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Abstract: Cross-domain classification with small samples is a more challenging and realistic experi-
mental setup. Until now, few studies have focused on the problem of small-sample cross-domain
classification between completely different hyperspectral images (HSIs) since they possess different
land cover types and statistical characteristics. To this end, this paper proposes a general-purpose
representation learning method for cross-domain HSI classification, aiming to enable the model to
learn more general-purpose deep representations that can quickly adapt to different target domains
with small samples. The core of this method is to propose a novel three-level distillation strategy to
transfer knowledge from multiple models well-trained on source HSIs into a single distilled model
at the channel-, feature- and logit-level simultaneously. The learned representations can be further
fine-tuned with small samples and quickly adapt to new target HSIs and previously unseen classes.
Specifically, to transfer and fuse knowledge from multiple-source domains into a single model si-
multaneously and solve the inconsistency of the number of bands in different HSIs, an extensible
multi-task model, including the channel transformation module, the feature extraction module and
the linear classification module, is designed. Only the feature extraction module is shared across
different HSIs, while the other two modules are domain-specific. Furthermore, the typical episode-
based learning strategy of the metric-based meta-learning is adopted in the whole learning process to
further improve the generalization ability and data efficiency. Extensive experiments are conducted
on six source HSIs and four target HSIs, and the results demonstrate that the proposed method
outperforms the existing advanced methods in cross-domain HSI classification with small samples.

Keywords: cross-domain hyperspectral image classification; small samples; general-purpose
representations; knowledge distillation; multi-task learning; meta-learning

1. Introduction

Hyperspectral imaging, one of the major advances in remote sensing technologies,
can simultaneously obtain rich spectral and spatial information and express them in a
unified three-dimensional data cube [1]. Hyperspectral image (HSI) classification, con-
verting three-dimensional cubes into simple classification maps, has attracted extensive
attention, and its direct products have been widely applied in many fields, such as mineral
recognition [2], target detection [3] and fine agriculture [4].

In recent years, with the wide application of deep learning in remote sensing, deep
model-based classification methods have gradually become a research hotspot world-
wide [5,6], which can automatically learn deep features beneficial to target tasks in a
data-driven manner, thus obtaining better and more stable results. Among them, a con-
volutional neural network (CNN) is one of the most mainstream models, and its unique
convolution operation can directly process grid data and effectively utilize high-level fea-
tures in hyperspectral cubes [7]. In addition, deep models such as capsule network (CN) [8],
recurrent neural network (RNN) [9] and stack autoencoder (SAE) [10] have also been
applied to HSI classification. Undoubtedly, with the introduction of various deep models
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and the adoption of advanced learning methods, the accuracy of HSI classification with
sufficient samples has been constantly updated [11–13]. However, the existing classification
methods based on deep models still have the following two main shortcomings:

(1) The whole classification process of the deep models is confined to a single hyperspec-
tral domain, and the models cannot utilize the valuable information and knowledge
contained in related HSIs. Therefore, the utilization rate of the models is low, and the
generalization ability between different HSIs is poor.

(2) The performance of deep models deteriorates rapidly with the decrease in the number
of labeled samples. Under the condition of small samples where only a few labeled
samples can be used for training (e.g., 5 samples per class), the models cannot obtain
satisfactory classification results.

To this end, cross-domain HSI classification with small samples has begun to attract the
attention of many researchers. It aims to make the deep models learn more abundant and
relevant features through pre-training on a large number of source HSIs so that the models
can better generalize to new tasks and obtain satisfactory classification results with few
labeled samples when meeting target HSIs [14,15]. The source HSIs used for pre-training
are completely different from the target HSIs in terms of land cover types, spectral ranges,
resolutions and so on, so they belong to different hyperspectral domains [16]. Recently,
there have been studies on cross-data and cross-scene classification, which mainly construct
cross-classification scenarios by recombining bands of original data [17–19] or selecting
pairs of HSIs with the same classes obtained by the same sensor [20–22]. Therefore, they do
not strictly fall under small-sample cross-domain classification, which is a more challenging
and realistic experimental setting.

To our knowledge, few studies so far have focused on the problem of small-sample
cross-domain classification between completely different HSIs. In the few related studies,
Liu et al. [14] and Gao et al. [15] preliminarily explore this problem based on the prototype
network and relation network, respectively. Lee et al. also analyze the performance of
the pre-trained CNN on HSI cross-domain classification [16]. However, there are some
non-negligible shortcomings in the above methods, such as the insufficient use of knowl-
edge and information in source domains, the loss of spatial–spectral features caused by
dimensionality reduction and the dissatisfactory classification results that still need to be
improved. To this end, a general-purpose representation learning method called GPRL
is proposed in this paper, aiming to further improve the performance of cross-domain
HSI classification with small samples. The core of the proposed method is to learn more
general-purpose deep representations from multiple hyperspectral domains by distilling
knowledge from multiple single-task models well-trained on source HSIs into a single
distilled model at three different levels simultaneously. The learned general-purpose repre-
sentations can be further fine-tuned with small samples for new target HSIs and previously
unseen classes, achieving better classification performance. In addition, an extensible
multi-task model that can adapt to any number of spectral bands is designed and the
episode-based learning strategy is introduced to further improve the data efficiency for
small samples while making full use of the spatial–spectral information in HSIs. The main
contributions can be summarized as follows.

(1) A general-purpose representation learning method is proposed for cross-domain HSI
classification with small samples, and extensive experiments demonstrate that the
proposed method outperforms the existing advanced methods.

(2) A novel three-level distillation strategy is proposed to improve the effectiveness of
knowledge transfer from multiple-source domains to a single distilled model through
simultaneous distillation at the channel-, feature- and logit-level. To the best of our
knowledge, this is the first application of knowledge distillation in cross-domain HSI
classification.

(3) To distill knowledge from multiple-source domains into a single model simultane-
ously, a multi-task model, including the channel transformation module, the feature
extraction module and the linear classification module, is designed. The channel



Remote Sens. 2023, 15, 1080 3 of 22

transformation module can enable HSIs with different bands to participate in cross-
domain knowledge learning, effectively improving the expansibility of the model and
avoiding the loss of spatial–spectral features caused by dimensionality reduction.

(4) The episode-based learning strategy is adopted, and the designed model is trained
and fine-tuned, referring to the typical metric-based meta-learning process to further
improve its generalization ability between different HSIs and data efficiency for
small samples.

2. Related Work
2.1. Hyperspectral Images Classification

Since Chen et al. applied the SAE model to HSI classification [23], various classifi-
cation methods based on deep models have mushroomed and continuously improved
classification performance [24–26]. Considering the characteristics of hyperspectral data,
the existing advanced methods seek to obtain more accurate classification results by ex-
ploiting the deep spatial–spectral features of HSIs. For example, Liu et al. designed a
supervised deep feature extraction method based on metric learning, which can effectively
improve the separability between heterogeneous samples [27]. Gao et al. attempted to
extract class-level features by embedding the dynamic routing mechanism into a deep
residual network, effectively improving classification performance [28]. Xue et al. designed
a multiscale deep-learning network with self-calibrated convolutions and self-attention
modules to jointly utilize abstract features at different scales [29]. Recently, the transformer
model has been introduced due to its excellent performance in many computer vision
tasks. Tan et al. propose to model the patch- and pixel-level features by constructing a
deep transformer network, obtaining better results than conventional CNN models [30].
In addition, the performance of the capsule network on spatial–spectral feature extraction
has been widely explored [8,31].

Meanwhile, advanced learning methods such as semi-supervised learning, transfer
learning and contrastive learning are widely applied, successfully reducing the excessive
dependence on a large number of training samples. Graph convolutional network (GCN),
one of the representative semi-supervised models, can effectively utilize the potential fea-
tures in unlabeled samples through graph construction [32,33]. Transfer learning initializes
deep models with transferable parameters learned from relevant tasks, making it easier
for them to find the optimal solutions during the training process on target HSIs [34,35].
Contrastive learning can construct self-supervised learning tasks through different data
augmentations on unlabeled samples, which can extract more discriminative deep fea-
tures [36,37]. Many studies have shown that the above learning methods can effectively
improve HSI classification accuracy.

However, most of the existing studies limit the whole classification process to a single
hyperspectral domain and fail to achieve satisfactory performance when only a few labeled
samples are available. Few studies have focused on cross-domain HSI classification with
small samples, which is a more challenging and realistic experimental setting.

2.2. Knowledge Distillation

The purpose of knowledge distillation is to transfer the knowledge learned by a cum-
bersome teacher network to a compact student network [38,39]. Consequently, a compact
network with stronger feature learning ability can be obtained. The initial knowledge
distillation method proposes to add constraints on the logit outputs according to the soft
targets and trains a student network in conjunction with hard labels [40]. Subsequently,
a series of improved methods distill knowledge by selecting different transfer mediums,
such as intermediate features [41], attention maps [42] or the flow of solution procedure
matrix [43], effectively improving the performance of the distilled network. In multi-task
learning, Li et al. distill the knowledge from multiple single-task networks to a single
multi-task network through task-specific adapters [44], and our method borrows this idea.
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There have been studies on applying knowledge distillation to HSI classification.
For example, Shi et al. design an explainable scale distillation method, integrating spatial
features within multiple scales into a compact network [45]. Yue et al. propose a self-
supervised learning method with adaptive distillation to train a deep neural network with
extensive unlabeled samples [46]. However, the existing methods combined with knowl-
edge distillation all conduct training and prediction with sufficient labeled samples from a
single hyperspectral domain without the exploration of cross-domain HSI classification
with small samples. To the best of our knowledge, this paper is the first study applying
knowledge distillation to cross-domain HSI classification with small samples.

2.3. Meta-Learning

Meta-learning, known as learning how to learn, is a potential paradigm that learns
features from vast tasks and generalizes them to new unseen tasks with few labeled
samples. Generally, optimization-based and metric-based meta-learning methods are two
mainstream methods. The former aims to learn a deep model that can adapt to new tasks
with a small number of iterations and labeled samples. Model-agnostic meta-learning
(MAML) [47] is one of the representative algorithms. The core idea of the latter is to map
the raw data into a deep feature space, cluster together the samples belonging to the same
class and separate the samples belonging to different classes. Typical methods include a
prototypical network [48], relation network [49] and induction network [50].

In the field of remote sensing, the two meta-learning methods above have been
introduced into HSI classification. Gao et al. preliminarily analyze the generalization
performance of MAML on different classes in the same scene [51]. Liu et al. [14] and
Ma et al. [52] explore the effectiveness of metric-based meta-learning methods in HSI
classification based on a prototypical network and relation network, respectively. However,
the existing meta-learning methods mechanically train a single network according to the
“pre-training + fine-tuning” mode, failing to fully transfer and fuse the information and
knowledge from source HSIs. Different from these methods, our method distills knowledge
from multiple single-task models to a single multi-task model through the proposed three-
level distillation strategy, which can better integrate knowledge and features from different
source HSIs and learn more general-purpose representations.

2.4. Cross-Domain Classification with Small Samples

Recently, in the field of remote sensing, more and more attention has been paid to
the problem of cross-domain classification with small samples, which aims to utilize the
knowledge learned from source domains to guide the small sample classification in target
domains [53]. For example, Bi et al. design a contrastive domain adaptation-based sparse
SAR target classification method to solve the problem of insufficient samples of target
domains [54]. Rostami et al. present a novel transfer learning framework, which can
learn a shared invariant embedding space for small sample classifications [55]. Lasloum
et al. and Shi et al., respectively, explore the performance of semi-supervised domain
adaptation in HSI target detection and remote sensing scene classification, achieving better
results in target domains [56,57]. However, most of the methods conduct cross-domain
learning through adversarial-based domain adaptation training, ignoring the integration
and utilization of different knowledge and information from multiple-source domains. In
contrast, based on the proposed three-level distillation strategy and the designed multi-
task model, the proposed method can effectively distill knowledge from different source
domains into a deep model so that it can learn the more general-purpose representations,
which can quickly adapt to new classification tasks.



Remote Sens. 2023, 15, 1080 5 of 22

3. Methodologies
3.1. Workflow

The proposed GPRL method aims to make the model learn more general-purpose
deep representations from multiple hyperspectral domains and obtain better results in
cross-domain HSI classification with small samples. The workflow can be divided into the
following three steps:

(1) Pre-training on source HSIs (illustrated in Figure 1): Multiple different source HSIs
are collected in advance, and multiple single-task models are fully trained on dif-
ferent source HSIs, respectively. Consequently, each model can acquire important
information and knowledge from the corresponding hyperspectral domain.

(2) Learning general-purpose representations (illustrated in Figure 2): All the parameters
of the multiple single-task models well-trained on source HSIs are frozen, and the
randomly initialized multi-task model is fully trained with the three-level distillation
strategy and episode-based learning strategy to learn general-purpose representations
from multiple different hyperspectral domains. In the designed multi-task model,
the single feature extraction module is shared across different HSIs, while multiple
channel transformation modules and linear classification modules are domain-specific
(illustrated in the bottom half of Figure 2).

(3) Fast adaption to target HSIs (illustrated in Figure 3): For each target HSI, only the
feature extraction module well-trained in the previous step is inherited, while the
channel transform module and the linear classification module are randomly initial-
ized. Then, the whole model is fine-tuned using a few labeled samples to quickly
adapt to the new hyperspectral domain.

Source HSI Prediction Ground truth

Loss

Figure 1. Schematic of pre-training on source HSIs (the Chikusei dataset is presented as an example).

In the first step, the number of source HSIs determines the number of pre-trained
single-task models. Obviously, the second step is the core of the proposed method, and the
characteristics of the learned deep representations directly determine the performance
of cross-domain small-sample classification on target HSIs. In the third step, only a few
labeled samples (for example, 5 labeled samples per class) from the target HSI are used to
fine-tune the whole model. In the remainder of this section, we will focus on the second step
as well as the designed loss function, the constructed multi-task model and the adopted
learning strategy. Before we begin, the mathematical notations for several important parts
in Figure 2 are given: the channel transformation module, the feature extraction module
and the linear classification module are denoted as tϕ, fφ and hψ, respectively. The adopter
is denoted as Aθ , and the input data are denoted as x.
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channel-level
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feature-level
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by CKA
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by KL

predictions

Freezing all parameters of multiple single-task models well-trained on source HSIs

Learning general-purpose representations by three-stage knowledge distillation

feature extraction

module across

different HSIs

Figure 2. Schematic of the proposed general-purpose representation learning method. We first
freeze all parameters of multiple single-task models well-trained on source HSIs and then attempt to
make the designed multi-task model learn general-purpose representations from multiple different
hyperspectral domains through the proposed three-level knowledge distillation strategy. During
knowledge distillation, in addition to the three designed modules, two types of domain-specific
adaptors are inserted to align the features generated by the single-task models and the multi-task
model. In the channel- and feature-level knowledge distillation, a centered kernel alignment (CKA)
similarity index is adopted, and in the logit-level knowledge distillation, the Kullback–Leibler (KL)
divergence is adopted. For the predictions and true labels, the mean square error (MSE) function is
adopted for calculating loss.

1
06

2

4

1
00
3

0
5

MSE

loss
2

3

Figure 3. Schematic of fast adaption to target HSIs. The whole model containing the inherited feature
extraction module and two other initialized modules is first trained on a few labeled samples to
quickly adapt to the new hyperspectral domain. Then, the trained model performs label prediction
on the target HSI.

3.2. Three-Level Knowledge Distillation

We propose learning general-purpose deep representations from multiple hyperspec-
tral domains. To this end, a three-level knowledge distillation method is proposed to distill
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a single multi-task model from multiple single-task models. Consequently, the learned
deep representations could automatically contain the required information from several
relevant domains and are more general-purpose for the downstream target tasks.

As shown in Figure 2, based on the three designed modules, the three levels of chan-
nel, feature and logit can be divided from the whole process. Knowledge distillation is
performed simultaneously at the three different levels by minimizing the distance between
the logit outputs (logit-level), the distance between the intermediate features after channel
transformation (channel-level), and also the distance between the learned deep represen-
tations (feature-level). In most existing research, the Kullback-Leibler (KL) divergence
is widely used to calculate the distance between the logit outputs of student networks
and teacher networks due to its excellent performance and efficient computation process.
Therefore, in our method, the KL divergence is also adopted to calculate the logit-level
distance between the probability outputs of the multi-task model pm and corresponding
single-task models ps, which can be formalized as follows:

KL(pm, ps) = Σpm·log(
pm

ps ), (1)

pi =
exp(zi/T)

∑j exp(zj/T)
, (2)

where z denotes the logit outputs, and T denotes the distillation temperature.
Different from logit outputs, which reflect probability distributions directly and simply,

the intermediate features after channel transformation and learned deep representations
possess higher dimensions and are more complicated, so more procedures are required
to align them. On the one hand, referring to [44], domain-specific adaptors are inserted
to map the features generated by the multi-task model into domain-specific vectors and
optimized jointly, along with the parameters of the designed model. On the other hand,
the centered kernel alignment (CKA) similarity index with radial basis function as the
kernel is adopted to calculate the distance in high-dimensional spaces since it is capable of
meaningful non-linear similarities.

(1) Domain-specific adaptors: The large difference between source HSIs means that the
outputs of multiple single-task models can vary significantly, and the outputs of the
multi-task model cannot match all of them simultaneously, whether at the channel
level or feature level. Therefore, domain-specific adaptors are inserted (Figure 2) to
map the outputs of the multi-task model into domain-specific vectors, which can
be expressed as Aθ : RC×H×W → R̂C×H×W , where C, H and W are the number of
channels, height and width, and R and R̂ denote the inputs and outputs, respectively.
In practice, the adaptor is instantiated with a 1×1 convolution layer with C kernels,
and the difference between adaptors at the channel level and feature- evel is the value
of C.

(2) The CKA similarity index: Aligning features learned from substantially diverse
domains requires a better and more complex distance function to model non-linear
correlations between them. The calculation of CKA similarity can be divided into
two steps. For the features M and S generated by the adopters of multi-task and
single-task models, respectively, the radial basis function matrices P and T are first
computed. Then, the similarity between them is measured as:

CKA(P, T) = tr(PHT H)/
√

tr(PHPH)tr(T HT H), (3)

where tr denotes the trace of a matrix, and H denotes a centering matrix. In the
training process, the alignment between high-dimensional features is achieved by
minimizing 1− CKA(P, T).
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In each training iteration, distillations at three different levels are performed simultane-
ously. Through the simultaneous transfer of information and knowledge from multiple hy-
perspectral domains at different levels, the distilled model can learn more general-purpose
knowledge and thus acquires better generalization ability for downstream target tasks.

3.3. Loss Function

As shown in Figure 2, the loss function of the whole model consists of two main parts:
distillation loss and prediction loss. The distillation loss can be further divided into three
losses at different levels:

Lc
τ = 1− CKA(Ac

θτ
◦ tϕτ (x), tϕ∗τ (x)), (4)

L f
τ = 1− CKA(Aθτ

◦ fφ ◦ tϕτ (x), fφ∗τ ◦ tϕ∗τ (x)), (5)

Ll
τ = KL(hψτ ◦ fφ ◦ tϕτ (x), hψ∗τ ◦ fφ∗τ ◦ tϕ∗τ (x)), (6)

where Lc, L f and Ll represent the distillation losses at the channel-, feature-, and logit-level,
respectively, and τ represents index source HSIs. The symbol ∗ is the identity of single-task
models, and Ac

θ and Aθ denote the adopters at the channel- and feature-level, respectively.
Note that fφ is shared in the multi-task model, while tϕτ and hψτ depend on the particular
source HSI.

In addition to the above distillation losses, the loss between the predictions and the
true labels is calculated according to the mean square error (MSE) function:

LMSE
τ =

∑n
i=1(hψτ ◦ fφ ◦ tϕτ (x)− y)2

n
, (7)

where y denotes the true labels, and n is the dimension of class vectors and actually equals
the number of classes in HSI. Now, the total loss can be given as follows:

L =
K

∑
τ=1

(λ(Lc
τ + L f

τ + Ll
τ) + LMSE

τ ), (8)

where K is the number of source HSIs, and λ is used to adjust the weight of distillation losses.
In the training process, the multi-task model is optimized based on both the distillation loss
and the prediction loss. The total loss function prompts the model to align with the outputs
of multiple single-task models at different levels while enabling the model to make correct
predictions, which is conducive to the fusion of knowledge from different hyperspectral
domains and learning more general-purpose representations.

3.4. Extensible Multi-Task Model

To transfer and fuse knowledge from multiple single-task models simultaneously into
a single distilled model and better adapt to the characteristics of different HSIs, a novel
multi-task model is designed. Figure 4 is actually a detailed expansion of the bottom half of
Figure 2. As we can see, the designed model mainly consists of a shared feature extraction
module, multiple domain-specific channel transformation modules and linear classification
modules. The designed model can receive multiple-source HSIs at the same time and
perform knowledge distillation and classification prediction on multiple domains, so it
conforms to the paradigm of multi-task learning.
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convolutional block max pooling layer fully connected layer concatenation

shared feature

extraction module

support sample

query sample

multiple channel

transformation modules

multiple linear

classification modules

channel-level

distillation

feature-level

distillation

logit-level

distillation

Figure 4. Schematic of the designed multi-task model for general-purpose representation learning
(actually a detailed expansion of the bottom half of Figure 2). The designed model can receive
multiple-source HSIs simultaneously and perform knowledge distillation and label prediction on
multiple-source domains; therefore, it conforms to the paradigm of multi-task learning.

The channel transformation module is responsible for transforming input HSIs with
any number of bands into cube data with Nc bands without changing the space size.
For multiple-source HSIs, the value of Nc is artificially fixed and consistent. This module
skillfully deals with the inconsistency of the number of spectral bands in different HSIs,
so that HSIs with any number of bands can be used as source data sets, effectively improving
the expansibility of the model and avoiding the loss of spatial–spectral features caused
by dimensionality reduction. The feature extraction module is equivalent to a complex
non-linear function, mapping input cubes into feature vectors containing rich spatial–
spectral information. Undoubtedly, the performance of the feature extraction module
determines the quality of the learned deep representations. The linear classification module,
essentially a simple linear classifier, is used to assign a unique class label to each input
vector. Besides the shared feature extraction module, the number of the other two modules
is determined according to the number of source HSIs, so the scale and structure of the
model are extensible.

Next, a branch of the multi-task model is taken as an example to describe the net-
work structure in detail since the structure of channel transformation modules and linear
classification modules corresponding to different HSIs are exactly the same. The cubes
around the center pixels are used as the input support or query samples to make full use
of the spatial–spectral information in HSIs. The channel transformation module, actually
a convolutional block containing a two-dimensional convolution layer, a batch normal-
ization layer and a ReLU activation function, first compresses the channel dimension of
input samples to the fixed value Nc. Specifically, the size of convolutional kernels is 1× 1.
The feature extraction module is composed of convolutional blocks, pooling layers and
residual connections. The pooling layers are embedded between convolutional blocks to
gradually reduce the space size of input cubes while extracting deep features, and the
residual connection promotes the joint utilization of features at different layers. Specifically,
the size of convolution kernels is set as 3× 3, the number of convolution kernels increases
layer by layer according to [128, 256, 512, 1024], and the size of kernels in max pooling
layers is set as 2× 2. The linear classification module is composed of a convolutional block
and two fully connected layers and maps the concatenation vectors of support samples
and query samples into class vectors. The size of the convolution kernel is 1× 1, and the
dimensions of the two fully connected layers are set as 512 and 128. In addition, the dropout
operation and the sigmoid activation are added to the outputs of the two fully connected
layers, respectively.
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3.5. Episode-Based Learning Strategy

Many studies have shown that, compared with the conventional batch-based training
strategy, the episode-based learning strategy can effectively improve the data efficiency
for small samples, that is, when generalized to new data sets, deep models can learn
quickly and efficiently with few labeled samples [14,47,49]. Therefore, the episode-based
learning strategy of the typical metric-based meta-learning is employed in the whole
learning process.

As shown in Figure 5, an episode consists of a support set and a query set. Given a
training data set, a large number of different episodes are generated by random sampling,
so different episodes usually contain different classes. Whereas in one episode, the support
set and the query set have exactly the same classes. However, it is noted that each sample
in one episode is different from the others. In the training process, the support samples
are used as supervised information to optimize the prediction results of deep models on
the query samples. Specifically, in the metric-based meta-learning process, the class of
the query sample is determined by measuring the similarity distances between the query
sample and the support samples. Furthermore, in one episode, the number of support
samples is often fewer than the number of query samples to simulate the small-sample
setting. Formally, an episode can be described by three keywords: way, shot and query.
The first keyword way represents the number of classes in an episode, and the keywords
shot and query represent the number of samples per class in the support set and query
set of the episode, respectively. For example, each episode in Figure 5 can be denoted as
(4-way, 1-shot, 2-query). In the experiments, the value of way in episodes is set equal to the
number of classes in the given HSIs so that the multi-task model can learn rich knowledge
from the multiple hyperspectral domain, simultaneously. As for the two hyperparameters
shot and query, Section 4.5.1 gives a detailed analysis.

support set query set

episode 1

episode 2

episode N

Figure 5. Schematic of episodes (4-way 1-shot 2-query) in the typical meta-learning process. Different
colors represent different classes.

4. Experimental Results and Analysis
4.1. Data Sets

To study the problem of small-sample cross-domain classification between completely
different HSIs, 10 widely used HSIs were divided into source HSIs and target HSIs referring
to existing researches [14,15,25]. Specifically, the six source HSIs include HanChuan (HC),
Cuprite (CU), Houston 2013 (HS13), Botswana (BO), Kennedy Space Center (KSC) and
Chikusei (CH), while the four target HSIs are University of Pavia (UP), Pavia Center (PC),
Salinas (SA) and Indian Pines (IP), respectively. The details of these HSIs are listed in
Table 1.
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Table 1. Details of source HSIs and target HSIs. HanChuan (HC), Cuprite (CU), Houston 2013 (HS13),
Botswana (BO), Kennedy Space Center (KSC), Chikusei (CH), University of Pavia (UP), Pavia Center
(PC), Salinas (SA), Indian Pines (IP), ground sample distance (GSD)(m), spatial size (pixel), Spectral
range (nm), airborne visible infrared imaging spectrometer (AVIRIS), reflective optics system imaging
spectrometer (ROSIS).

Source HSIs Target HSIs

HC CU HS13 BO KSC CH UP PC SA IP

Spatial size 1217 × 303 614 × 512 349 × 1905 1476 × 256 512 × 614 2517 × 2335 610 × 340 1096 × 715 512 × 217 145 × 145
Spectral range 400–1000 370–2480 380–1050 400–2500 400–2500 363–1018 430–860 430–860 400–2500 400–2500
No. of bands 274 190 144 145 176 128 103 102 204 200

GSD 0.109 20 2.5 30 18 2.5 1.3 1.3 3.7 20

Sensor type
Headwall

Nano-
Hyperspec

AVIRIS
ITRES-
CASI
1500

EO-1 AVIRIS Hyperspec
-VNIR-C ROSIS ROSIS AVIRIS AVIRIS

Areas HanChuan Cuprite Houston Botswana Florida Chikusei Pavia Pavia California Indiana
No. of classes 16 8 15 14 13 19 9 9 16 16

Total labeled samples 257,530 3837 15,029 3248 5211 77,592 42,776 148,152 54,129 10,249
Labeled samples for training 200 per class 5 per class

4.1.1. Source HSIs

The six source HSIs are captured by different sensors, respectively, and have com-
pletely different land cover types, ground sample distances, spectral ranges and band
amounts. On the one hand, diverse source HSIs can effectively improve the richness and
diversity of samples for representation learning, and on the other hand, inevitably increase
the challenge for knowledge transfer and distillation. To keep the balance between the
training difficulty and learning effect, 200 samples per class are randomly selected from
each source HSI as representative data in this domain. Meanwhile, the 28 × 28 cubes in the
neighborhood of pixels are selected as input samples to make full use of the spatial–spectral
information in HSIs. Therefore, for the source HSI with Nb bands and M classes, the actual
size of data involved in the training process is (M, 200, Nb, 28, 28).

4.1.2. Target HSIs

Compared with the six source HSIs, the four target HSIs also have completely different
classes, ground sample distances, spectral ranges and band amounts. Therefore, using the
model distilled from multiple-source HSIs to classify target HSIs is the typical process of
cross-domain HSI classification. For each target HSI, only five labeled samples per class are
randomly selected for model training, and the remaining samples are used to evaluate the
performance of cross-domain HSI classification. The dimensions of each sample are also
(Nb, 28, 28). In addition, it should be noted that the four different target HSIs also provide a
variety of scenes to fully validate the performance of the proposed method.

4.2. Environment and Settings

All the results were generated on a computer equipped with an Nvidia A100 GPU and
an Intel(R) Xeon(R) Gold 6152 CPU. All the algorithms and programs were developed by
Python 3.9 and machine learning libraries, such as Pytorch, sklearn and numpy.

During pre-training on source HSIs, the learning rate and iteration times were set
to 0.0001 and 1000, respectively, for each single-task model. The main structure of the
single-task model is exactly the same as that of the multi-task model, and the difference
between the two models lies in the number of modules and the followed paradigms. During
knowledge distillation for learning general-purpose representations, the temperature T is
set to 4, and the value of Nc is set to 100. In each episode, the number of classes depends on
the corresponding HSIs, and the number of support samples and query samples are set to 5
and 15. The learning rate and iteration times are set to 0.0001 and 1000, respectively, and the
Adam optimization algorithm is used for parameter updating. In addition, the probability
value of dropout is set to 50%. During fast adaption to target HSIs, the learning rate and
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iteration times are set to 0.0001 and 500, respectively, and the Mt-way 2-shot 3-query tasks
are constructed (Mt is 9 for UP and PC, Mt is 16 for SA and IP). During the whole training
process, the hyperparameter λ is set to 0.8.

Consistent with other existing studies, the overall accuracy (OA), average accuracy
(AA) and kappa coefficient were used to evaluate the classification results. Furthermore,
all of the algorithms were run 10 times with the same random seeds, and the results are
expressed as mean value and standard deviation to further improve the credibility and
persuasiveness of experimental results.

4.3. Classification Results and Analysis

To evaluate the classification performance of the proposed method, seven advanced
methods were selected for comparison, including three cross-domain classification methods
(DFSL+SVM [14], RN-FSC [15] and UM2L [25]), two semi-supervised methods (EMP+TSVM [58]
and EMP+GCN [32]), an advanced GAN-based method (3D-HyperGAMO [59]) and a
classic contrastive learning method (Barlow Twins (BT) [60]). For the three cross-domain
methods and the proposed method, according to existing research, the four data sets, includ-
ing HS13, BO, KSC and CH, were selected as source HSIs for a fair comparison [14,15,25].
The classification results of different methods are listed in Table 2, from which several
observations can be obtained.

(1) The traditional method (EMP+SVM) performs semi-supervised classification based
on the extracted shallow EMP features and cannot make full use of the deep abstract
features in HSIs, so its classification performance is significantly worse than that of
other deep models.

(2) The accuracy and robustness of the classification results of EMP+GCN, 3D-HyperGAMO
and BT are obviously better than that of EMP+SVM. According to the OA, EMP+GCN
has better performance on the UP and SA data sets, while 3D-HyperGAMO and
BT can achieve better classification results on the PC and IP data sets, respectively.
EMP+GCN and 3D-HyperGAMO can utilize unlabeled samples and synthetic sam-
ples, respectively, to assist model training on the target domain, and BT can utilize the
more discriminative features in target HSIs, thus effectively improving the classifica-
tion results.

(3) The three cross-domain methods, DFSL+SVM, RN-FSC and UM2L, can further im-
prove the performance of cross-domain HSI classification with samples. By using a
large number of samples in the source HSIs to pre-train the deep models, the models
can obtain a better initialization state compared with training from scratch so as to
obtain higher classification accuracy in the target domains with small samples.

(4) Obviously, the proposed method achieves the best classification results. For the
four target HSIs, the OA of the proposed method is 3.52%, 0.56%, 2.47% and 0.62%
higher than that of the second place, respectively, and the kappa coefficient of the
proposed method is 4.78%, 0.80%, 2.73% and 0.66% higher than that of the second
place, respectively. Compared with the other three cross-domain methods, on the one
hand, the proposed method can learn more general-purpose representations from
multiple-source domains with the three-level distillation strategy, and on the other
hand, the proposed method trains the deep model based on the multi-task learning
paradigm, which can better adapt to the characteristics of different target HSIs and
make full use of the spatial–spectral information when only a few labeled samples
are available.

Classification maps are often used as a qualitative measure to compare the classifica-
tion results of different methods from the perspective of visualization. The classification
maps of different methods on the four target HSIs are given in Figures 6–9. As we can
see, compared with other methods, the proposed method can produce the classification
maps closest to the real ground truths, where the noise and misclassification are effectively
reduced. Taking the UP data set as an example (Figure 6), in the corresponding regions of
classes Bare Soil and Bricks, the noise is significantly reduced, and the regional coherence
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is significantly improved. In short, the comparison of classification maps again proves the
effectiveness of the proposed method in cross-domain HSI classification with small samples.

Table 2. The classification results from different methods. SD denotes the standard deviation of 10
experimental results.

HSI Criteria
EMP+TSVM EMP+GCN 3D-HyperGAMO BT DFSL+SVM RN-FSC UM2L GPRL
Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

UP
OA 69.58 ± 7.55 75.23 ± 3.96 70.42 ± 4.91 70.03 ± 3.09 71.64 ± 6.07 77.16 ± 5.82 80.49 ± 3.64 84.01 ± 4.31
AA 72.65 ± 3.70 75.12 ± 3.27 69.97 ± 3.60 69.63 ± 2.84 74.12 ± 4.65 72.60 ± 4.38 77.79 ± 3.05 82.32 ± 2.99

kappa 61.83 ± 7.67 68.02 ± 4.19 62.59 ± 5.45 62.40 ± 3.51 64.41 ± 6.53 70.86 ± 6.66 74.70 ± 4.05 79.48 ± 5.14

PC
OA 92.83 ± 1.90 95.01 ± 0.83 95.27 ± 2.23 95.19 ± 2.37 95.54 ± 1.52 95.61 ± 1.08 94.43 ± 1.12 96.17 ± 0.74
AA 83.01 ± 2.77 85.43 ± 1.68 86.61 ± 4.62 86.53 ± 4.85 87.27 ± 2.59 88.14 ± 1.82 84.89 ± 2.61 89.00 ± 2.30

kappa 89.96 ± 2.57 92.98 ± 1.16 93.35 ± 3.08 93.20 ± 3.22 93.75 ± 2.04 93.79 ± 1.52 92.17 ± 1.56 94.59 ± 1.04

SA
OA 83.58 ± 1.65 85.93 ± 0.99 83.70 ± 4.40 83.70 ± 4.17 84.52 ± 3.32 86.37 ± 3.32 89.82 ± 4.18 92.29 ± 3.55
AA 87.54 ± 0.79 89.87 ± 0.98 88.76 ± 2.59 86.62 ± 2.49 91.67 ± 0.84 89.75 ± 1.61 92.99 ± 2.23 95.15 ± 1.76

kappa 81.78 ± 1.81 84.33 ± 1.10 81.97 ± 4.84 81.98 ± 4.59 82.90 ± 3.60 84.91 ± 3.65 88.72 ± 4.61 91.45 ± 3.92

IP
OA 55.09 ± 3.51 55.98 ± 2.93 57.02 ± 3.00 58.36 ± 2.39 60.18 ± 3.53 60.84 ± 3.15 71.65 ± 2.17 72.27 ± 2.61
AA 55.19 ± 1.96 54.77 ± 1.89 55.48 ± 2.47 52.86 ± 1.96 59.41 ± 1.73 56.66 ± 4.65 64.60 ± 2.74 65.26 ± 2.56

kappa 49.62 ± 3.80 50.65 ± 3.00 52.17 ± 3.30 54.37 ± 2.50 55.66 ± 3.72 56.52 ± 3.41 68.29 ± 2.35 68.95 ± 2.88

Shadow Bricks Bitumen Bare Soil Metal Sheets Trees Gravel Meadows Asphalt Unlabeled

(a) Ground truth (b) EMP+TSVM (f) DFSL+SVM(c) EMP+GCN (d) 3D-HyperGAMO (g) RN-FSC (h) UM2L (i) GPRL(e) BT

Figure 6. The classification maps of different methods on the UP data set.

Shadow Tile Bitumen Asphalt Bare Soil Bricks Meadows Trees Water Unlabeled

(a) Ground truth (b) EMP+TSVM (c) EMP+GCN (d) 3D-HyperGAMO (f) DFSL+SVM (g) RN-FSC (h) UM2L (i) GPRL(e) BT

Figure 7. The classification maps of different methods on the PC data set.
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Figure 8. The classification maps of different methods on the SA data set.
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Figure 9. The classification maps of different methods on the IP data set.

4.4. General-Purpose Representations

The proposed method focuses on learning general-purpose representations from
multiple-source HSIs domains to achieve better classification results in different target
domains with small samples. In this section, the learned general-purpose representations
will be explained and analyzed in detail from the following three perspectives: classification
accuracy, the number of required iterations, and feature separability.

4.4.1. From the Perspective of Classification Accuracy

The general-purpose representations should be able to generalize to multiple different
target domains and achieve higher classification accuracy with small samples. Table 3
compares the classification results of different variants of the proposed method, which
is actually an ablation study on the two important parts: meta-training and knowledge
distillation. In Table 3, the third column Baseline means that the randomly initialized
model is optimized with five samples per class in target domains, while the fifth column
includes the whole training and classification process. As we can see, from the third column
to the fifth column, the classification accuracy and kappa coefficient gradually increase,
which means that the proposed method with the combination of the meta-training process
and the three-level knowledge distillation strategy can learn more general-purpose deep
representations from source domains so as to achieve more accurate classification results in
different target domains.

Table 3. The classification results of different variants of the proposed method. SD denotes the
standard deviation of 10 experimental results.

HSI Criteria
Baseline Baseline

+ Meta-Training

Baseline
+ Meta-Training

+ Knowledge Distillation
Mean ± SD Mean ± SD Mean ± SD

UP
OA 78.73 ± 3.00 80.84 ± 3.88 84.01 ± 4.31

AA 77.85 ± 2.86 78.48 ± 2.39 82.32 ± 2.99

kappa 72.86 ± 3.36 75.56 ± 4.57 79.48 ± 5.14

PC
OA 94.54 ± 1.01 95.19 ± 0.77 96.17 ± 0.74

AA 86.07 ± 2.35 86.37 ± 2.09 89.00 ± 2.30

kappa 92.33 ± 1.39 93.21 ± 1.08 94.59 ± 1.04

SA
OA 89.45 ± 3.78 90.97 ± 4.07 92.29 ± 3.55

AA 93.90 ± 1.73 94.18 ± 1.90 95.15 ± 1.76

kappa 88.32 ± 4.16 90.00 ± 4.48 91.45 ± 3.92

IP
OA 67.29 ± 1.53 69.27 ± 4.85 72.27 ± 2.61

AA 66.00 ± 3.99 62.42 ± 3.90 65.26 ± 2.56

kappa 63.42 ± 1.65 65.82 ± 5.11 68.95 ± 2.88



Remote Sens. 2023, 15, 1080 15 of 22

4.4.2. From the Perspective of Required Iterations

In this subsection, the number of required iterations during fast adaption is used to
measure the adaptability of the learned deep representations to different target domains,
considering that the more general-purpose the representations are, the fewer iterations
they need to adapt to the new classes. Figure 10 shows the curves of loss value and OA
when the model is fine-tuned for different target HSIs. It can be seen that as the number of
iterations increases, the loss value decreases rapidly, and the classification accuracy rises
rapidly. According to the curve of OA, the fast adaptation to target HSIs can be achieved at
about 150 iterations. In short, the process of fine-tuning the learned representations and
adapting them to the target HSIs is fast and efficient, which indirectly verifies the versatility
and universality of the learned representations for different hyperspectral domains.

(a) UP (b) PC (c) SA (d) IP

Figure 10. Curves of loss value and OA during fast adaption to different target HSIs. The red and
blue curves represent OA and loss value, respectively.

4.4.3. From the Perspective of Feature Separability

In addition to the above two perspectives, the learned deep representations are vi-
sualized to observe the separability between different classes. Specifically, the t-SNE
(t-distributed stochastic neighbor embedding) algorithm [61] is used to reduce the dimen-
sionality of the input samples and the high-dimensional vectors generated by the feature
extraction module. The UP and SA data sets are taken as examples for observation and
analysis, as shown in Figure 11. It can be seen that the separability between input samples
is very poor, and after the feature extraction module, the distance between feature vectors
corresponding to different classes increases significantly. This shows that, after generaliza-
tion to different target HSIs, the learned deep representations can effectively enhance the
discrimination and separability between different classes so as to improve the accuracy of
small-sample classification in the target domains.

(a) Input samples (UP) (b) Learned representations (UP) (c) Input samples (SA) (d) Learned representations (SA)

Figure 11. Visual presentation of the input samples and learned representations. Different colors
represent different classes.

4.5. Hyperparameters Analysis

In this section, the four important hyperparameters of the proposed method, including
episode settings, the level of knowledge distillation, the distillation temperature and the
hyperparameter λ, are explored and analyzed in detail.

4.5.1. Episode Settings

As described in Section 3.5, the episode settings include the three keywords of way,
shot, and query. In each episode, the value of way is equal to the number of classes in the
corresponding HSIs, while the best values for shot and query require further exploration.
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During general-purpose representation learning, the values of (shot, query) are set to (1, 19),
(5, 15), (10, 10), respectively, and during fast adaption to target HSIs with small samples,
the values of (shot, query) are set to (1, 4) and (2, 3). Consequently, the influence of six
different episode settings on classification accuracy is explored, and the results are shown
in Figure 12. It can be seen that on the four target HSIs, the combination of (5, 15) and (2, 3)
can further improve the classification performance of the proposed method, while the other
settings all lead to different degrees of decline in classification accuracy.
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Figure 12. The results of the proposed method with different episode settings.

4.5.2. The Level of Knowledge Distillation

The proposed three-level knowledge distillation strategy plays an important role in
learning general-purpose representations and directly affects the cross-domain classification
performance of the designed model. In the statistical results of Table 4, the symbols C, F and
L denote the channel-, feature- and logit-level distillation, respectively. It can be observed
that the classification accuracy corresponding to distillation only at the feature level is
lower than that of other strategies, and the introduction of channel- and logit-level can
effectively improve the classification accuracy. There is no doubt that the proposed method
can achieve the best classification performance by simultaneously distilling knowledge at
the channel-, feature- and logit-level because it provides the possibility for more sufficient
knowledge transfer and fusion.

Table 4. The results of the proposed method with different distillation levels. The channel-, feature-
and logit-level are denoted as C, F and L, respectively. SD denotes the standard deviation of 10 exper-
imental results.

HSI Criteria
F F + C F + L F + C + L

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

UP
OA 82.94 ± 4.17 83.20 ± 3.43 83.70 ± 4.19 84.01 ± 4.31

AA 81.31 ± 2.16 80.50 ± 2.58 81.43 ± 2.75 82.32 ± 2.99

kappa 78.16 ± 4.80 78.40 ± 4.07 79.06 ± 4.98 79.48 ± 5.14

PC
OA 95.23 ± 0.96 95.55 ± 1.01 95.75 ± 0.89 96.17 ± 0.74

AA 86.93 ± 2.39 87.86 ± 1.74 88.27 ± 1.73 89.00 ± 2.30

kappa 93.28 ± 1.34 93.71 ± 1.43 93.98 ± 1.26 94.59 ± 1.04

SA
OA 91.20 ± 3.94 91.15 ± 3.77 91.67 ± 4.03 92.29 ± 3.55

AA 94.12 ± 1.91 93.96 ± 1.91 94.86 ± 1.92 95.15 ± 1.76

kappa 90.25 ± 4.34 90.19 ± 4.16 90.77 ± 4.44 91.45 ± 3.92

IP
OA 71.31 ± 1.94 71.79 ± 2.96 72.07 ± 2.47 72.27 ± 2.61

AA 65.21 ± 3.67 66.22 ± 2.80 65.63 ± 4.32 65.26 ± 2.56

kappa 67.94 ± 2.17 68.48 ± 3.09 68.77 ± 2.63 68.95 ± 2.88

4.5.3. Distillation Temperature

Distillation temperature in the logit level is also an important hyperparameter that
needs to be analyzed. A higher temperature will produce a softer probability distribution
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over classes, while a smaller temperature will increase the difference in classes in the
probability distribution. Figure 13 shows the influence of distillation temperature on the
classification results. Obviously, the optimal value of temperature corresponding to the
four target HSIs is different: two for the UP data set, four for the PC and SA data sets,
and six for the IP data set. Note that when the temperature is set to four, the proposed
method can achieve high classification accuracy on the four different HSIs. Therefore, it is
considered that setting the temperature to four has certain applicability for multiple HSIs.
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(a) UP (b) PC (c) SA (d) IP

Figure 13. The results of the proposed method with different distillation temperatures.

4.5.4. Weight of Distillation Losses

In this subsection, the influence of the weight of distillation losses on the classifica-
tion results of the proposed method is explored and analyzed. According to Equation 8,
the hyperparameter λ directly determines the proportion of distillation losses in total losses.
Table 5 shows the classification results of the proposed method with different values of hy-
perparameters λ. It can be seen that, with the gradual increase in λ, the classification results
of the proposed method are gradually optimized. The λ of 0.8 can enable the method to
obtain the best classification performance. However, when the value of λ increases further
to 1.0, the marginal returns occur, and the classification accuracy decreases slightly.

Table 5. The results of the proposed method when hyperparameter λ changes.

HSI Criteria
λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

UP
OA 81.87 ± 4.03 83.03 ± 3.63 84.01 ± 4.31 83.97 ± 4.10

AA 79.34 ± 2.52 80.30 ± 2.97 82.32 ± 2.99 82.47 ± 1.33

kappa 76.79 ± 4.96 78.16 ± 4.25 79.48 ± 5.14 79.46 ± 4.83

PC
OA 95.30 ± 0.97 95.75 ± 0.99 96.17 ± 0.74 96.02 ± 0.99

AA 86.97 ± 2.41 88.03 ± 1.66 89.00 ± 2.30 88.42 ± 2.16

kappa 93.36 ± 1.39 93.79 ± 1.50 94.59 ± 1.04 94.37 ± 1.40

SA
OA 91.00 ± 3.98 91.63 ± 3.83 92.29 ± 3.55 92.05 ± 3.66

AA 94.01 ± 1.93 94.42 ± 1.97 95.15 ± 1.76 94.58 ± 1.91

kappa 90.07 ± 4.41 90.65 ± 4.26 91.45 ± 3.92 91.19 ± 4.04

IP
OA 70.18 ± 1.96 71.53 ± 2.77 72.27 ± 2.61 72.17 ± 1.80

AA 64.19 ± 3.52 66.04 ± 2.53 65.26 ± 2.56 66.04 ± 3.57

kappa 66.96 ± 2.30 68.29 ± 2.99 68.95 ± 2.88 68.79 ± 2.09

4.6. Influence of Labeled Target Samples

The number of labeled target samples for fine-tuning determines the adaptation level
of the proposed method to the classification tasks on target HSI domains. Theoretically,
with the increase in the number of labeled target samples, the proposed method should
achieve better classification performance. Figure 14 shows the variation trend of the
classification accuracy of the proposed method on four different target HSIs as the number
of labeled target samples per class increases from 5 to 25. The shaded part represents
the standard deviation. It can be seen that the classification accuracy of the proposed
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method increases steadily, showing a certain ability to adapt to the number of labeled
target samples.

(d) IP(a) UP (c) SA(b) PC

Figure 14. The influence of the number of labeled target samples on the classification accuracy.
The shaded part represents the standard deviation.

4.7. Influence of Different Source HSIs

The selection of source HSIs determines the characteristics of the learned deep repre-
sentations and then affects the classification results on the target HSIs. In this subsection,
the UP and SA data sets are taken as examples to explore the influence of different source
HSIs on classification accuracy, and the results are shown in Figure 15. It can be seen that,
with the increase in the number of source HSIs, the classification accuracy on target HSIs
first rises and then tends toward stability. Note that the introduction of the CH data set can
effectively improve the classification accuracy. It is believed that the CH data set has rich
classes, and a total of 18 classes containing water, 3 types of soil, 7 types of vegetation and
7 types of man-made buildings are used for model training, which can provide more rich
information and knowledge for learning general-purpose representations.

(a) UP (b) SA

Figure 15. The influence of different source HSIs on the classification accuracy.

4.8. Efficiency Analysis

Execution efficiency is an important metric for measuring the application potential
of deep models. In this section, the efficiency of three typical cross-domain classification
models and the proposed method is compared and analyzed. Specifically, with the UP
dataset as the target HSI, the experimental settings are consistent with Section 4.2, and the
execution times of different methods in different phases are listed in Table 6. Compared
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with the other three models, although the proposed method includes four different stages,
its total execution time is still the least. This is mainly because the employment of the
three-level distillation strategy effectively improves the ability of the model to fuse the
knowledge from different source HSI domains, and thus the model can quickly adapt to the
new classification scenarios in target HSI domains with fewer training iterations. Therefore,
from the perspective of execution efficiency, the proposed method is superior to the other
three cross-domain classification methods.

Table 6. Efficiency analysis of different methods.

Phases DFSL + SVM RN-FSC UM2L GPRL

Pre-training 118.23 min 319.84 min 316.87 min 15.01 min

Knowledge distillation / / / 37.64 min

Fine-tuning 9.15 s 80.47 s 363.32 s 32.93 s

Classification 1.88 s 19.12 s 141.83 s 13.37 s

5. Discussion and Future Work

Aiming at the problem of cross-domain HSI classification with small samples, this pa-
per proposes a general-purpose representation learning method to further improve the
accuracy of small-sample classification on target HSIs based on the full use of information
and knowledge in source HSIs. The proposed three-level distillation strategy is the core of
the proposed method, which can efficiently transfer and distill knowledge from multiple-
source HSIs domains and improve the process of representation learning. The designed
multi-task model can perform learning and classification on multiple HSIs simultaneously,
skillfully solving the inconsistency of the number of spectral bands in different HSIs and
effectively enhancing the adaptability to different target domains. The adopted episode-
based learning strategy can effectively improve the generalization ability between different
HSIs and data efficiency for small samples. Extensive experiments have demonstrated that
by combining the advantages of knowledge distillation, multi-task learning and episode-
based training, the proposed method can achieve better results in the cross-domain HSI
classification with small samples.

In future work, we will draw on the ideas of self-supervised and unsupervised learning
to explore how to use a large number of unlabeled samples that can be easily obtained for
knowledge distillation and cross-domain learning and to further improve the classification
performance while effectively reducing the dependence on deep models on a large number
of source samples.
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