).
Nevertheless, the additional soil samples should be selected to reflect the natural conditions
and to be as similar as possible to the research area. The proportion of training data
from inside and outside the research area should be chosen to maximize the positive
effect of the additional training data. For this study, the biggest accuracy increase was
found when around 80% of soil samples came from outside the research area. A similar
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proportion was found in the study of Zhao et al. [28] who applied a reverse k-fold cross-
validation to estimate how many samples are necessary to maximize the model accuracy in
an extended research area. Once the highly transferable covariates were used to predict the
soil attributes, further covariates can be used to correct and improve the results. This can
be realized by converting the results of the previous step into a covariate layer which can
subsequently be combined with other covariates like soil legacy data or climate parameters.
For this step, it is important to only include soil samples from the actual research area which
corresponds to 20% of the total training samples in this case. This is necessary for including
the remaining covariates that are not transferable and therefore do not produce good results
with additional training samples from outside the research area. This process can optimize
the prediction accuracy while minimizing the number of necessary soil samples in the
research area.

5. Conclusions

The transferability of different covariate groups for the prediction of SOC in two
federal states in Southern Germany was tested. The results of this experiment clearly
show the importance of EO data for transferring or extrapolating DSM models regarding
SOC prediction. Covariates derived from a soil reflectance composite showed the highest
degree of transferability. Models based on multispectral EO data and DEM derivatives
were improved by soil samples collected outside the research area. This effect was more
pronounced the fewer samples inside the research area were available. A similar trend
was found for terrain covariates and combined models. These findings are an important
step to improve the precision of DSM models in regions with low availability of soil
samples. However, the results of the non-transferred models suggest that covariates from
soil legacy data and climate parameters are also important for SOC prediction. Therefore, it
is proposed to split the modeling process to utilize the predictive power of transferable and
non-transferable covariates. First, the EO covariates can be used to transfer DSM models to
areas with low availability of soil samples. Second, additional non-transferable covariates
can be combined with local samples of the research area and used to correct the results.
Future work should focus on the dissimilarity of donor and recipient areas and define
conditions to improve the results of transferred DSM models.
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60. Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapp.ing Using Multispectral Remote Sensing Data: Prediction Ability
of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [CrossRef]

61. Bonannella, C.; Hengl, T.; Heisig, J.; Parente, L.; Wright, M.N.; Herold, M.; de Bruin, S. Forest tree species distribution for
Europe 2000–2020: Mapping potential and realized distributions using spatiotemporal machine learning. PeerJ 2022, 10, e13728.
[CrossRef] [PubMed]

62. Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapp.ing with
multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [CrossRef]
[PubMed]

63. Minasny, B.; McBratney, A. Why calculating RPD is redundant. Pedometron 2013, 33, 14–15.
64. Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-

Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of
southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [CrossRef]

65. Ma, T.; Brus, D.J.; Zhu, A.-X.; Zhang, L.; Scholten, T. Comparison of conditioned Latin hypercube and feature space coverage
sampling for predicting soil classes using simulation from soil maps. Geoderma 2020, 370, 114366. [CrossRef]

66. Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models
using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [CrossRef]

67. Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil organic carbon mapp.ing using LUCAS topsoil database and Sentinel-2
data: An app.roach to reduce soil moisture and crop residue effects. Remote Sens. 2019, 11, 2121. [CrossRef]

68. Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop
Residues. Remote Sens. 2020, 12, 1913. [CrossRef]

69. Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapp.ing soil organic
carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma
2021, 398, 115118. [CrossRef]

70. Guanter, L.; Kaufmann, H.; Foerster, S.; Brosinsky, A.; Wulf, H.; Bochow, M.; Boesche, N.; Brell, M.; Buddenbaum, H.; Chabrillat, S.; et al.
Environmental Mapping and Analysis Program (EnMAP) EnMAP Science Plan 2016; EnMAP Consortium: Potsdam, Germany, 2016.
[CrossRef]

71. Jacobs, A.; Flessa, H.; Don, A.; Heidkamp, A.; Prietz, R.; Dechow, R.; Gensior, A.; Poeplau, C.; Riggers, C.; Schneider, F.; et al.
Landwirtschaftlich genutzte Böden in Deutschland: Ergebnisse der Bodenzustandserhebung; Thünen Report No. 64.; Johann Heinrich
von Thünen-Institut: Braunschweig, Germany, 2018; Volume 64. [CrossRef]

72. Vohland, M.; Ludwig, B.; Seidel, M.; Hutengs, C. Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR
and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches. Geoderma 2022, 405,
115426. [CrossRef]

73. Gholizadeh, A.; Neumann, C.; Chabrillat, S.; van Wesemael, B.; Castaldi, F.; Borůvka, L.; Sanderman, J.; Klement, A.; Hohmann,
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