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Abstract: The automatic detection of tree crowns and estimation of crown areas from remotely sensed
information offer a quick approach for grasping the dynamics of forest ecosystems and are of great
significance for both biodiversity and ecosystem conservation. Among various types of remote
sensing data, unmanned aerial vehicle (UAV)-acquired RGB imagery has been increasingly used
for tree crown detection and crown area estimation; the method has efficient advantages and relies
heavily on deep learning models. However, the approach has not been thoroughly investigated
in deciduous forests with complex crown structures. In this study, we evaluated two widely used,
deep-learning-based tree crown detection and delineation approaches (DeepForest and Detectree2)
to assess their potential for detecting tree crowns from UAV-acquired RGB imagery in an alpine,
temperate deciduous forest with a complicated species composition. A total of 499 digitized crowns,
including four dominant species, with corresponding, accurate inventory data in a 1.5 ha study plot
were treated as training and validation datasets. We attempted to identify an effective model to
delineate tree crowns and to explore the effects of the spatial resolution on the detection performance,
as well as the extracted tree crown areas, with a detailed field inventory. The results show that the
two deep-learning-based models, of which Detectree2 (F1 score: 0.57) outperformed DeepForest
(F1 score: 0.52), could both be transferred to predict tree crowns successfully. However, the spatial
resolution had an obvious effect on the estimation accuracy of tree crown detection, especially
when the resolution was greater than 0.1 m. Furthermore, Dectree2 could estimate tree crown areas
accurately, highlighting its potential and robustness for tree detection and delineation. In addition,
the performance of tree crown detection varied among different species. These results indicate that
the evaluated approaches could efficiently delineate individual tree crowns in high-resolution optical
images, while demonstrating the applicability of Detectree2, and, thus, have the potential to offer
transferable strategies that can be applied to other forest ecosystems.

Keywords: tree crown delineation; UAV; RGB; DeepForest; Detectree2; transfer learning

1. Introduction

Accurate tree crown detection and delineation are critical for compiling precise forest
inventories and enabling the timely detection of forest dynamics required by various
conservation strategies [1–3]. Among various attempts to date, remote sensing techniques
provide reliable approaches to obtain timely, accurate, and complete information and have
been increasingly applied to tree crown detection and delineation [4–8]. However, previous
studies focusing on mapping tree crowns have generally involved the manual delineation
and visual interpretation of remote sensing imagery. The aforementioned approach is
laborious and time consuming and, therefore, may only be practical for small areas. Instead,
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automatic tree detection and delineation from remote sensing imagery can help to overcome
these limitations.

Automatic tree detection and delineation from remote sensing imagery have been
attempted in recent years, ranging from relatively simple image processing methods to
rather complicated machine learning and deep-learning-based approaches [9,10]. Among
these, both the image processing and machine-learning-based methods may face difficul-
ties in detecting dense tree crowns accompanied by complex backgrounds and the need
to determine individual features, respectively [9,10]. In comparison, the deep learning
approach can yield information about a higher level and extract features from raw data by
learning procedures rather than human designs, offering high levels of flexibility [11].

Recent advances in deep-learning-based tree crown detection and delineation rely
heavily on convolutional neural networks (CNNs) to segment images or enhance treetop
detection [12–16]. Nonetheless, they are more effective and capable of outperforming
other approaches [17,18]. DeepForest [19] and Detectree2 [20] are two recently developed
CNN-rooted deep learning models used for the detection and delineation of tree crowns.
Specifically, DeepForest was developed and pre-trained using data from the National
Ecological Observatory Network (NEON) with an unsupervised, LiDAR-based algorithm
and hand annotations of airborne RGB imagery to detect tree crowns using bounding
boxes [19,21]. On the other hand, Detectree2 was built on the Mask R-CNN, an end-to-end
and self-training convolutional neural network [22], to recognize the irregular edges of
individual tree crowns from airborne RGB imagery [20]. The latter model can detect the
specific edges of tree crowns and may, thus, provide information on tree crown areas as
well. These two deep-learning-based models allow the automatic and accurate detection of
tree crowns from accessed RGB imagery and have become representative tree detection
tools. For instance, DeepForest has a wide range of applications for orchard trees and
boreal forests [23–26], whereas Detectree2 has been primarily applied to study tropical
forests [20,27]. However, the use of these two methods has not yet been thoroughly
investigated in temperate deciduous forests.

It is well known that the main issue with CNNs is that their application requires a large
training set [28]. Luckily, trained CNN models are highly transferable; the layer activation
patterns learned by a CNN, stored in a single file, can be used to initialize the training of
a new CNN and applied to a secondary task, a process termed transfer learning [28,29].
The transfer learning method can, therefore, overcome the limitations of small datasets
and facilitate the practical application of CNN techniques in cases where less data are
available [30,31]. The two aforementioned pre-trained models are reported to have the
potential to offer a transferable means of prediction for tree detection and delineation [3,13].
However, so far, no studies have tested whether these two methods can be transferred
readily to deciduous forests characterized by closed and structurally complex canopies
with obvious phenological changes and complicated species composition information.

In terms of base remote sensing data for tree detection and delineation, the unmanned
aerial vehicle (UAV) platform may provide high spatial and temporal resolution imageries
with lower operational costs and less complexity relative to other remote sensing plat-
forms [32–34] and have, hence, been extensively used in forest precision management. Sev-
eral studies have reported that tree crowns can be detected and delineated with promising
accuracy by utilizing UAV-based image-capture techniques [13,35–37], in which red–green–
blue (RGB) imageries are gradually achieved to enable tree crown detection and delineation
with feasible and low-cost features [38,39]. As a result, the application of deep learning
models based on CNNs applied to UAV-acquired RGB imageries has emerged as a prompt
and affordable way of detecting and delineating tree crowns [35,40–42]. For example, Chad-
wick et al. [39] investigated the potential of Mask R-CNN for automatically delineating
individual tree crowns from RGB images generated by UAVs in a conifer forest. Recently,
Yu et al. [43] detected tree crowns using Mask R-CNN in a plantation forest (Chinese fir)
with UAV-acquired RGB imagery. Unfortunately, to date, studies of tree crown detection
and delineation from UAV-derived RGB imageries have largely been limited to a single
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species or forests with a uniform structure, such as coniferous forests [44–46]. To the best of
our knowledge, there have been relatively few studies considering tree crown delineation
and crown area estimation from UAV-generated RGB images in deciduous forests with
diverse and complex structures. Furthermore, the importance of the spatial resolution of
the tree crown detection accuracy in deciduous forests using deep-learning-based methods
has rarely been investigated, although several previous studies considering this have been
carried out in coniferous forests or plantations [35,36].

The primary purpose of this study is, thus, to identify effective, deep-learning-based
tree detection and delineation approaches from UAV-based RGB imagery in a dense and
diverse, temperate deciduous forest. More specifically, the objectives are to: (1) evaluate
the representative potentials of the DeepForest and Detectree2 models for tree crown
detection and delineation in an alpine, temperate forest with complex topography and
species compositions; (2) explore their performance in extracting the tree crown areas
from RGB imagery with different spatial resolutions; and (3) reveal the effects of spatial
resolution and canopy complexity on detection accuracy.

2. Materials and Methods
2.1. Study Area

This study was conducted on the Nakakawane site (138◦06′E, 35◦04′N), a temperate
deciduous forest located at one of Shizuoka University’s research forests in Japan (Figure 1).
The climate of the area is a typical alpine, cold-temperate climate, with an average annual
temperature of 16 ◦C and mean annual precipitation of 2500 mm [47,48]. The forest is domi-
nated by diverse deciduous species, such as Fagus crenata, Betula grossa, Carpinus tschonoskii,
Stewartia monadelpha, Acer shirasawanum, Acer nipponicum, and Fraxinus lanuginosa.
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Figure 1. The location of the study area: (a) the base data used for transfer training; (b) the location
of the Nakakawane site, Japan.

2.2. Analysis Overview

To validate the accuracy of the algorithms for crown segmentation, we prepared a
crown projection map in polygons for all trees in the canopy layer of the entire 1.5 ha study
plot based on the following procedures: first, we produced a georeferenced orthophoto of
the study plot, using UAV photographs acquired in September 2018 as a base map, and
manually delineated the boundaries of all crowns in the field. We then digitized the field-
corrected crown map and linked it with inventory data, including tree IDs, species names,
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and diameters at breast height. In total, 499 digitized tree crowns with corresponding,
accurate inventory data were used in the further analysis.

The evaluation pipeline for individual tree crown detection and delineation from UAV
RGB images in the deciduous forest, including the main steps and analysis, is summarized
in Figure 2. The workflow included the preprocessing, model tuning, and evaluation of
sections. In brief, the imagery data acquisition for the whole study area was conducted
and processed into orthophotos, and the ground truth polygons from manually annotated
tree crowns based on orthophotos were further assessed in the field, resulting in multiple
datasets for model training and evaluation. Next, two deep-learning-based methods were
introduced for crown detection and delineation, for which transfer learning was used to
train a finer model in advance before both the pre-trained models and transfer-trained
models were used, and the crown information was predicted. The influence of multiple
spatial resolutions of UAV RGB imagery and canopy complexity for tree crown information
detection and delineation was further evaluated.

Remote Sens. 2023, 15, 778 4 of 16 
 

 

2.2. Analysis Overview 
To validate the accuracy of the algorithms for crown segmentation, we prepared a 

crown projection map in polygons for all trees in the canopy layer of the entire 1.5 ha 
study plot based on the following procedures: first, we produced a georeferenced ortho-
photo of the study plot, using UAV photographs acquired in September 2018 as a base 
map, and manually delineated the boundaries of all crowns in the field. We then digitized 
the field-corrected crown map and linked it with inventory data, including tree IDs, spe-
cies names, and diameters at breast height. In total, 499 digitized tree crowns with corre-
sponding, accurate inventory data were used in the further analysis. 

The evaluation pipeline for individual tree crown detection and delineation from 
UAV RGB images in the deciduous forest, including the main steps and analysis, is sum-
marized in Figure 2. The workflow included the preprocessing, model tuning, and evalu-
ation of sections. In brief, the imagery data acquisition for the whole study area was con-
ducted and processed into orthophotos, and the ground truth polygons from manually 
annotated tree crowns based on orthophotos were further assessed in the field, resulting 
in multiple datasets for model training and evaluation. Next, two deep-learning-based 
methods were introduced for crown detection and delineation, for which transfer learning 
was used to train a finer model in advance before both the pre-trained models and trans-
fer-trained models were used, and the crown information was predicted. The influence of 
multiple spatial resolutions of UAV RGB imagery and canopy complexity for tree crown 
information detection and delineation was further evaluated. 

 
Figure 2. Flowchart of the main steps and analysis for the evaluation of deep-learning-based meth-
ods for tree crown detection and delineation. 

2.2.1. Image Acquisition and Preprocessing 
The UAV-based imagery of this study area was acquired on 18 May and 25 May 2022 

using a DJI Zenmuse P1 (DJI, Shenzhen, China) mounted on a DJI Matrice 300 RTK four-
rotor aircraft (DJI, Shenzhen, China). The image sensor in the Zenmuse P1 provided 45 
megapixels with an 8192×5490 image resolution. The flight patterns were programmed 
automatically by DJI Pilot to achieve an 85% forward overlap rate and 80% side overlap 
rate with a 60 m flight height above the relative take-off point. To ensure and maintain 
flight accuracy, the DJI D-RTK 2 (DJI, Shenzhen, China) high-precision GNSS mobile sta-
tion for Matrice 300 RTK was set at a fixed point and used to obtain highly accurate 
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for tree crown detection and delineation.

2.2.1. Image Acquisition and Preprocessing

The UAV-based imagery of this study area was acquired on 18 May and 25 May
2022 using a DJI Zenmuse P1 (DJI, Shenzhen, China) mounted on a DJI Matrice 300 RTK
four-rotor aircraft (DJI, Shenzhen, China). The image sensor in the Zenmuse P1 provided
45 megapixels with an 8192 × 5490 image resolution. The flight patterns were programmed
automatically by DJI Pilot to achieve an 85% forward overlap rate and 80% side overlap
rate with a 60 m flight height above the relative take-off point. To ensure and maintain
flight accuracy, the DJI D-RTK 2 (DJI, Shenzhen, China) high-precision GNSS mobile station
for Matrice 300 RTK was set at a fixed point and used to obtain highly accurate location
information in both vertical and horizontal directions. The imagery data were acquired
on sunny and cloudless days, with a total of 1010 images being collected. All the images
were continuously input into DJI Terra (DJI, Shenzhen, China) and processed with high-
quality parameters, generating two orthophotos of the study area with a 0.007 m original
resolution, termed as 0518 and 0525 datasets, respectively. The 0518 dataset was set as a
training dataset for model tuning, and the 0525 dataset, as well as its resampled images
at resolutions of 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.30, 0.40, and
0.50 m, was used for predictions and evaluations.
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2.2.2. Tree Crown Detection and Delineation Using DeepForest and Detectree2

The two open-sourced, deep-learning-based DeepForest and Detectree2 methods
were used for individual tree crown detection and delineation. DeepForest is a Python
package developed from a semi-supervised deep learning neural network using the NEON
Airborne Observation Platform [19]. In turn, DeepForest aims to detect the individual tree
crown location from airborne RGB imagery and is easy to extend into different scenarios
as it provides a pre-trained model in which users can conduct transfer training based
on local datasets. The training data for transfer learning with the pre-trained model
are shown in Figure 1a; the hyperparameters for model tuning were not changed in the
transfer learning steps. Both the pre-trained model and transfer-trained model were used
to conduct individual tree crown detection procedures and were evaluated at different
image resolutions.

Detectree2 is built on Mask R-CNN, a Faster R-CNN [49] extension involving the
inclusion of a new branch to perform instance segmentation [22]. The Mask R-CNN
stands out within CNN architectures and can obtain excellent results relative to other
architectures for instance segmentation tasks. Similar to DeepForest, both the pre-trained
and transfer-trained models were used for tree crown delineation, and no hyperparameters
were changed in the transfer learning steps. In addition, for each predicted bounding box
and polygon, a confidence score value (0–1) was returned by DeepForest and Detectree2.

The prediction results were further divided into a pre-trained group and a transfer-
trained group for each method; scales were obtained for all 15 resolutions. The location
information for individual tree crowns was first evaluated and compared for the pre-trained
versus transfer-trained results of each method before the comparison across the two models
was conducted. Furthermore, the predicted results were connected to the most closed
ground truth data using a nearest neighbor algorithm with a certain radius and then a
simple linear regression model was applied to evaluate the tree crown areas.

In addition, four dominant species with enough samples were chosen to further
evaluate the species-specific performance of transfer training by DeepForest and Detectree2.
We also investigated the effects of topography on tree crown detection based on the slope
information calculated from the five-meter resolution DEM (digital elevation model) data
(The Geospatial Information Authority of Japan, GSI).

2.2.3. Accuracy Assessment

The detection accuracy of the tree crowns using both models was evaluated by the
following metrics. The intersection over union (IoU), which is determined by the inter-
section area between the predicted and ground truth tree crowns divided by the sum of
the area contained in both, was first used to assess the agreement between the predicted
and ground truth tree crowns [35]. The precision, recall, and F1 score [50] were further
calculated at an IoU threshold of 0.5. Precision and recall represent the ratio of correctly
detected tree crowns of the model detection and the test set, respectively. The F1 score
describes the overall accuracy considering both the precision and recall. These three metrics
were calculated from the true positive (TP, tree crown is correctly detected), false positive
(FP, tree crown is erroneously detected), and false negative (FN, tree crown is omitted). The
equations of precision, recall, and F1 score are defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

where TP, FP, and FN represent true positive, false positive, and false negative, respectively.
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In addition, the tree crown areas extracted from the deep-learning-based methods
were compared with the ground truth tree crown areas. Linear regression analysis was
employed to describe the relationships between them, which were represented by the
widely used statistical criteria of the coefficient of determination (R2) and root-mean-square
error (RMSE) and were calculated as:

R2 = 1− ∑i(ŷi − y)2

∑i(yi − y)2 (4)

RMSE =

√
1
n ∑n

i=1((yi − ŷi))
2 (5)

where yi and ŷi represent the reference, and estimated value yi and n indicate the average
value and the number of samples, respectively.

3. Results
3.1. Tree Crown Detection Using DeepForest and Detectree2: Pre-Trained vs. Transfer-Trained

The detailed assessment results for the tree crown detection and delineation of the
DeepForest method from UAV-based RGB imagery are presented in Figure 3. The precision,
recall, and F1 score of the pre-trained DeepForest tree crown detection were very low, with
values of 0.18, 0.28, and 0.22, respectively. In comparison, the transfer-trained DeepForest
tree crown detection exhibited significantly higher accuracy, with a precision of 0.59 and
recall of 0.46. Furthermore, the F1 score of the transfer-trained DeepForest tree crown
detection was 0.52 and, therefore, higher than that of the pre-trained DeepForest method.
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Figure 3. The tree crown detection of the pre- and transfer-trained DeepForest methods derived from
UAV-based RGB imagery in the studied temperate, deciduous forest. The green and orange bounding
boxes represent the predicted and ground truth tree crowns.

Figure 4 shows the detection accuracy for tree crowns using the Detectree2 method,
including the precision, recall, and F1 score. Specifically, the pre-trained Detectree2 method
for tree crown detection yielded a precision of 0.71, a recall of 0.42, and an F1 score of 0.53.
The transfer-trained Detectree2 method had a relatively higher recall (0.50) and F1 score
(0.57) than the pre-trained Detectree2 one, although the precision of the transfer-trained
Detectree2 method (0.66) was slightly lower than that of the pre-trained Detectree2 one.
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Figure 4. The tree crown detection of the pre- and transfer-trained Detectree2 methods derived from
UAV-based RGB imagery in the studied temperate, deciduous forest. The green and orange bounding
outlines indicate the predicted and ground truth tree crowns.

3.2. Accuracies of Tree Crown Detection Using Images with Different Spatial Resolutions

The effects of different image spatial resolutions on the detection accuracy of tree
crowns using both pre-trained and transfer-trained DeepForest from UAV RGB imagery
are illustrated in Figure 5. In detail, the precision, recall, and F1 score of the pre-trained
DeepForest method were low at 0.007 and 0.01 m resolutions but increased at a resolution
of 0.02 m before varying slightly at resolutions ranging from 0.02 to 0.1 m. However,
from resolutions of 0.1 to 0.5 m, the precision, recall, and F1 score declined rapidly and
continuously. For the transfer-trained DeepForest method, the precision ranged from 0.49 to
0.61 within resolution ranges of 0.007 to 0.5 m, with the highest and lowest precisions noted
for the 0.01 and 0.3 m resolutions. The corresponding recall and F1 score of the transfer-
trained DeepForest method decreased more or less when the resolution exceeded 0.05 m.

The accuracy (precision, recall, and F1 score) of both pre-trained and transfer-trained
Detectree2 for tree crown detection at resolutions ranging from 0.007 to 0.5 m is shown in
Figure 6. The precision, recall, and F1 score of the pre-trained Detectree2 method exhibited
similar trends, with the values varying with different extents from the resolution of 0.007 to
0.1 m (precision: 0.67–0.71, recall: 0.39–0.45, F1 score: 0.49–0.55); the values then decreased
continuously between resolutions of 0.1 and 0.5 m. Moreover, the precision, recall, and
F1 score were relatively greater from 0.007 to 0.05 m resolutions, followed by resolutions
of 0.06 to 0.1 m and ones of 0.2 to 0.5 m. For the transfer-trained Detectree2 method, the
precision ranged from 0.62 to 0.66 at resolutions of 0.007 to 0.08 m, accompanied by the
recall ranging from 0.49 to 0.52 and F1 score ranging from 0.55 to 0.58. Then, the precision
decreased continuously at resolutions of 0.09 to 0.5 m. Similarly, the recall and F1 score also
declined substantially at resolutions from 0.09 to 0.5 m. On the other hand, the recall and F1
score of the transfer-trained Detectree2 method were greater than those of the pre-trained
Detectree2 one for the tree crown detection at fine resolutions.
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3.3. Estimation of Tree Crown Area Using Detectree2

In addition, the tree crown areas estimated with the pre-trained and transfer-trained
Detectree2 methods were evaluated using the reference tree crown areas that were measured
during the field survey (Figure 7). The tree crown areas varied from 6.92 to 174.52 m2 for
the reference tree crown areas, from 12.18 to 184.40 m2 for the extracted tree crown areas
of pre-trained Detectree2, and from 6.61 to 150.75 m2 for the extracted tree crown areas
of transfer-trained Detectree2. The relationship between the tree crown areas from the
reference and the pre-trained Detectree2 yielded an R2 of 0.68 and an RMSE of 6.64 m2

(Figure 7a). Obviously, the transfer-trained Detectree2 method showed a relatively better
performance than the pre-trained Detectree2 one with an R2 of 0.71 and RMSE of 4.75 m2

(Figure 7b).
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The accuracy of the tree crown area estimation using the pre-trained and transfer-trained
Detectree2 methods varied with different resolutions (Figure 8). The R2 computed between
the measured and predicted crown areas ranged from 0.47 to 0.76 (RMSE: 4.91–14.27 m2) for
pre-trained Detectree2 and from 0.19 to 0.76 (RMSE: 3.26–15.07 m2) for transfer-trained
Detectree2 with resolutions of 0.001 to 0.5 m. Higher R2 values were observed at resolutions
of 0.01 to 0.1 m, along with lower RMSE values, for the tree crown area estimation.
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3.4. Performance of Both Models for Detecting Crown in Terms of Different Species and Topography

The detection accuracies obtained with the transfer-trained DeepForest and Detectree2
methods for the crown detection of different tree species were investigated (Figure 9). A
total of four tree species with enough samples were considered, namely, Acer nipponicum,
Acer shirasawanum, Betula grossa, and Fraxinus lanuginose.
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The accuracy varied dramatically among these species, irrespective of whether the
transfer-trained DeepForest or Detectree2 method was used. For the transfer-trained
DeepForest method, A. nipponicum exhibited the highest overall accuracy (precision = 0.58,
recall = 0.43, F1 score = 0.41), followed by B grossa (precision = 0.48, recall = 0.40, F1
score = 0.38), while A. shirasawanum and F. lanuginose yielded poor accuracies with an F1
score of less than 0.30. Nevertheless, with the transfer-trained Detectree2 method, A. shira-
sawanum had the best prediction, with an F1 score of 0.51 (precision = 0.52, recall = 0.50),
while A. nipponicum was poorly predicted with the lowest accuracy (precision = 0.07,
recall = 0.25, F1 score = 0.11). The B grossa and F. lanuginose species were moderately
delineated, as indicated by the same F1 score of 0.40.

In addition, we investigated the confidence score of the transfer-trained DeepForest
and Detectree2 methods for different slopes (Figure 10). The mean confidence scores using
transfer-trained DeepForest ranged from 0.40 to 0.56, accompanied by standard deviations
(sd) of 0.14 to 0.23. In comparison, the confidence scores of transfer-trained Detectree2 were
much higher, with the mean values exceeding 0.67, in which they were low for slopes of
15–20◦ and 40–45◦.

Remote Sens. 2023, 15, 778 11 of 16 
 

 

 
Figure 9. The specific accuracy of tree crown detection for different tree species using the transfer-
trained DeepForest (a) and Detectree2 (b) methods. AN, AS, BG, and FL represent Acer nipponicum, 
Acer shirasawanum, Betula grossa, and Fraxinus lanuginose, respectively. 

In addition, we investigated the confidence score of the transfer-trained DeepForest 
and Detectree2 methods for different slopes (Figure 10). The mean confidence scores using 
transfer-trained DeepForest ranged from 0.40 to 0.56, accompanied by standard devia-
tions (sd) of 0.14 to 0.23. In comparison, the confidence scores of transfer-trained Detec-
tree2 were much higher, with the mean values exceeding 0.67, in which they were low for 
slopes of 15–20° and 40–45°. 

 
Figure 10. Confidence scores for different slopes using the transfer-trained DeepForest (a) and De-
tectree2 (b) methods. 

4. Discussion 
4.1. Performance of DeepForest and Detectree2 for Detecting Tree Crowns in Deciduous Forests 
with Complex Species Compositions and Topographical Conditions 

This study focused on the full evaluation and comparison of the application and 
transferability of two commonly used, deep-learning-based CNN tree crown detection 
and delineation approaches in a dense and diverse deciduous forest using very-high-res-
olution, UAV-derived imagery. Our results demonstrated that the DeepForest and Detec-
tree2 methods can be successfully transferred to deciduous forests for the detection of tree 
crowns, taking advantage of UAV-based RGB images with precisions of 0.59 (recall: 0.46; 
F1 score: 0.52) and 0.66 (recall: 0.50; F1 score: 0.57), respectively. The accuracy of these two 
transferred models was relatively lower than the results reported for crown detection by 
Fromm et al. [35] and Chadwick et al. [39], who considered coniferous forest areas using 
UAV-derived RGB images, yielding a precision greater than 0.80. Generally speaking, het-
erogeneous forest conditions, for example, those involving diverse species and tree 

Figure 10. Confidence scores for different slopes using the transfer-trained DeepForest (a) and
Detectree2 (b) methods.



Remote Sens. 2023, 15, 778 11 of 15

4. Discussion
4.1. Performance of DeepForest and Detectree2 for Detecting Tree Crowns in Deciduous Forests
with Complex Species Compositions and Topographical Conditions

This study focused on the full evaluation and comparison of the application and
transferability of two commonly used, deep-learning-based CNN tree crown detection
and delineation approaches in a dense and diverse deciduous forest using very-high-
resolution, UAV-derived imagery. Our results demonstrated that the DeepForest and
Detectree2 methods can be successfully transferred to deciduous forests for the detection
of tree crowns, taking advantage of UAV-based RGB images with precisions of 0.59 (recall:
0.46; F1 score: 0.52) and 0.66 (recall: 0.50; F1 score: 0.57), respectively. The accuracy of
these two transferred models was relatively lower than the results reported for crown
detection by Fromm et al. [35] and Chadwick et al. [39], who considered coniferous forest
areas using UAV-derived RGB images, yielding a precision greater than 0.80. Generally
speaking, heterogeneous forest conditions, for example, those involving diverse species
and tree shapes, have a negative influence on tree crown detection, as reported in previous
studies [38,51]. Nevertheless, the results obtained here were better than those associated
with the detection of other broadleaf species [38], indicating that these two transfer-trained
methods have the capability to automatically and accurately detect tree crowns in temperate
deciduous forests.

The results of this study further demonstrated that Detectree2 is better at recognizing
tree crowns than DeepForest, revealing a strong generalization ability for tree crown
detection and delineation. Mask R-CNN is commonly employed in the Detectree2 method
to conduct instance segmentation by integrating both object detection tasks and semantic
segmentation tasks [22]. Previous studies have demonstrated that Mask R-CNN is a state-
of-the-art model among CNN architectures, and an excellent performance for the detection
of tree crowns has recently been reported [13,16]; our results agree well with those of the
abovementioned studies.

The performance for tree crown detection differed across different tree species, which
may have been attributed to the distinctive shapes of the species. As reported in previous
studies [51,52], the accuracy of tree crown detection depends on the tree crown shape. The
Acer shirasawanum species, which generally has spread-out crowns, had the highest overall
accuracy (F1 score = 0.51) when using the transfer-trained Detectree2 method, indicating
the potential of Detectree2 for detecting broad tree crowns. However, this model predicted
Acer nipponicum poorly, with an extremely low accuracy. These two species belong to the
same family and genus but have different morphological characteristics [53,54], such as the
diameter at breast height, which somewhat influenced the detection accuracy of tree crowns
using UAV RGB imagery. Furthermore, the study of Budianti et al. [53] revealed that the
phenological transition dates of these two species are different, and such differences in
phenological information may also have affected the accuracy of their crown detection.

As expected, we found that topographic characteristics have effects on the detection
accuracy of tree crowns, which is in line with the observations of Khosravipour et al. [55]
and Nie et al. [56], who carried out treetop detection using canopy height models derived
from LiDAR. Alexander et al. [57] also found that topography influences tree detection
and height estimations from LiDAR canopy height models in tropical forests. However, a
general rule of slope effects on tree crown detection accuracy was unable to be achieved in
this study, and further studies are required to ascertain the influence of slope on tree crown
detection accuracy.

4.2. Effects of the Spatial Resolutions of UAV Images on Tree Crown Detection

The results obtained in this study suggest that the image spatial resolution has an
obvious influence on tree crown detection and delineation from UAV-acquired RGB imagery
when using deep-learning-based methods. The Detectree2 method, which performed best
for tree crown detection from UAV-based RGB imagery, had a better accuracy (between
0.007 and 0.1 m), which was noticeably higher than the accuracy obtained with resolutions
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exceeding 0.1 m. This implies that the Detectree2 method exhibits a good predictive ability
for tree crown detection when the image resolution is high. The results are consistent
with those of previous studies, which showed that a higher spatial resolution generally
improves the detection accuracy for CNN-based models. For example, Fromm et al. [35]
concluded that an image resolution of 0.3 cm yielded the highest average precision (0.81)
for the detection of conifer seedlings when compared to resolutions of 1.5, 2.7, and 6.3 cm.
There was no significant difference in accuracy between the resolutions of 0.007 and 0.1 m,
as indicated in this study.

In addition, the accuracy of the Detectree2 method declined when the resolution
exceeded 0.1 m, and it then had a poor predictive performance, implying that the detection
accuracy of tree crowns was impacted by the coarse spatial resolution of the image. The
study of Yin and Wang [58] suggested that a 0.25 m resolution was the optimal choice
for the detection of individual mangrove crowns from UAV-based LiDAR data using the
seeded region growing (SRG) algorithm and marker-controlled watershed segmentation
(MCWS) algorithm when compared to resolutions of 0.10, 0.50, and 1 m. Furthermore,
Miraki et al. [36] indicated that the highest overall accuracy for the delineation of individual
tree crowns using region growing (RG) and inverse watershed segmentation (IWS) was
achieved at a spatial resolution of 100 cm when considering resolutions ranging from 5 to
140 cm. One possible reason for the differences between these studies could be attributed
to the employed data sources and predictive methods.

4.3. Estimation of Tree Crown Areas

As for the tree crown area determination, Dong et al. [59] estimated a tree canopy area
with R2 values of 0.87 and 0.81 for apple trees and pear trees, respectively, using image-
processing-based algorithms from high-resolution UAV standard RGB images in an orchard.
Mu et al. [60] also obtained very good results for tree crown area estimation using UAV
RGB imagery of peach trees. Nevertheless, these studies were conducted on specific species
in an orchard with a simple structure using image processing techniques. Alternatively,
the best performing Detectree2 method has the advantage of recognizing tree crowns by
delineating irregular tree crown shapes and can, thus, be used to distinguish between
adjacent tree crowns, with the potential to be further applied to extract tree crown areas.
Our results indicate that the tree crown areas could be assessed with both the pre-trained
and transfer-trained Detectree2 methods, with R2 values of 0.68 and 0.71, respectively.

However, our results were inferior to those of Braga et al. [12], who reported that the
relationship between the tree crown area extracted from Mask R-CNN delineation and
an evaluation set had an R2 of 0.93, based on high-resolution satellite images of tropical
forests. Even so, this study also achieved promising results regarding deciduous forests,
again indicating the robustness of deep-learning-based methods through Mask R-CNN
when estimating tree crown areas. Furthermore, the transfer-trained Detectree2 method
performed better than the pre-trained Detectree2 one for the extraction of tree crown areas,
indicating that the transfer-trained Detectree2 method had a strong ability and potential
for estimating the area of tree canopies in temperate deciduous forests. Additionally, the
image resolution also affected the accuracy of crown area estimation, in particular when
the resolution was greater than 0.1 m.

4.4. Limitations and Perspectives

This study challenged the automatic detection and delineation of tree crowns in a
temperate deciduous forest which is densely linked. Previous studies have demonstrated
that detecting and delineating tree crowns from a closed canopy may result in uncertainty
and errors in the predictive ability when compared to areas with isolated trees or uniformly
planted and distributed trees [16]. This study also showed that image resolution has an
important influence on the accuracy of tree crown detection and delineation using deep-
learning-based methods. Moreover, we suggest that the edges of tree crowns are not clear
and can decrease a method’s prediction accuracy.
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To improve the estimation accuracy of deep-learning-based methods, future studies
should, on the one hand, take full advantage of the available information contained in
high-resolution UAV imagery, such as textural information. On the other hand, this study
was conducted in a temperate deciduous forest which exhibited obvious phenology signals.
As a result, the phenological variability of individual trees and/or adjacent trees should be
exploited as it could increase the detection and delineation accuracy of deep-learning-based
methods from UAV-acquired RGB imagery. Future research in this direction could improve
individual tree crown delineation from high-resolution remote sensing imagery.

5. Conclusions

The evaluation of deep-learning-based methods for the automatic detection and delin-
eation of tree crowns using UAV-based RGB imagery in an alpine, temperate deciduous
forest indicated that the initial training on UAV RGB imagery for pre-trained, deep-learning-
based models improved the detection results, in which the transfer-trained Detectree2
method was more suitable and robust for automatically delineating individual tree crowns
in temperate deciduous forests. This method exhibited a relatively good and stable per-
formance for tree crown detection and crown area estimation at fine resolutions. This
study finally confirmed and highlighted that deep-learning-based methods could represent
a powerful tool for tree crown detection and serve as a foundation for the automated
monitoring of forest ecosystems when high-resolution UAV images are available.
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