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Abstract: This paper proposes two data-independent phase-only beamforming algorithms for fre-
quency diverse array multiple-input multiple-output radar against swarm interference. The proposed
strategy can form a deep null at the interference area to achieve swarm interference suppression
by tuning the phase of the weight vector, which can effectively reduce the hardware cost of the
receiver. Specifically, the first algorithm imposes constant modulus constraint and sidelobe level
constraint, and the phase-only weight vector is solved. The second algorithm performs a constant
modulus decomposition of the weight vector to obtain two phase-only weight vectors, and uses
two parallel phase shifters to synthesize one beamforming weight. Both methods can obtain the
phase-only weight to realize suppression for swarm interference. Simulation results demonstrate that
our strategy shows superiority in beam shape, output signal-to-interference-noise ratio, and phase
shifter quantization performance, and has the potential for use in many applications, such as radar
countermeasures and electronic defense.

Keywords: frequency diverse array multiple-input multiple-output (FDA-MIMO); beam pattern
synthesis; swarm interference suppression; data-independent; phase-only control

1. Introduction

Beamforming is an essential technique in array signal processing and has been used to
achieve interference suppression by forming a deep null in interference directions [1–6].
Currently, due to its powerful ability in signal processing, the technique has exhibited
enormous potential in communication, radar, sonar and other fields. Unfortunately, the
rapid development of unmanned aerial vehicles has made swarm interference a serious
threat to airport aviation security [7,8]. It is important to suppress swarm interference to
improve radar detection performance in the complex electromagnetic environment.

Over the past decades, we have witnessed explosive studies on numerous beamform-
ing methods for phased array radar interference suppression, such as the classic linearly
constrained minimum variance (LCMV) beamformer [9], minimum variance distortion-
less response (MVDR) beamformer, sampling matrix inversion (SMI) beamformer [10]
and interference plus noise covariance matrix (INCM) reconstruction beamformer [11,12].
Recently, numerous studies have been conducted on data-independent beamforming meth-
ods [13–19]. Such methods do not require the acquisition of an accurate INCM matrix,
and the performance of the beamformer is not affected by the sampling covariance matrix
(SCM). Nevertheless, swarm interference is divided into mainlobe swarm interference and
sidelobe swarm interference. The above phased array beamforming methods can only form
a deep null at a specific angle and cannot suppress the mainlobe swarm interference by
forming a null in a specific area.

Recently, due to the advantages of two-dimensional (2D) degrees of freedom (DOFs)
in range and angle, frequency diverse array multiple-input multiple-output (FDA-MIMO)
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radar has been widely investigated [20–26]. Specifically, it can form a range-angle-dependent
beampattern by adding the frequency offset between the elements of the transmitter.
Thereby, the swarm interference can be suppressed by controlling the beampattern to form
a two-dimensional deep null in the interference area [27].

Using FDA-MIMO radar, Ref. [28] proposed a preset broadened nulling beamformer
(PBN-BF) by placing artificial interferences with appropriate powers around the nulls
of the equivalent transmit beampattern. The enlarged widening of the nulls guarantees
the effective suppression of mainlobe deceptive interference. However, a band-shaped
null was generated based on the PBN-BF algorithm at the interference transmit spatial
frequency, which made it impossible to form a 2D regional null. In Ref. [29], a data-
independent beamforming method was proposed, which could form a regional null by
assigning artificial interferences with prescribed powers in the joint transmit–receive spatial
frequency domain. It could realize point-by-point successive null broadening control
(SNBC) and multi-point concurrent null broadening control (CNBC). Based on the above
strategies, these data-independent methods provide a way to suppress interference by
adding artificial virtual interference to the interference area. Nevertheless, the swarm
interference distributed in an area, excessively adding virtual interferences, brings beam
distortion in the non-controlled area when forming a two-dimensional null. In addition,
these methods ignore the consideration of output signal-to-interference-noise ratio (SINR).

Furthermore, the phase-only weight vector cannot be obtained by the aforementioned
FDA-MIMO radar beamforming methods, and an amplitude adjustment unit with a high
dynamic range is required behind each matched filter. Therefore, the hardware architecture
is complicated, and high costs are involved when implementing these methods [30,31].
In the past, a few approaches to phase-only beamforming for phased array have been re-
ported [32–34], such as using neural networks [32], numerical optimization techniques [33]
and geometric approaches [34]. However, to date, the method to suppress swarm interfer-
ence using a low-cost FDA-MIMO radar system has been rarely reported, which requires
the weight vector in the receiver to be constant in amplitude but different in phase.

In order to fill the above gap, we propose two data-independent phase-only beamform-
ing methods for FDA-MIMO radar against swarm interference using the powerful convex
optimization theory. Specifically, we consider two different technical approaches to obtain
the phase-only weight vector. The first method imposes constant modulus constraint and
sidelobe level constraint to solve the phase-only weight vector with the maximum output
SINR as the objective function. The second decomposes the weight vector into constant
modulus complex numbers from a different perspective and uses the dual phase receiver to
synthesize the one beamforming weight. Moreover, the constant modulus decomposition
method can convert other controlling complex weight beamforming methods to phase-only
beamforming. Simulation experiments show that both proposed methods can form a better
beam shape in the interference area and obtain higher output SINR than the conventional
beamforming methods. We summarize the main contributions of this study as follows:

(1) We propose two data-independent phase-only beamforming methods for FDA-MIMO
to suppress the swarm interference.

(2) Our proposed algorithms can achieve interference suppression by only tuning the
phase of the weight vector, which efficiently reduces the hardware cost of the FDA-
MIMO radar.

(3) Our proposed dual-phase shifter receiver for FDA-MIMO can convert other complex
weight vector beamforming methods to phase-only beamforming.

(4) The proposed method can obtain excellent output SINR with a small number of
snapshots.

This paper is organized as follows. In Section 2, the signal model is established, and
the related parameters are defined. Section 3 recalls the adaptive beamforming methods.
In Section 4, two data-independent phase-only beamforming methods are introduced. In
Section 5, numerical simulations are performed to demonstrate the performance of the
proposed method, and Section 6 concludes the paper.
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Notations: In this paper, (·)∗, (·)T and (·)H respectively denote the conjugate, the
transpose and the conjugate transpose of the matrix or vector. ‖·‖2 refers to the Euclidian
norm of the vector. The modulus of the complex number w is denoted by |w|. j =

√
−1

denotes the imaginary unit. Im represents the m×m identity matrix, and Cm×n and Rm×n

represent the sets of m× n complex matrix and real matrix, respectively. We use E[·] to
represent the expected value operator. diag(·) indicates returning the elements of the main
diagonal of the matrix as a vector. � and⊗ represent the Hadamard product and Kronecker
product, respectively. A < B means A− B is a positive semidefinite, i.e., the eigenvalues of
A− B are nonnegative. Finally, tr(A) represents the trace of a square matrix A.

2. Signal Model of FDA-MIMO Radar

Consider a colocated FDA-MIMO radar, as shown in Figure 1, in which the transmitter
and receiver are uniform linear arrays (ULA) with N and M elements, respectively. The ele-
ment spacing of the transmitter and the receiver is d = λ0/2, λ0 = c/ f0 is the wavelength,
c represents the speed of light, and f0 is the reference carrier frequency. The frequency
offset across the transmitter elements is ∆ f .
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Figure 1. The FDA-MIMO array structure.

Thus, the carrier frequency of the n-th transmitter element can be written as

fn = f0 + n∆ f , n = 0, 1 . . . , N−1. (1)

The transmit signal of the n-th element can be expressed as

sn(t) =

√
E
N

ψn(t)ej2π( f0+n∆ f )t, 0 ≤ t ≤ T. (2)

where E denotes the transmitted energy, T is the radar pulse duration and ψn(t) is the base-
band envelope of the n-th transmit element, i.e.,

∫ T
0 ψ∗n1

(t)ψn1(t)dt = 1, which is satisfied
with the orthogonality condition∫ T

0
ψ∗n1

(t)ψn2(t− τ)ej2π∆ f (n2−n1)tdt = 0, n1 6= n2, ∀τ, (3)

where, τ is the delay time, n1, n2 = 0, 1 . . . , N−1.
Assuming that a far-field target is located at (r0, θ0), τn,m = 2r0

c −
nd sin θ0

c − md sin θ0
c is

the echo delay time from the n-th transmit element to the m-th receive element, and we set
τ0 = 2r0

c . Then, the received signal of the m-th element can be expressed as
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xm(t) = ξ
N−1
∑

n=0
ψn(t− τn,m)ej2π( f0+n∆ f )(t−τn,m)

= ξ
N−1
∑

n=0
ψn(t− τn,m)ej2π( f0+n∆ f )(t−τ0+

nd sin θ0
c +

md sin θ0
c )

= ξ
N−1
∑

n=0
ψn(t− τn,m)ej2π f0(t−τ0)ej2π f0

nd sin θ0
c × ej2π f0

md sin θ0
c ej2πn∆ f (t−τ0)ej2πn∆ f ( nd sin θ0

c +
md sin θ0

c )

≈ ξej2π f0(t−τ0)ej2π f0
md sin θ0

c
N−1
∑

n=0
ψn(t− τ0)ej2π f0

nd sin θ0
c ej2πn∆ f (t−τ0)

(4)

where the approximation is due to n∆ f
c (nd sin θ0 + md sin θ0) � 1 [35,36]. ξ represents

the target echo complex coefficient (determined by the target reflection coefficient, space
propagation coefficient, amplitude, phase of the transmit signal, etc.). It should be pointed
out that this paper mainly studies the beamforming method, which is independent of the
target doppler. The doppler factor is ignored for the sake of simplicity.

The signal processing chain of the receiver is shown in Figure 2. The received signal
xm(t) by the m-th receiving element is first mixed with e−j2π f0t in the analog device, and
the output signal after mixed is

x̃m(t) = ξe−j2π f0τ0 ej2π f0
md sin θ0

c
N−1

∑
n=0

ψn(t− τ0)ej2π f0
nd sin θ0

c ej2πn∆ f (t−τ0). (5)
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Figure 2. The signal processing chain at the receiver array.

After the mixed output signal x̃m(t) is matched with φn(t) in the matched filter, φn(t)
is defined as

φn(t) = ψn(t)e−j2πn∆ f t. (6)

According to Equation (3), after the matched filtering, the n-th output signal of the
m-th receive element can be expressed as

x̂n,m(t) = ζ(t)e−j2π f0τ0 ej2π f0
md sin θ0

c ej2π f0
nd sin θ0

c e−j2πn∆ f τ0 , (7)

where ζ represents the complex-valued coefficient after matched filtering.
After matched filtering is performed on the M elements, the FDA-MIMO radar re-

ceived target echo signal at time t can be expressed as

xs(t) = [x̂0,0(t), · · · , x̂0,N−1(t), x̂1,1(t), · · · , x̂M−1,N−1(t)]
T

= γ0Γ0 � [br(θ0)⊗ at(r0, θ0)]
(8)
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where γ0 = e−j2π f0τ0 and Γ0 ∈ CNM×1 is the complex vector after matched filtering.
at(r0, θ0) ∈ CN×1 and br(θ0) ∈ CM×1 indicate the transmit and receive steering vectors,
respectively, which have the forms of

at(r0, θ0) =
[
1, ej2π ft0 , · · · , ej2π(N−1) ft0

]T
, (9)

br(θ0) =
[
1, ej2π fr0 , · · · , ej2π(M−1) fr0

]T
, (10)

where ft0 = d sin θ0
λ − 2r0∆ f

c and fr0 = d sin θ0
λ denote the transmit and receive spatial frequen-

cies, respectively.
Suppose the swarm interference is located in area ΘJ , which consists of numerous

mutually independent deceptive interferences (as shown the Figure 3). Similarly, for the
interference located at

(
rj, θj)(( rj, θj

)
⊆ ΘJ , j = 1, . . . , J

)
, the received signal after matched

filtering can be expressed as

xj(t) = γjΓj �
[
br
(
θj
)
⊗ at

(
rj, θj

)]
, (11)

where γj = e−j2π f0τj and Γj ∈ CNM×1 denotes the j-th complex vector after matched filtering.
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Figure 3. Swarm interference model.

In this circumstance, the received signal of the FDA-MIMO radar at time t can be
expressed as

x(t) = xs(t) +
J

∑
j=1

xj(t) + n(t), (12)

where n(t) ∈ CNM×1 denotes the white Gaussian noise signal with zero mean and covari-
ance matrix σ2

nI.

3. Analysis of Adaptive Beamforming in Interference Suppression

In order to present the data-independent phase-only beamforming method, we briefly
recall the adaptive beamforming method in this section.

According to Equation (12), the echo covariance matrix R, the target signal covari-
ance matrix Rs and the interference plus noise covariance matrix Rj+n can be expressed
respectively as

R = E
[

x(t)xH(t)
]
, (13)

Rs = E
[
xs(t)xs(t)

H
]
= σ2

s a(θ0, r0)aH(θ0, r0), (14)
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Rj+n = E

( J

∑
j=1

xj(t) + n(t)

)(
J

∑
j=1

xj(t) + n(t)

)H
 =

J

∑
j=1

σ2
j a
(
θj, rj

)
aH(θj, rj

)
+ σ2

nI, (15)

where σ2
s and σ2

n represent the energy of the target and noise, respectively, σ2
j

indicates the energy of the j-th interference, and a(θ0, r0) = br(θ0) ⊗ at(r0, θ0)
and a

(
θj, rj

)
= br

(
θj
)
⊗ at

(
rj, θj

)
denote the steering vector of the target and the j-th

interference, respectively. Then, R can be written as

R = σ2
s a(θ0, r0)aH(θ0, r0) +

J

∑
j=1

σ2
j a
(
θj, rj

)
aH(θj, rj

)
+ σ2

nI. (16)

For a given complex weight vector w = [w1, . . . , wNM]T∈ CNM×1, the output signal
of the radar can be expressed as Y(t) = wHx(t). Hence, the energy of the output signal is
given by

E
[
|Y(t)|2

]
= wHRsw + wHRj+nw, (17)

where wHRsw and wHRj+nw denote the energy of the output target signal and the inter-
ference plus the noise signal after beamforming, respectively. Therefore, the output SINR
after beamforming can be defined as

SINRout =
wHRsw

wHRj+nw
. (18)

In order to maximize the SINRout, the optimal weight vector wopt is given by

wopt = µR−1
j+na(θ0, r0), (19)

where, µ is a normalization factor that does not affect the SINRout. In practical applications,
Rj+n cannot be accurately obtained. It is usually replaced by the sample covariance matrix
R̂, which is given by

R̂ =
1
L

L

∑
l=1

x(l)xH(l), (20)

where L is the number of sampling snapshots. The sample covariance matrix R̂, however,
contains the target signal, which causes the SMI beamformer to be distorted in the target
position and leads to a significant decrease in SINRout. To obtain a better weight vector
when including the target signal, the INCMR method was proposed in [11]. Nevertheless,
this method still relies on the calculation of the echo covariance matrix. When the number
of sampling snapshots is small, it is difficult to obtain the precise INCM information.
Furthermore, the phase-only weight vector cannot be obtained, the hardware architecture
is complicated and high cost is required when implementing this method.

These discussions motivate us to design a beamforming method in the swarm inter-
ference scenario, which needs to satisfy the following conditions: (i) does not depend on
INCM acquisition; (ii) achieves interference suppression when only the interference area is
known; (iii) maximizes the output SINR; (iv) the weight vector is phase-only.

4. Data-Independent Phase-Only Beamforming

In the previous section, we briefly reviewed the conventional adaptive beamforming
techniques. To design the optimal weight vector, this problem can be equivalent to

max
w

wHRsw
wHRj+nw

, (21a)

s. t. F[ (θs, rs)|(θ0, r0)] ≥ ρ, (θs, rs) ⊂ Θs, (21b)
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F
[ (

θj, rj
)∣∣(θ0, r0)

]
≤ γ,

(
θj, rj

)
⊂ ΘJ, (21c)

where Θs denotes the area around the target, ρ indicates the lower bound level constraint to
guarantee the mainlobe gain, and γ represents the upper bound level constraint to suppress
the swarm interference. F[ (θ, r)|(θ0, r0)] represents the normalized array response at (θ, r),
which is defined as

F[ (θ, r)|(θ0, r0)] =

∣∣wHa(θ, r)
∣∣2

|wHa(θ0, r0)|2
. (22)

Therefore, the problem (21) can be considered equivalent to

max
w

wHRsw
wHRj+nw

, (23a)

s. t.

∣∣wHa(θs, rs)
∣∣2

|wHa(θ0, r0)|2
≥ ρ, (θs, rs) ⊂ Θs, (23b)

∣∣wHa
(
θj, rj

)∣∣2
|wHa(θ0, r0)|2

≤ γ,
(
θj, rj

)
⊂ ΘJ. (23c)

4.1. Constant Modulus Constraint

In this subsection, we present a data-independent phase-only beamforming method
based on constant modulus constraint (CMC). When the modulus of the weight vector is
constrained to h, the problem (23) can be converted into

max
w

wHRsw
wHRj+nw

, (24a)

s. t.

∣∣wHa(θs, rs)
∣∣2

|wHa(θ0, r0)|2
≥ ρ, (θs, rs) ⊂ Θs, (24b)

∣∣wHa
(
θj, rj

)∣∣2
|wHa(θ0, r0)|2

≤ γ,
(
θj, rj

)
⊂ ΘJ, (24c)

|wi| = h, i = 1, . . . , NM. (24d)

According to the definition of Rs and Rj+n, the SINRout can be expressed as

SINRout=
wHRsw

wHRj+nw
=

σ2
s
∣∣wHa(θ0, r0)

∣∣2
σ2

n‖ w ‖2
2 +

J
∑

j=1
σ2

j

∣∣wHa
(
θj, rj

)∣∣2
=

1

σ2
n

σ2
s

‖w‖2
2

|wHa(θ0,r0)|2
+

J
∑

j=1

σ2
j

σ2
s

|wHa(θj ,rj)|2

|wHa(θ0,r0)|2

(25)

To maximize the SINRout, we need to set a very small γ to suppress the interference.
Then, the problem of maximizing SINRout can be equivalent to

max
w

SINRout ⇔ max
w

∣∣∣wHa(θ0, r0)
∣∣∣2. (26)

Proof. See Appendix A. �
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For (26), we expect max
w

∣∣wHa(θ0, r0)
∣∣2 = 1 to guarantee the mainlobe gain. Therefore, the

maximization problem (26) is converted into a minimization problem min
w

1−
∣∣wHa(θ0, r0)

∣∣2.

The problem (24) can be considered equivalent to

min
w

1−
∣∣∣wHa(θ0, r0)

∣∣∣2, (27a)

s. t.
∣∣∣wHa(θs, rs)

∣∣∣2 ≥ ρ, (θs, rs) ⊂ Θs, (27b)∣∣∣wHa
(
θj, rj

)∣∣∣2 ≤ γ,
(
θj, rj

)
⊂ ΘJ, (27c)

|wi| = h, i = 1, . . . , NM. (27d)

We define A(θ,r) = a(θ, r)aH(θ, r)∈ CNM×NM and W = wwH ∈ CNM×NM, and using
the semidefinite relaxation (SDR) technique [37], we obtain∣∣wHa(θ, r)

∣∣2 = wHa(θ, r)aH(θ, r)w
= tr

(
a(θ, r)aH(θ, r)wwH)
= tr

(
A(θ,r)W

) (28)

In such a way, (27b) and (27c) can be converted to tr
(

A(θs ,rs)W
)
≥ ρ and tr

(
A(θj ,rj)

W
)
≤ γ,

respectively. Furthermore, Equation (27d) is constrained by W = wwH and |wi| = p, and it can
be written as [diag(W)]i = h2. Thus, problem (27) can be expressed as

min
w

1− tr
(

A(θ0,r0)
W
)

, (29a)

s. t. tr
(

A(θs ,rs)W
)
≥ ρ, (θs, rs) ⊂ Θs, (29b)

tr
(

A(θj ,rj)
W
)
≤ γ,

(
θj, rj

)
⊂ ΘJ, (29c)

[diag(W)]i = h2, i = 1, . . . , NM, (29d)

tr(W) ≥ α, (29e)

W < 0. (29f)

where α is a small positive value to prevent the solution from being zero. The optimal WF

can be obtained by using the CVX toolbox to solve problem (29). Then, let the eigendecom-
position of WF be

WF =
NM

∑
i=1

λiqiq
T
i . (30)

where λ1 ≥ λ2 ≥ · · · ≥ λNM > 0 denotes the eigenvalue after eigendecomposition, and
qi ∈ CNM×1 is the eigenvector corresponding to λi. Then, the optimal weight vector wF is
given by [38]

wF = λ1q1. (31)

Therefore, the main steps of the proposed CMC algorithm are summarized in
Algorithm 1. The computational complexity of the CMC algorithm is mainly derived
from the calculation of the convex optimization, and the computational complexity of
solving the convex optimization of the NM× 1 dimensional vector is O

(
N3M3). Thus, the

computational complexity of the CMC algorithm is O
(

N3M3).
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Algorithm 1: Proposed CMC Algorithm.

1: Input: Θs, ΘJ , ρ, γ and h.
2: Use the convex optimization toolbox to solve problem (29) and obtain WF.
3: Using (30) and (31) yields the optimal weight vector wF.
4: Output: the optimal weight vector wF.

4.2. Constant Modulus Decomposition

In the previous subsection, we introduced the CMC algorithm. In this subsection, from
a different perspective, we decompose the weight vector into constant modulus complex
number and use dual phase receive array to synthesize the phase-only beampattern.

Based on (A8) in Appendix A, we constrain
∣∣wHa(θ0, r0)

∣∣2 = 1 to guarantee the
mainlobe gain, and the problem max

w
SINRout can be equivalent to min

w
‖w‖2

2. Thus, the

problem (23) can be written as
min

w
‖w‖2

2, (32a)

s. t.
∣∣∣wHa(θ0, r0)

∣∣∣2 = 1, (32b)∣∣∣wHa(θs, rs)
∣∣∣2 ≥ ρ, (θs, rs) ⊂ Θs, (32c)∣∣∣wHa(θs, rs)
∣∣∣2 ≤ γ,

(
θj, rj

)
⊂ ΘJ. (32d)

Similarly, using the SDR technique, (32) can be transformed into

min
w

tr(W), (33a)

s. t. tr
(

A(θ0,r0)
W
)
= 1, (33b)

tr
(

A(θs ,rs)W
)
≥ ρ, (θs, rs) ⊂ Θs, (33c)

tr
(

A(θj ,rj)
W
)
≤ γ,

(
θj, rj

)
⊂ Θj, (33d)

tr(W) ≥ α, (33e)

W < 0. (33f)

Likewise, the problem (33) can be solved using the CVX toolbox to acquire the optimal
WF. The optimal weight vector wF can be obtained through Equations (30) and (31).
Notice that the optimal weight vector wF is not phase-only, and we intend to convert it
into phase-only beamforming by designing a dual-phase shifter receiver. Before that, we
present the following lemma.

Lemma 1. For any complex number p = gejω(0 ≤ g ≤ 2b), ω and g denote the phase and
modulus of the complex number p, respectively; p can be decomposed into

p = bejα1 + bejα2 , (34)

where α1 = ω− cos−1 g
2b and α2 = ω + cos−1 g

2b .

Proof . See Appendix B. �

The above analysis shows that any complex number can be decomposed into two
complexes with equal modulus and unequal phase. This means that we can use a dual-
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phase shifter at the receiver to synthesize the initial weight vector equivalently. We use
Lemma 1 (set b = wFm ) to decompose wFi , which can be expressed as

wFi = bejαFp1 + bejαFp2 , (35)

where wFm = max
{∣∣∣wF1 ∣∣∣, ∣∣∣wF2 ∣∣∣, · · · ,

∣∣∣wFNM

∣∣∣},

αFp1 = ωFi − cos−1

∣∣∣wFi ∣∣∣
2b

, (36)

αFp2 = ωFi − cos−1

∣∣∣wFi ∣∣∣
2b

, (37)

ωFi denotes the phase of the complex number wFi . After all elements of wF have been
decomposed, we obtain

wF = wFp1 + wFp2, (38)

where wFp1 and wFp2 are phase-only weight vectors. Therefore, we can design the signal
processing flow shown in Figure 4 at the receiver.
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It should be pointed out that after applying Equation (38), other beamforming meth-
ods such as CNBC, SNBC and PBN-BF can also be applied to this array structure. These
beamforming methods can be transformed into phase-only beamforming. We implement
this in the simulation. The procedure of the constant modulus decomposition (CMD)
algorithm is given in Algorithm 2. Similarly, the computational complexity of the CMD al-
gorithm is mainly derived from the calculation of the convex optimization. In addition, the
dimensionality of the solved weight vector is NM× 1. Thus, the computational complexity
of the CMD algorithm is O

(
N3M3).



Remote Sens. 2023, 15, 1159 11 of 21

Algorithm 2: Proposed CMD Algorithm.

1: Input: Θs, ΘJ , ρ and γ.
2: Using the convex optimization toolbox to solve problem (33) yields WF.
3: Using (30) and (31) yields the optimal weight vector wF.
4: Use (35) and (38) to perform constant mode decomposition of wF.

5: Output: the phase-only weight vectors wFp1 and wFp2.

Comparing the CMC and CMD algorithms, we can observe that the CMC algorithm
solves the weight vector using the convex optimization with the constant modulus con-
straint, so that the phase-only weight vector can be acquired directly. It can use the receiver
as shown in Figure 2 to synthesize the beampattern. Comparatively, the CMD algorithm
achieves the phase-only weight vector by constant modulus decomposition. It requires the
dual-phase shifter receiver as shown in Figure 4 to synthesize the beampattern. Further-
more, since the CMC algorithm contains constant-mode constraints, its feasible domain is
smaller than the CMD algorithm. Thus, the performance of the CMD algorithm is better
than the CMC algorithm, as will be demonstrated in the simulation.

5. Simulation Results

In this section, simulation experiments are performed to substantiate the performance
of the proposed methods. The main simulation parameters are listed in Table 1. The convex
optimization problem is solved by the CVX toolbox in MATLAB [39].

Table 1. Simulation parameters.

Parameters Symbols Value Parameters Symbols Value

Transmit elements N 15 Target range r0 45 km
Receive elements M 15 Target angle θ0 35◦

Carrier frequency f0 10 GHz Frequency offset ∆ f 1500 Hz
Element spacing d 0.015 m Coefficient α 0.1

5.1. Beampattern Comparison for Different Algorithms

In this subsection, we compare the beampattern of different methods to verify the
performance of the proposed algorithms. For comparison purposes, the INCMR-linear
constraint sector suppressed (LCSS) algorithm [9], SMI-MVDR algorithm [10], SNBC algo-
rithm [29], and CNBC algorithm [29] are simulated. The swarm interference is distributed
in an area ΘJ, ΘJ =

{(
θj, rj

)∣∣30◦ ≤ θj ≤ 40◦, 10 km ≤ rj ≤ 20 km
}

. The swarm interfer-
ence power is 30dB and the target power is 10dB. The desired beampattern level is expected
to be lower than −70 dB at the swarm interference area.

Figure 5 plots the 2D beampattern of different methods. Figure 6a,b shows cross-
sectional views of the 2D beampattern of Figure 5 at θ = 35◦ and r = 45 km, respectively. It
can be seen from Figure 5 that both proposed methods can form the regional deep null in
the swarm interference area and effectively suppress the swarm interference. Furthermore,
the beam shape of the proposed methods is better than the other methods. It can be seen
from Figure 6 that the CMD method has the lowest beampattern level in the interference
area and less distortion in the uncontrolled area. The mainlobe width of the two proposed
methods is the same as the SNBC method but better than the CNBC method.
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Moreover, we compare the beampattern obtained by different methods when the
swarm interference is distributed in two areas, where ΘJ = Θ1

J ∪ Θ2
J , Θ1

J
and Θ2

J are given by Θ1
J =

{(
θj, rj

)∣∣30◦ ≤ θj ≤ 40◦, 10 km ≤ rj ≤ 20 km
}

,
Θ2

J =
{∣∣−5◦ ≤ θj ≤ 5◦, 10 km ≤ rj ≤ 20 km

}
. Figure 7 shows the 2D beampattern of dif-

ferent methods. It can be seen that under the two swarm interference areas, two proposed
methods can form the regional deep null in the interference area. The sidelobe level of the
CMD method is lower than the CMC method.
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5.2. Comparison of the Output SINR

To verify the performance of the proposed method, in this subsection, we compare the
output SINR of different methods at different SNR and the number of snapshots. The swarm
interference is distributed in an area ΘJ =

{(
θj, rj

)∣∣30◦ ≤ θj ≤ 40◦, 10 km ≤ rj ≤ 20 km
}

.
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Figure 8a shows the output SINR of different beamformers in the SNR from −10 dB
to 30 dB when the number of snapshots is 200. Furthermore, under the SNR is 20 dB.
Figure 8b shows the output SINR of different beamformers in the number of snapshots
from 200 to 1000. In Figure 8a, it can be found that the output SINR increases with the input
SNR. From Figure 8b, it can be seen that the proposed methods can obtain excellent output
SINR when the number of snapshots is small. In addition, since the proposed methods are
data-independent, it can be found that the output SINR does not change with the number
of snapshots and maintains good performance. Moreover, as the objective function is to
maximize the output SINR, it can be observed that the two proposed methods outperform
other methods. The performance of the CMD method is better than the CMC method
because its feasible domain is bigger than the CMC algorithm.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

 

(a) 

 

(b) 

Figure 8. The output SINR of different methods. (a) The output SINR versus SNR. (b) The output 
SINR versus the number of snapshots. 

5.3. Beampattern on the Different Quantization Bits 
In this subsection, we compare the beampattern performance of phase-only methods 

on different quantization bits. Figures 9 and 10 show the beampattern of the CMC and 
CMD method when the phase shifter has different quantization bits, respectively. In 
addition, Figures 11 and 12 plot the beampattern of CNBC and SNBC after constant 
modulus decomposition on the dual-phase shifter receiver with different quantization 
bits, respectively. Furthermore, it can be found from Figures 9 and 10 that the synthesis 
beampattern is significantly different from the original beampattern when the phase 
shifters have different quantization bits. Figures 11 and 12 demonstrate that the CMD 
method can be applied to the conventional beamforming method and converted into 
phase-only beamforming. It can be observed that the beampattern can reach the 
performance of the original beampattern as the number of quantization bits of the phase 
shifter increases. When the quantization bit is 3, the beampattern of the interference area 
is different from the original beampattern, but the mainlobe beampattern remains 
suitable. With eleven quantization bits, the quantized beampattern is approximate to the 
original beampattern. 

  

Figure 8. The output SINR of different methods. (a) The output SINR versus SNR. (b) The output
SINR versus the number of snapshots.

5.3. Beampattern on the Different Quantization Bits

In this subsection, we compare the beampattern performance of phase-only methods
on different quantization bits. Figures 9 and 10 show the beampattern of the CMC and
CMD method when the phase shifter has different quantization bits, respectively. In
addition, Figures 11 and 12 plot the beampattern of CNBC and SNBC after constant
modulus decomposition on the dual-phase shifter receiver with different quantization
bits, respectively. Furthermore, it can be found from Figures 9 and 10 that the synthesis
beampattern is significantly different from the original beampattern when the phase shifters
have different quantization bits. Figures 11 and 12 demonstrate that the CMD method
can be applied to the conventional beamforming method and converted into phase-only
beamforming. It can be observed that the beampattern can reach the performance of the
original beampattern as the number of quantization bits of the phase shifter increases.
When the quantization bit is 3, the beampattern of the interference area is different from
the original beampattern, but the mainlobe beampattern remains suitable. With eleven
quantization bits, the quantized beampattern is approximate to the original beampattern.
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5.4. Output SINR on the Different Quantization Bits

In this subsection, we compare the output SINR of phase-only methods on different
quantization bits. Figures 13 and 14 plot the output SINR of the CMC, CMD, Phase-only
(PO) CNBC and PO SNBC methods on different quantization bits, respectively. It can be
seen that as the number of quantization bits of the phase shifter increases, the output SINR
can approximate the original performance. When the quantization bit is 9, the quantized
output SINR is very different from the original output SINR. The output SINR can approach
the original performance when the quantization bits reach 13.
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6. Conclusions

In this paper, we proposed two data-independent phase-only beamforming methods for
FDA-MIMO radar to suppress the swarm interference. The two proposed algorithms can
suppress swarm interference effectively. Firstly, we convert the output SINR into the data-
independent form by imposing the constant modulus constraint and interference area level
constraint. The phase-only weight vector is solved by maximizing the output SINR as the
objective function. Secondly, from a different perspective, we proposed the CMD beamforming
method. This method decomposed the weight vector into constant modulus complex number
and used the dual-phase shifter receiver to synthesize the phase-only beampattern. It is worth
emphasizing that the CMD method can also be applied to other complex weight beamforming
methods to achieve phase-only beampattern synthesis. Simulation experiments demonstrate
the superiority of the proposed method. As a future work, we shall consider how to reduce the
computational complexity of the proposed methods.
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Appendix A

Proof (max SINRout ⇔ max
∣∣wHa(θ0, r0)

∣∣2 ).
Firstly, the maximization problem (25) is converted into a minimization problem:

min
w

σ2
n

σ2
s

‖w‖2
2

|wHa(θ0, r0)|2
+

J

∑
j=1

σ2
j

σ2
s

∣∣wHa
(
θj, rj

)∣∣2
|wHa(θ0, r0)|2

. (A1)

According to constraint (24c), we have

J

∑
j=1
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j

σ2
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θj, rj
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≤ γ
J

∑
j=1

σ2
j

σ2
s

. (A2)

Thus, we can obtain
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Let us set g(w) = σ2
n

σ2
s

‖w‖2
2

|wHa(θ0,r0)|2
+

J
∑

j=1

σ2
j

σ2
s

|wHa(θj ,rj)|2

|wHa(θ0,r0)|2
, f (w) = σ2

n
σ2

s

‖w‖2
2

|wHa(θ0,r0)|2
. When

g(w) and f (w) are respectively taken as objective functions, they have the same feasible
domain due to the same constraints. Suppose w∗ is the optimal solution to f (w), then we
have the inequation

g(w∗) ≤ f (w∗) + γ
J

∑
j=1

σ2
j

σ2
s

. (A4)

As f (w) ≤ g(w), we have

− g(w) ≤ − f (w). (A5)

Subsequently, we can obtain

g(w∗)− g(w) ≤ f (w∗)− f (w) + γ
J

∑
j=1

σ2
j

σ2
s

. (A6)

Owing to f (w∗)− f (w) ≤ 0, Equation (A6) is rewritten as

g(w∗)− g(w) ≤ γ
J

∑
j=1

σ2
j

σ2
s

. (A7)
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Therefore, w∗ is the optimal solution that satisfies the error γ
J

∑
j=1

σ2
j

σ2
s

in the feasible

region of g(w). Therefore, f (w) can be used as the objective function when γ is very small.
In beamforming, we usually set a very small γ to suppress the interference. Hence, the
objective function (A1) can be equivalent to

min
w

σ2
n

σ2
s

‖w‖2
2

|wHa(θ0, r0)|2
+

J

∑
j=1

σ2
j

σ2
s

∣∣wHa
(
θj, rj

)∣∣2
|wHa(θ0, r0)|2

⇒ min
w

σ2
n

σ2
s

‖w‖2
2

|wHa(θ0, r0)|2
. (A8)

where σ2
s

σ2
n

denotes the input SNR, which is a constant. Furthermore, w is constrained by

(24d), ‖w‖2
2 is also a constant. Hence, we can obtain

max SINRout ⇔ max
∣∣∣wHa(θ0, r0)

∣∣∣2. (A9)

�

Appendix B

Proof of Lemma 1. For different values of g, we can divide it into the following three cases
to prove.

(1) When g = 0, there is α1 − α2 = π, and the above formula is obviously established.
(2) When g = 2b, there is α1 = ω, α2 = ω, and then bejα1 + bejα2 = gejω.
(3) Consider the common case that 0 < g < 2b, we plot p = gejω in the complex plane, as

shown in Figure A1, where
→

OP denotes the complex p and
∣∣∣∣ →OP

∣∣∣∣ = g. After that, find

the midpoint Q of the
→

OP such that
∣∣∣∣ →QP

∣∣∣∣ = ∣∣∣∣ →OQ
∣∣∣∣ = g

2 . We make a vertical line of
→

OP

through point Q and intersect the circle of radius b at points A and B, i.e., OP⊥AB.

Therefore, we obviously find
→

OP =
→

OA +
→

OB.

According to the geometric relationship in Figure A1, the angle δ between
→

OA and
→

OQ can be given by

δ = cos−1

∣∣∣∣ →OQ
∣∣∣∣∣∣∣∣ →OA
∣∣∣∣ = cos−1 g

2b
. (A10)

Therefore, the phase angle of
→

OA is α1 = ω− cos−1 g
2b , and the phase angle of

→
OB is

α2 = ω + cos−1 g
2b . Using the fact that

→
OP =

→
OA +

→
OB, we obtain

p = bej(ω−cos−1 g
2b ) + bej(ω+cos−1 g

2b ), (A11)

where b can take any value within b ≥ g/2. In practical implementation, it is more suitable
to set b = g/2.

Combining the above three cases, Lemma 1 is proved. �
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